Bibliography

[1]   International Technology Roadmap for Semiconductors 2010 Update Overview. http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010_Update_Overview.pdf, 2010.

[2]   GNU Scientific Library [ONLINE]. http://www.gnu.org/s/gsl/, 2013.

[3]   The Discovery of Giant Magnetoresistance (Scientific Background on the Nobel Prize in Physics 2007) [ONLINE]. http://www.kva.se/Documents/Priser/Nobel/2007/sciback_fy_en_07.pdf, 2013.

[4]   S. F. Alvarado and P. Renaud. Observation of Spin-Polarized Eelectron Tunneling from a Ferromagnet into GaAs. Physical Review Letters, 68:1387–1390, 1992.

[5]   T. Ando, A. B. Fowler, and F. Stern. Electronic Properties of Two-Dimensional Systems. Reviews of Modern Physics, 54:437–672, 1982.

[6]   A. G. Aronov and G. E. Pikus. Spin Injection in Semiconductors. Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg), 10(6):1177–80, 1976.

[7]   O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina. VSP–a Quantum-Electronic Simulation Framework. Journal of Computational Electronics, 12(4):701–721, 2013.

[8]   G. Bir, A. G. Aronov, and G. E. Pikus. Spin Relaxation of Electrons due to Scattering by Holes. Journal of Experimental and Theoretical Physics, 42(4):1382–1397, 1975.

[9]   G. Bir and G. Pikus. Symmetry and Strain-Induced Effects in Semiconductors. New York/Toronto: J. Wiley & Sons, 1974.

[10]   V. Borisenko and S. Ossicini. What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. Wiley, 2013.

[11]   A. Bournel, P. Dollfus, P. Bruno, and P. Hesto. Gate-Induced Spin Precession in an InGaAs Two Dimensional Electron Gas. The European Physical Journal Applied Physics, 4:1–4, 1998.

[12]   M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre, and A. Fert. Nearly Total Spin Polarization in LaSrMnO from Tunneling Experiments. Applied Physics Letters, 82(2):233–235, 2003.

[13]   M. Bšuttiker. Four-Terminal Phase-Coherent Conductance. Physical Review Letters, 57:1761–1764, 1986.

[14]   Y. A. Bychkov and E. I. Rashba. Oscillatory Effects and the Magnetic Susceptibility of Carriers in Inversion Layers. Journal of Physics C: Solid State Physics, 17(33):6039, 1984.

[15]   M. Cahay and S. Bandyopadhyay. Phase-Coherent Quantum Mechanical Spin Transport in a Weakly Disordered Quasi-One-Dimensional Channel. Physical Review B, 69:045303, 2004.

[16]   M. Cardona and F. H. Pollak. Energy-Band Structure of Germanium and Silicon: The kp Method. Physical Review, 142:530–543, 1966.

[17]   J. Cheng, M. Wu, and J. Fabian. Theory of the Spin Relaxation of Conduction Electrons in Silicon. Physical Review Letters, 104:016601, 2010.

[18]   M. Chiao. An attractive theory [ONLINE]. http://www.nature.com/milestones/milespin/pdf/milespin05.pdf, 2008.

[19]   W. G. Clark and G. Feher. Nuclear Polarization in InSb by a dc Current. Physical Review Letters, 10:134–138, 1963.

[20]   J. M. D. Coey and M. Venkatesan. Half-Metallic Ferromagnetism: Example of CrO (invited). Journal of Applied Physics, 91(10):8345–8350, 2002.

[21]   S. Dash, S. Sharma, R. Patel, M. de Jong, and R. Jansen. Electrical Creation of Spin Polarization in Silicon at Room Temperature. Nature, 462:491–494, 2009.

[22]   S. Datta and B. Das. Electronic Analog of the Electro-Optic Modulator. Applied Physics Letters, 56:665, 1990.

[23]   R. A. de Groot, F. M. Mueller, P. G. v. Engen, and K. H. J. Buschow. New Class of Materials: Half-Metallic Ferromagnets. Physical Review Letters, 50:2024–2027, 1983.

[24]   G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende Structures. Physical Review, 100:580–586, 1955.

[25]   M. I. D’yakonov and V. I. Perel’. Spin Relaxation of Conduction Electrons in Noncentrosymetric Semiconductors. Fizika Tverdogo Tela, 13:1382–1397, 1971.

[26]   H. Ehrenreich and A. W. Overhauser. Scattering of Holes by Phonons in Germanium. Physical Review, 104:331–342, 1956.

[27]   R. J. Elliott. Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors. Physical Review, 96:266–279, 1954.

[28]   G. Engels, J. Lange, T. Schšapers, and H. Lšuth. Experimental and Theoretical Approach to Spin Splitting in Modulation-Doped Quantum Wells for B=0. Physical Review B, 55:R1958–R1961, 1997.

[29]   D. Esseni. On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and its Correlation to the Transistor Effective Field. Electron Devices, IEEE Transactions, 51(3):394–401, 2004.

[30]   D. Esseni and P. Palestri. Linear Combination of Bulk Bands Method for Investigating the Low-Dimensional Electron Gas in Nanostructured Devices. Physical Review B, 72:165342, 2005.

[31]   J. Fabian. Semiconductor Spintronics. Institute of Physics, Slovak Academy of Sciences, 2007.

[32]   A. Fert and H. Jaffres. Conditions for Efficient Spin Injection from a Ferromagnetic Metal into a Semiconductor. Physical Review B, 64:184420, 2001.

[33]   A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees, B. Dutta, and S. Borghs. Experimental Search for the Electrical Spin Injection in a Semiconductor. Physical Review B, 62:9996–9999, 2000.

[34]   M. Fischetti and S. Laux. Monte Carlo Study of Electron Transport in Silicon Inversion Layers. Physical Review B, 48:2244–2274, 1993.

[35]   M. Fischetti, Z. Ren, P. Solomon, M. Yang, and K. Rim. Six-band kp Calculation of the Hole Mobility in Silicon Inversion Layers: Dependence on Surface Orientation, Strain, and Silicon Thickness. Journal of Applied Physics, 94(2):1079–1095, 2003.

[36]   M. V. Fischetti and S. E. Laux. Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys. Journal of Applied Physics, 80(4):2234–2252, 1996.

[37]   M. E. Flatte and J. M. Byers. Spin Diffusion in Semiconductors. Physical Review Letters, 84:4220–4223, 2000.

[38]   M. Friesen, S. Chutia, C. Tahan, and S. Coppersmith. Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells. Physical Review B, 75:115318, 2007.

[39]   F. Gamiz, J. B. Roldan, J. A. Lopez-Villanueva, P. Cartujo-Cassinello, and J. E. Carceller. Surface Roughness at the Si–SiO Interfaces in Fully Depleted Silicon-On-Insulator Inversion Layers. Journal of Applied Physics, 86(12):6854–6863, 1999.

[40]   W. Gerlach and O. Stern. Der Experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik A Hadrons and Nuclei, 9(1):349–352, 1922.

[41]   S. Giglberger, L. E. Golub, V. V. Bel’kov, S. N. Danilov, D. Schuh, C. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl, and S. D. Ganichev. Rashba and Dresselhaus Spin Splittings in Semiconductor Quantum Wells Measured by Spin Photocurrents. Physical Review B, 75:035327, 2007.

[42]   D. Grundler. Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers. Physical Review Letters, 84:6074–6077, 2000.

[43]   R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in Few-Electron Quantum Dots. Reviews of Modern Physics, 79:1217–1265, 2007.

[44]   J. P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs. Spin-Orbit Interaction in a Two-Dimensional Electron Gas in a InAs/AlSb Quantum Well with Gate-Controlled Electron Density. Physical Review B, 57:11911–11914, 1998.

[45]   J. M. Hinckley and J. Singh. Monte Carlo Studies of Ohmic Hole Mobility in Silicon and Germanium: Examination of the Optical Phonon Deformation Potential. Journal of Applied Physics, 76(7):4192–4200, 1994.

[46]   C.-M. Hu, J. Nitta, T. Akazaki, H. Takayanagi, J. Osaka, P. Pfeffer, and W. Zawadzki. Zero-Field Spin Splitting in an Inverted Heterostructure: Band Nonparabolicity Influence and the Subband Dependence. Physical Review B, 60:7736–7739, 1999.

[47]   L. Hu, J. Gao, and S.-Q. Shen. Conductance Modulations in Spin Field-Effect Transistors Under Finite Bias Voltages. Physical Review B, 69:165304, 2004.

[48]   B. Huang, D. Monsma, and I. Appelbaum. Coherent Spin Transport Through a 350 Micron Thick Silicon Wafer. Physical Review Letters, 99:177209, 2007.

[49]   T. Inokuchi, M. Ishikawa, H. Sugiyama, Y. Saito, and N. Tezuka. Spin Injection and Detection Between CoFe/AlOx Junctions and SOI Investigated by Hanle Effect Measurements. Journal of Applied Physics, 111(7):–, 2012.

[50]   K. Inomata, N. Ikeda, N. Tezuka, R. Goto, S. Sugimoto, M. Wojcik, and E. Jedryka. Highly Spin-Polarized Materials and Devices for Spintronics. Science and Technology of Advanced Materials, 9(1):014101, 2008.

[51]   C. Jacoboni and L. Reggiani. The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Reviews of Modern Physics, 55:645–705, 1983.

[52]   R. Jansen. Silicon Spintronics. Nature Materials, 11:400–408, 2012.

[53]   K. M. Jiang, J. Yang, R. Zhang, and H. Wang. Ballistic Transport Properties in Spin Field-Effect Transistors. Journal of Applied Physics, 104(5):–, 2008.

[54]   K.-M. Jiang, R. Zhang, J. Yang, C.-X. Yue, and Z.-Y. Sun. Tunneling Magnetoresistance Properties in Ballistic Spin Field-Effect Transistors. IEEE Transactions on Electron Devices, 57(8):2005–2012, 2010.

[55]   S. Jin, M. Fischetti, and T. Tang. Modeling of Electron Mobility in Gated Silicon Nanowires at Room Temperature: Surface Roughness Scattering, Dielectric Screening, and Band Nonparabolicity. Journal of Applied Physics, 102(8):083715, 2007.

[56]   J.Li and I. Appelbaum. Modeling Spin Transport in Electrostatically-Gated Lateral-Channel Silicon Devices: Role of Interfacial Spin Relaxation. Physical Review B, 84:165318, 2011.

[57]   M. Johnson. Spin Injection in Metals and Semiconductors. Semiconductor Science and Technology, 17(4):298, 2002.

[58]   M. Johnson and R. H. Silsbee. Interfacial Charge-Spin Coupling: Injection and Detection of Spin Magnetization in Metals. Physical Review Letters, 55:1790–1793, 1985.

[59]   M. Johnson and R. H. Silsbee. Coupling of Electronic Charge and Spin at a Ferromagnetic-Paramagnetic Metal Interface. Physical Review B, 37:5312–5325, 1988.

[60]   B. Jonker, S. Erwin, A. Petrou, and A. Petukhov. Electrical Spin Injection and Transport in Semiconductor Spintronic Devices. MRS bulletin, 28(10):740–748, 2003.

[61]   E. Kane. Energy Band Structure in p-type Germanium and Silicon. Journal of Physics and Chemistry of Solids, 1(1–2):82–99, 1956.

[62]   M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek, O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and S. Selberherr. A Multi-Purpose Schršodinger-Poisson Solver for TCAD Applications. Journal of Computational Electronics, 6(1-3):179–182, 2007.

[63]   Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom. Observation of the Spin Hall Effect in Semiconductors. Science, 306:1910, 2004.

[64]   C. Kittel. Quantum Theory of Solids. Wiley, 1963.

[65]   C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[66]   K. Kuhn. CMOS Scaling Beyond 32nm: Challenges and Opportunities. In Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 310–313, 2009.

[67]   G. Lampel. Nuclear Dynamic Polarization by Optical Electronic Saturation and Optical Pumping in Semiconductors. Physical Review Letters, 20:491–493, 1968.

[68]   R. Landauer. Spatial Variation of Currents and Fields due to Localized Scatterers in Metallic Conduction (and Comment). Journal of Mathematical Physics, 37(10):5259–5268, 1996.

[69]   C. Li, O. V. Erve, and B. Jonker. Electrical Injection and Detection of Spin Accumulation in Silicon at 500 K with Magnetic Metal/Silicon Dioxide Contacts. Nature Communications, 2:245, 2011.

[70]   P. Li and H. Dery. Spin-Orbit Symmetries of Conduction Electrons in Silicon. Physical Review Letters, 107:107203, 2011.

[71]   Y.-X. Li, Y. Guo, and B.-Z. Li. Rashba Spin-Orbit Effect on Electronic Transport in Ferromagnetic/Semiconductor/Ferromagnetic Nanostructures under an Applied Electric Field. Physical Review B, 71:012406, 2005.

[72]   G. Lommer, F. Malcher, and U. Rossler. Spin Splitting in Semiconductor Heterostructures for B=0. Physical Review Letters, 60:728–731, 1988.

[73]   J. M. Luttinger and W. Kohn. Motion of Electrons and Holes in Perturbed Periodic Fields. Physical Review, 97:869–883, 1955.

[74]   T. Matsuyama, R. Kšursten, C. Meißner, and U. Merkt. Rashba Spin Splitting in Inversion Layers on p-type Bulk InAs. Physical Review B, 61:15588–15591, 2000.

[75]   R. Mattana, J.-M. George, H. Jaffr`es, F. Nguyen Van Dau, A. Fert, B. Lepine, A. Guivarc’h, and G. Jezequel. Electrical Detection of Spin Accumulation in a p-Type GaAs Quantum Well. Physical Review Letters, 90:166601, 2003.

[76]   B. S. Mendoza and J. L. Cabellos. Optical Spin Injection at Semiconductor Surfaces. Physical Review B, 85:165324, 2012.

[77]   R. Meservey, D. Paraskevopoulos, and P. M. Tedrow. Correlation Between Spin Polarization of Tunnel Currents from 3d Ferromagnets and Their Magnetic Moments. Physical Review Letters, 37:858–860, 1976.

[78]   G. Moore. Progress in Digital Integrated Electronics. In Electron Devices Meeting, 1975 International, volume 21, pages 11–13, 1975.

[79]   G. E. Moore et al. Cramming More Components onto Integrated Circuits, 1965.

[80]   V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V. I. Safarov. Electrical Spin Injection in a Ferromagnet/Tunnel Barrier/Semiconductor Heterostructure. Applied Physics Letters, 81(2):265–267, 2002.

[81]   F. Nastos, J. Rioux, M. Strimas-Mackey, B. S. Mendoza, and J. E. Sipe. Full Band Structure LDA and kp Calculations of Optical Spin-Injection. Physical Review B, 76:205113, 2007.

[82]   M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko. Spin and Valley-Orbit Splittings in SiGe/Si Heterostructures. Physical Review B, 73:235334, 2006.

[83]   M. O. Nestoklon, E. L. Ivchenko, J.-M. Jancu, and P. Voisin. Electric Field Effect on Electron Spin Splitting in SiGe/Si Quantum Wells. Physical Review B, 77:155328, 2008.

[84]   J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki. Gate Control of Spin-Orbit Interaction in an Inverted Heterostructure. Physical Review Letters, 78:1335–1338, 1997.

[85]   Y. Ohno, D. Young, B. a. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom. Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure. Nature, 402(6763):790–792, 1999.

[86]   T. ORegan, M. Fischetti, B. Soree, S. Jin, W. Magnus, and M. Meuris. Calculation of the Electron Mobility in III-V Inversion Layers with High- #x3ba; Dielectrics. Journal of Applied Physics, 108(10):103705–103705–11, 2010.

[87]   D. Osintsev, V. Sverdlov, and S. Selberherr. Reduction of Momentum and Spin Relaxation Rate in Strained Thin Silicon Films. In Proceedings of the 43rd European Solid-State Device Research Conference (ESSDERC), pages 334–337, 2013. talk: European Solid-State Device Research Conference (ESSDERC), Bucharest, Romania; 2013-09-16 – 2013-09-20.

[88]   D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, and S. Selberherr. Transport Properties of Spin Field-Effect Transistors Built on Si and InAs. In Ultimate Integration on Silicon (ULIS), 2011 12th International Conference on, pages 1–4, 2011.

[89]   D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, J. Weinbub, and S. Selberherr. Properties of Silicon Ballistic Spin Fin-Based Field-Effect Transistors. ECS Transactions, 35(5):277–282, 2011.

[90]   A. W. Overhauser. Paramagnetic Relaxation in Metals. Physical Review, 89:689–700, 1953.

[91]   A. W. Overhauser. Polarization of Nuclei in Metals. Physical Review, 92:411–415, 1953.

[92]   J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan. Direct Evidence for a Half-Metallic Ferromagnet. Nature, 392(6678):794–796, 1998.

[93]   S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang. Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers. Nature materials, 3(12):862–867, 2004.

[94]   P. Pfeffer. Effect of Inversion Asymmetry on the Conduction Subbands in GaAs-GaAlAs Heterostructures. Physical Review B, 59:15902–15909, 1999.

[95]   M. Prada, G. Klimeck, and R. Joynt. Spin-Orbit Splittings in Si/SiGe Quantum Wells: from Ideal Si Membranes to Realistic Heterostructures. New Journal of Physics, 13(1):013009, 2011.

[96]   E. I. Rashba. Theory of Electrical Spin Injection: Tunnel Contacts as a Solution of the Conductivity Mismatch Problem. Physical Review B, 62:R16267–R16270, 2000.

[97]   D. Rideau, M. Feraille, M. Michaillat, Y. Niquet, C. Tavernier, and H. Jaouen. On the Validity of the Effective Mass Approximation and the Luttinger kp Model in Fully Depleted SOI MOSFETs. Solid-State Electronics, 53(4):452–461, 2009. Special Issue with papers selected from the Ultimate Integration on Silicon Conference, (ULIS) 2008.

[98]   K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law [Point of View]. Proceedings of the IEEE, 98(3):351–353, 2010.

[99]   K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law. IEEE Transactions on Semiconductor Manufacturing, 24(1):1–4, 2011.

[100]   Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota. Giant Tunneling Magnetoresistance in CoMnSi/Al–O/CoMnSi Magnetic Tunnel Junctions. Applied Physics Letters, 88(19), 2006.

[101]   T. Schšapers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, and H. Lšuth. Effect of the Heterointerface on the Spin Splitting in Modulation Doped InGaAs/InP Quantum Wells for B=0. Journal of Applied Physics, 83(8):4324–4333, 1998.

[102]   G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamental Obstacle for Electrical Spin Injection From a Ferromagnetic Metal into a Diffusive Semiconductor. Physical Review B, 62:R4790–R4793, 2000.

[103]   G. Schmidt and L. W. Molenkamp. Spin Injection into Semiconductors, Physics and Experiments. Semiconductor Science and Technology, 17(4):310, 2002.

[104]   F. Seitz. The Theoretical Constitution of Metallic Lithium. Physical Review, 47:400–412, 1935.

[105]   T. Shinjo. Nanomagnetism and Spintronics. Elsevier insights. Elsevier Science, 2013.

[106]   Y. Song. Theory of Intrinsic Spin-Dependent Transport in Semiconductors and Two-Dimensional Membranes. PhD thesis, Department of Physics and Astronomy Arts, Sciences and Engineering School of Arts and Sciences, 2013.

[107]   Y. Song and H. Dery. Analysis of Phonon-Induced Spin Relaxation Processes in Silicon. Physical Review B, 86:085201, 2012.

[108]   R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science, 282(5386):85–88, 1998.

[109]   S. Sugahara and J. Nitta. Spin Transistor Electronics: An Overview and Outlook. Proceedings of the IEEE, 98(12):2124–2154, 2010.

[110]   S. Sugahara and M. Tanaka. A Spin Metal–Oxide–Semiconductor Field-Effect Transistor using Half-Metallic-Ferromagnet Contacts for the Source and Drain. Applied Physics Letters, 84(13):2307–2309, 2004.

[111]   V. Sverdlov. Strain-Induced Effects in Advanced MOSFETs. Wien - New York: Springer, 2011.

[112]   V. Sverdlov, O. Baumgartner, T. Windbacher, and S. Selberherr. Modeling of Modern MOSFETs with Strain. Journal of Computational Electronics, 8(3-4):192–208, 2009.

[113]   S. Trudel, O. Gaier, J. Hamrle, and B. Hillebrands. Magnetic Anisotropy, Exchange and Damping in Cobalt-Based Full-Heusler Compounds: an Experimental Review. Journal of Physics D: Applied Physics, 43(19):193001, 2010.

[114]   H. Tsuchiya, H. Ando, S. Sawamoto, T. Maegawa, T. Hara, H. Yao, and M. Ogawa. Comparisons of Performance Potentials of Silicon Nanowire and Graphene Nanoribbon MOSFETs Considering First-Principles Bandstructure Effects. IEEE Transactions on Electron Devices, 57(2):406–414, 2010.

[115]   G. Tsutsui, M. Saitoh, T. Saraya, T. Nagumo, and T. Hiramoto. Mobility Enhancement due to Volume Inversion in [110]-Oriented Ultra-Thin Body Double-Gate nMOSFETs with Body Thickness Less than 5 nm. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pages 729–732, 2005.

[116]   K. Uchida, T. Krishnamohan, K. Saraswat, and Y. Nishi. Physical Mechanisms of Electron Mobility Enhancement in Uniaxial Stressed MOSFETs and Impact of Uniaxial Stress Engineering in Ballistic Regime. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pages 129–132, 2005.

[117]   E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr. The Effect of General Strain on the Band Structure and Electron Mobility of Silicon. IEEE Transactions on Electron Devices, 54(9):2183–2190, 2007.

[118]   A. Valavanis, Z. Ikonic, and R. W. Kelsall. Intervalley Splitting and Intersubband Transitions in n-type Si/SiGe Quantum Wells: Pseudopotential vs. Effective Mass Calculation. Physical Review B, 75:205332, 2007.

[119]   L. Vorob’ev, E. L. Ivchenko, G. Pikus, I. I. Farbshtein, V. A. Shalygin, and A. V. Shturbin. Optical Activity in Tellurium Induced by a Current. JETP Letters, 1979.

[120]   R. Webb. New Resonance [ONLINE]. http://www.nature.com/milestones/milespin/pdf/milespin08.pdf, 2008.

[121]   M. Q. Weng, M. W. Wu, and H. L. Cui. Spin Relaxation in n-type GaAs Quantum Wells with Transient Spin Grating. Journal of Applied Physics, 103(6), 2008.

[122]   E. Wigner and F. Seitz. On the Constitution of Metallic Sodium. Physical Review, 43:804–810, 1933.

[123]   Z. Wilamowski and W. Jantsch. Suppression of Spin Relaxation of Conduction Electrons by Cyclotron Motion. Physical Review B, 69:035328, 2004.

[124]   T. Windbacher, V. Sverdlov, O. Baumgartner, and S. Selberherr. Electron Subband Structure in Strained Silicon UTB Films from the Hensel-Hasegawa-Nakayama Model - Part 1 Analytical Consideration and Strain-Induced Valley Splitting. Solid-State Electronics, 54(2):137–142, 2010.

[125]   R. Winkler. Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Number no. 191 in Physics and Astronomy Online Library. Springer, 2003.

[126]   A. Wright. The Spinning Electron [ONLINE]. http://www.nature.com/milestones/milespin/pdf/milespin03.pdf, 2008.

[127]   A. Wright. Vital Statistics [ONLINE]. http://www.nature.com/milestones/milespin/pdf/milespin07.pdf, 2008.

[128]   M. Wu, J. Jiang, and M. Weng. Spin Dynamics in Semiconductors. Physics Reports, 493(2–4):61–236, 2010.

[129]   J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Z^arbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, and T. Jungwirth. Spin Hall Effect Transistor. Science, 330(6012):1801–1804, 2010.

[130]   Y. Yafet. g-factors and Spin-Lattice Relaxation of Conduction Electrons, volume 14. Academic Press, 1963.

[131]   P. Yu and M. Cardona. Fundamentals of Semiconductors: Physics And Materials Properties. Number Bd. 3 in Advanced texts in physics. Springer, 2005.

[132]   S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions. Nature materials, 3(12):868–871, 2004.

[133]   J. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. The international series of monographs on physics. Oxford University Press, Incorporated, 1962.

[134]   I. ^Zutic, J. Fabian, and S. Das Sarma. Spin Injection Through the Depletion Layer: A theory of Spin-Polarized p-n Junctions and Solar Cells. Physical Review B, 64:121201, 2001.

[135]   I. ^Zutic, J. Fabian, and S. Das Sarma. Spin-Polarized Transport in Inhomogeneous Magnetic Semiconductors: Theory of Magnetic/Nonmagnetic p-n Junctions. Physical Review Letters, 88:066603, 2002.

[136]   I. ^Zutic, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and Applications. Rev. Mod. Phys., 76:323–410, 2004.

[137]   Л.Д. Ландау и Е.М. Лифшиц. Теоретическая изика / Л. Д. Ландау, Е. М. Лифшиц. Наука, 1974.