next up previous contents
Next: Bibliography Up: Dissertation Palankovski Previous: 5.2 Future Directions

Bibliography

1
S. Iyer, G. Patton, S. Delage, S. Tiwari, and J. Stork, ``Silicon-Germanium Base Heterojunction Bipolar Transistors by Molecular Beam Epitaxy,'' in Proc. Si-MBE Symp., pp. 114-125, 1987.

2
T. Kamins, K. Nauka, L. Camnitz, J. Kruger, J. Turner, S. Rosner, M. Scott, J. Hoyt, C. King, D. Noble, and J. Gibbons, ``High Frequency Si/Si$_{1-x}$Ge$_x$ Heterojunction Bipolar Transistors,'' in Intl.Electron Devices Meeting, pp. 647-650, 1989.

3
J. Cressler, J. Comfort, E. Crabbe, G. Patton, J. Stork, J.-C. Sun, and B. Meyerson, ``On the Profile Design and Optimization of Epitaxial Si- and SiGe-Base Bipolar Technology for 77 K Applications - Part I: Transistor DC Design Considerations,'' IEEE Trans.Electron Devices, vol. 40, no. 3, pp. 525-541, 1993.

4
P. Narozny, H. Dämbkes, H. Kibbel, and E. Kasper, ``Si/SiGe Heterojunction Bipolar Transistor Made by Molecular-Beam Epitaxy,'' IEEE Trans.Electron Devices, vol. 36, no. 10, pp. 2363-2366, 1989.

5
A. Schüppen, A. Gruhle, H. Kibbel, U. Erben, and U. König, ``SiGe HBTs with High $f_{\mathrm{T}}$ at Moderate Current Densities,'' Electron.Lett., vol. 30, no. 14, pp. 1187-1188, 1994.

6
K. Oda, E. Ohue, M. Tanabe, H. Shimamoto, T. Onai, and K. Washio, ``130-GHz $f_{\mathrm{T}}$ SiGe HBT Technology,'' in Intl.Electron Devices Meeting, pp. 791-794, 1997.

7
A. Schüppen, U. Erben, A. Gruhle, H. Kibbel, H. Schumacher, and U. König, ``Enhanced SiGe Heterojunction Bipolar Transistors with 160-GHz $f_{\mathrm{max}}$,'' in Intl.Electron Devices Meeting, pp. 743-746, 1995.

8
K. Oda, E. Ohue, M. Tanabe, H. Shimamoto, and K. Washio, ``DC and AC Performances in Selectively Grown SiGe-Base HBTs,'' IEICE Trans.Electron., vol. E82-C, no. 11, pp. 2013-2020, 1999.

9
G. Freeman, D. Ahlgren, D. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. Jeng, K. Schonenberg, K. Stein, R. Volant, and S. Subbanna, ``A 0.18 $\mu$m 90 GHz $f_{\mathrm{T}}$ SiGe HBT BiCMOS, ASIC-Compatible, Copper Interconnect Technology for RF and Microwave Applications,'' in Intl.Electron Devices Meeting, pp. 569-572, 1999.

10
W. Klein and B.-U. Klepser, ``75-GHz Bipolar Production Technology for the 21st Century,'' in 29th European Solid-State Device Research Conference (H. Maes, R. Mertens, G. Declerck, and H. Grünbacher, eds.), (Leuven, Belgium), pp. 88-94, Editions Frontiers, 1999.

11
S. Subbanna, G. Freeman, D. Ahlgren, B. Jagannathan, D. Greenberg, J. Johnson, P. Bacon, R. Najarian, D. Herman, and B. Meyerson, ``Review of Silicon-Germanium BICMOS Technology after 4 Years of Production and Future Directions,'' in Tech.Dig. GaAs IC Symp., (Seattle, USA), pp. 7-10, 2000.

12
A. Schüppen, ``SiGe-HBTs for Mobile Communications,'' Solid-State Electron., vol. 43, pp. 1373-1381, 1999.

13
K. Washio, E. Ohue, K. Oda, R. Hayami, M. Tanabe, H. Shimamoto, T. Masuda, K. Ohhata, and M. Kondo, ``Self-Aligned Selective-Epitaxial-Growth SiGe HBTs: Process, Device, and ICs,'' Thin Solid Films, vol. 369, no. 1-2, pp. 352-357, 2000.

14
T. Niwa, Y. Amamiya, M. Mamada, and H. Shimawaki, ``High- $f_{\mathrm{T}}$ AlGaAs/lnGaAs HBTs with Reduced Emitter Resistance for Low-Power-Consumption, High-Speed ICs,'' in Proc. Intl. Symp. on Compound Semiconductors, (Bristol, UK), pp. 309-312, IOP, 1999.

15
T. Oka, K. Hirata, K. Ouchi, H. Uchiyama, T. Taniguchi, K. Mochizuki, and T. Nakamura, ``Advanced Performance of Small-Scaled InGaP/GaAs HBTs with $f_{\mathrm{T}}$ over 150 GHz and $f_{\mathrm{max}}$ over 250 GHz,'' in Intl.Electron Devices Meeting, pp. 653-656, 1998.

16
D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. Rodwell, ``Transferred-Substrate HBTs with 250 GHz Current-Gain Cutoff Frequency,'' in Intl.Electron Devices Meeting, pp. 657-660, 1998.

17
Q. Lee, S. Martin, D. Mensa, R. Smith, J. Guthrie, and M. Rodwell, ``Submicron Transferred-Substrate Heterojunction Bipolar Transistors,'' IEEE Electron Device Lett., vol. 20, no. 8, pp. 396-398, 1999.

18
M. Yanagihara, H. Sakai, Y. Ota, M. Tanabe, K. Inoue, and A. Tamura, ``253-GHz $f_{\mathrm{max}}$ AlGaAs/GaAs HBT with Ni/Ti/Pt/Ti/Pt-Contact and L-Shaped Electrode,'' in Intl.Electron Devices Meeting, pp. 807-810, 1995.

19
C. Bolognesi, M. Dvorak, O. Pitts, and S. Watkins, ``200 GHz InP/GaAs$_x$Sb$_{1-x}$ Double Heterojunction Bipolar Transistors,'' in Tech.Dig. GaAs IC Symp., (Seattle, USA), pp. 233-236, 2000.

20
K. Oda, E. Ohue, M. Tanabe, H. Shimamoto, and K. Washio, ``Si$_{1-x}$Ge$_x$ Selective Epitaxial Growth for Ultra-High-Speed Self-Aligned HBTs,'' Thin Solid Films, vol. 369, no. 1-2, pp. 358-361, 2000.

21
K. Washio, E. Ohue, K. Oda, R. Hayami, M. Tanabe, H. Shimamoto, T. Harada, and M. Kondo, ``82 GHz Dynamic Frequency Divider in 5.5 ps ECL SiGe HBTs,'' in Dig. Intl. Solid-State Circuits Conference, (San Francisco, USA), pp. 210-211, 2000.

22
T. Suemitsu, T. Ishii, H. Yokoyama, Y. Umeda, T. Enoki, and T. Tamamura, ``30-nm-gate InAlAs/InGaAs HEMTs Lattice-Matched to InP Substrates,'' in Intl.Electron Devices Meeting, pp. 223-226, 1998.

23
L. Nguyen, A. Brown, M. Thompson, and L. Jelloian, ``50-nm Self-Aligned-Gate Pseudomorphic AlInAs/GaInAs High Electron Mobility Transistors,'' IEEE Trans.Electron Devices, vol. 39, no. 9, pp. 2007-2014, 1992.

24
M. Wojtowicz, R. Lai, D. Streit, G. Ng, T. Block, K. Tan, P. Liu, A. Freudenthal, and R. Dia, ``0.10 $\mu$m Graded InGaAs Channel InP HEMT with 305 GHz $f_{\mathrm{T}}$ and 340 GHz $f_{\mathrm{max}}$,'' IEEE Electron Device Lett., vol. 15, no. 11, pp. 477-479, 1994.

25
H. Nakajima, T. Ishibashi, E. Sano, M. Ida, S. Yamahata, and Y. Ishii, ``InP-Based High-Speed Electronics,'' in Intl.Electron Devices Meeting, pp. 771-774, 1999.

26
C. Gässler, V. Ziegler, C. Wölk, R. Deufel, F.-J. Berlec, N. Käb, and E. Kohn, ``Metamorphic HFETs on GaAs with InP-Sub-Channels for Device Performance Improvements,'' in Intl.Electron Devices Meeting, (in print), 2000.

27
J.-E. Müller, P. Baureis, O. Berger, T. Boettner, N. Bovolon, R. Schultheis, G. Packeiser, and P. Zwicknagl, ``A Small Chip Size 2 W, 62% Efficient HBT MMIC for 3 V PCN Applications,'' IEEE J.Solid-State Circuits, vol. 33, no. 9, pp. 1277-1283, 1998.

28
K. Yamamoto, S. Suzuki, K. Mori, T. Asada, T. Okuda, A. Inoue, T. Miura, K. Chomei, R. Hattori, M. Yamanouchi, and T. Shimura, ``A 3.2-V Operation Single-Chip Dual-Band AlGaAs/GaAs HBT MMIC Power Amplifier with Active Feedback Circuit Technique,'' IEEE J.Solid-State Circuits, vol. 35, no. 8, pp. 1109-1120, 2000.

29
W. Okamura, L. Yang, A. Gutierrez-Aitken, E. Kaneshiro, J. Lester, D. Sawdai, P. Grossman, K. Kobayashi, H. Yen, A. Oki, P. Chin, and T. Block, ``K-Band 76% PAE InP Double Heterojunction Bipolar Power Transistors and a 23 GHz Compact Linear Power Amplifier MMIC,'' in Tech.Dig. GaAs IC Symp., (Seattle, USA), pp. 219-222, 2000.

30
C. Rheinfelder, H. Kuhnert, J. Luy, W. Heinrich, and A. Schuppen, ``SiGe MMIC's Beyond 20 GHz on a Commercial Technology,'' in Dig. MTT-S Intl. Microwave Symp., (Denver, USA), vol. 2, pp. 727-730, 1997.

31
G. Raghavan, M. Sokolich, and W. Stanchina, ``Indium Phosphide ICs Unleash the High-Frequency Spectrum,'' IEEE Spectrum, pp. 47-52, Oct. 2000.

32
D. Pavlidis, ``HBT vs. PHEMT vs. MESFET: What's Best and Why,'' Compound Semiconductor, vol. 5, no. 5, pp. 56-59, 1999.

33
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Wien, New York: Springer, 1984.

34
W. Hänsch, The Drift Diffusion Equation and its Application in MOSFET Modeling.
Wien, New York: Springer, 1991.

35
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation.
Wien, New York: Springer, 1989.

36
K. Hess, ed., Monte Carlo Device Simulation: Full Band and Beyond.
Boston, Dordrecht, London: Kluwer, 1991.

37
H. Kosina and S. Selberherr, ``A Hybrid Device Simulator that Combines Monte Carlo and Drift-Diffusion Analysis,'' IEEE Trans.Computer-Aided Design, vol. 13, no. 2, pp. 201-210, 1994.

38
W. Engl, A. Emunds, B. Meinerzhagen, H. Peifer, and T. Thoma, ``Bridging the Gap between the Hydrodynamic and the Monte Carlo Model - An Attempt -,'' in Proc. VLSI Process/Device Modeling Workshop, (Osaka, Japan), pp. 32-33, 1989.

39
S. Laux and M. Fischetti, ``The DAMOCLES Monte Carlo Device Simulation Program,'' in Computational Electronics (K. Hess, J. Leburton, and U. Ravaioli, eds.), pp. 87-92, Kluwer, 1991.

40
ISE Integrated Systems Engineering AG, Zürich, Switzerland, DESSIS-ISE, ISE TCAD Release 6.0, 1999.

41
Technology Modeling Associates, Inc., Sunnyvale, CA, TMA Medici, Two-Dimensional Device Simulation Program, Version 4.0 User's Manual, 1997.

42
S. Beebe, F. Rotella, Z. Sahul, D. Yergeau, G. McKenna, L. So, Z. Yu, K. Wu, E. Kan, J. McVittie, and R. Dutton, ``Next Generation Stanford TCAD--PISCES 2ET and SUPREM 007,'' in Intl.Electron Devices Meeting, pp. 213-216, 1994.

43
C. Fischer, P. Habaš, O. Heinreichsberger, H. Kosina, P. Lindorfer, P. Pichler, H. Pötzl, C. Sala, A. Schütz, S. Selberherr, M. Stiftinger, and M. Thurner, MINIMOS 6 User's Guide.
Institut für Mikroelektronik, Technische Universität Wien, 1994.

44
R. Anholt, Electrical and Thermal Characterization of MESFETs, HEMTs,and HBTs.
Boston: Artech House, 1995.

45
Avant! Corporation, Fremont, CA, Medici, Two-Dimensional Device Simulation Program, Version 1999.2, 1999.

46
J.J. Liou, Principles&Analysis of AlGaAs/GaAs Heterojunction Bipolar Transistors,
Boston: Artech House, 1996.

47
E. Lyumkis, R. Mickevicius, O. Penzin, B. Polsky, and K. E. Sayed, ``Numerical Analysis of Electron Tunneling through Hetero-Interfaces and Schottky Barriers in Heterostructure Devices,'' in Tech.Dig. GaAs IC Symp., (Seattle, USA), pp. 129-132, 2000.

48
C. Morton, J. Atherton, C. Snowden, R. Polard, and M. Howes, ``A Large-Signal Physical HEMT Model,'' in Dig. MTT-S Intl. Microwave Symp., (San Francisco, USA), pp. 1759-1763, 1996.

49
C. Morton and C. Snowden, ``Comparison of Quasi-2D and Ensemble Monte Carlo Simulations for Deep Submicron HEMTs,'' in Dig. MTT-S Intl. Microwave Symp., (Boston, USA), pp. 153-156, 2000.

50
Silvaco International, Santa Clara, CA, ATLAS User's Manual, Ed. 6, 1998.

51
J. Geßner, F. Schwierz, H. Mau, D. Nuernbergk, M. Roßberg, and D. Schipanski, ``Simulation of the Frequency Limits of SiGe HBTs,'' in Proc. Intl. Conf. on Modeling and Simulation of Microsystems, (San Juan, Puerto Rico, USA), pp. 407-410, 1999.

52
G. Formicone, D. Vasileska, and D. Ferry, ``2D Monte Carlo Simulation of Hole and Electron Transport in Strained Si,'' VLSI Design, vol. 6, no. 1-4, pp. 167-171, 1998.

53
Y. Apanovich, R. Cottle, E. Lyumkis, B. Polsky, A. Shur, and P. Blakey, ``2D Simulation of Heterojunction Devices Including Energy Balance and Lattice Heating,'' in 24th European Solid State Device Research Conference (C. Hill and P. Ashburn, eds.), (Edinburgh, Scottland), pp. 463-466, Editions Frontiers, 1994.

54
J. Kuo-JB, H. Chen, B. Chen, and T. Lu, ``DC and Transient Analysis of a SiGe-Base Heterojunction Bipolar Device in an ECL Buffer Using a Modified PISCES Program,'' Solid-State Electron., vol. 36, pp. 1273-1276, 1993.

55
D. Richey, J. Cressler, and A. Joseph, ``Scaling Issues and Ge Profile Optimization in Advanced UHV/CVD SiGe HBT's,'' IEEE Trans.Electron Devices, vol. 44, no. 3, pp. 431-440, 1997.

56
T. Binder, K. Dragosits, T. Grasser, R. Klima, M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski, M. Rottinger, G. Schrom, S. Selberherr, and M. Stockinger, MINIMOS-NT User's Guide.
Institut für Mikroelektronik, Technische Universität Wien, 1998.

57
S. Selberherr, A. Schütz, and H. Pötzl, ``MINIMOS--A Two-Dimensional MOS Transistor Analyzer,'' IEEE Trans.Electron Devices, vol. ED-27, no. 8, pp. 1540-1550, 1980.

58
M. Stockinger and S. Selberherr, ``Closed-Loop CMOS Gate Delay Time Optimization,'' in 29th European Solid-State Device Research Conference (H. Maes, R. Mertens, G. Declerck, and H. Grünbacher, eds.), (Leuven, Belgium), pp. 504-507, Editions Frontiers, 1999.

59
T. Simlinger, H. Brech, T. Grave, and S. Selberherr, ``Simulation of Submicron Double-Heterojunction High Electron Mobility Transistors with MINIMOS-NT,'' IEEE Trans.Electron Devices, vol. 44, no. 5, pp. 700-707, 1997.

60
H. Brech, T. Grave, T. Simlinger, and S. Selberherr, ``Optimization of Pseudomorphic HEMT's Supported by Numerical Simulations,'' IEEE Trans.Electron Devices, vol. 44, no. 11, pp. 1822-1828, 1997.

61
R. Quay, R. Reuter, V. Palankovski, and S. Selberherr, ``S-Parameter Simulation of RF-HEMTs,'' in Proc. High Performance Electron Devices for Microwave and Optoelectronic Applications EDMO, (Manchester, UK), pp. 13-18, 1998.

62
T. Grasser, V. Palankovski, G. Schrom, and S. Selberherr, ``Hydrodynamic Mixed-Mode Simulation,'' in Simulation of Semiconductor Processes and Devices (K. De Meyer and S. Biesemans, eds.), (Leuven, Belgium), pp. 247-250, Springer, 1998.

63
V. Palankovski, S. Selberherr, and R. Schultheis, ``Simulation of Heterojunction Bipolar Transistors on Gallium-Arsenide,'' in Simulation of Semiconductor Processes and Devices, (Kyoto, Japan), pp. 227-230, 1999.

64
V. Palankovski, R. Quay, S. Selberherr, and R. Schultheis, ``S-Parameter Simulation of HBTs on Gallium-Arsenide,'' in Proc. High Performance Electron Devices for Microwave and Optoelectronic Applications EDMO, (London, UK), pp. 15-19, 1999.

65
V. Palankovski, G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, ``A Dopant-Dependent Band Gap Narrowing Model Application for Bipolar Device Simulation,'' in Simulation of Semiconductor Processes and Devices (K. De Meyer and S. Biesemans, eds.), (Leuven, Belgium), pp. 105-108, Springer, 1998.

66
V. Palankovski, G. Kaiblinger-Grujin, and S. Selberherr, ``Implications of Dopant-Dependent Low-Field Mobility and Band Gap Narrowing on the Bipolar Device Performance,'' J.Phys.IV, vol. 8, pp. 91-94, EDP Sciences, 1998.

67
B. Neinhüs, P. Graf, S. Decker, and B. Meinerzhagen, ``Examination of Transient Drift-Diffusion and Hydrodynamic Modeling Accuracy for SiGe HBTs by 2D Monte-Carlo Device Simulation,'' in 27th European Solid-State Device Research Conference (H. Grünbacher, ed.), (Stuttgart, Germany), pp. 188-191, Editions Frontiers, 1997.

68
T. Kumar, M. Cahay, and K. Roenker, ``Ensemble Monte Carlo Analysis of Self-Heating Effects in Graded Heterojunction Bipolar Transistors,'' J.Appl.Phys., vol. 83, no. 4, pp. 1869-1877, 1998.

69
V. Palankovski, B. Gonzales, H. Kosina, A. Hernandez, and S. Selberherr, ``A New Analytical Energy Relaxation Time Model for Device Simulation,'' in Proc. Intl. Conf. on Modeling and Simulation of Microsystems, (San Juan, Puerto Rico, USA), pp. 395-398, 1999.

70
D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation.
Springer, 1994.

71
W. Liu, Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs.
New York: Wiley, 1999.

72
T. Grasser, K. Tsuneno, H. Masuda, and S. Selberherr, ``Mobility Parameter Tuning for Device Simulation,'' in 28th European Solid-State Device Research Conference (A. Touboul, Y. Danto, J.-P. Klein, and H. Grünbacher, eds.), (Bordeaux, France), pp. 336-339, Editions Frontiers, 1998.

73
S. Adachi, ``Material Parameters of In$_{1-x}$Ga$_x$As$_y$P$_{1-y}$ and Related Binaries,'' J.Appl.Phys., vol. 53, no. 12, pp. 8775-8792, 1982.

74
B. Bouhafs, H. Aourag, M. Ferhat, A. Zaoui, and M. Certier, ``Theoretical Analysis of Disorder Effects on Electronic and Optical Properties in InGaAsP Quaternary Alloy,'' J.Appl.Phys., vol. 82, no. 10, pp. 4923-4930, 1997.

75
H. Brand, Thermoelektrizität und Hydrodynamik.
Dissertation, Technische Universität Wien, 1994.

76
C. Fischer, Bauelementsimulation in einer computergestützten Entwurfsumgebung.
Dissertation, Technische Universität Wien, 1994.

77
Z. Yu, B. Ricco, and R. Dutton, ``A Comprehensive Analytical and Numerical Model of Polysilicon Emitter Contacts in Bipolar Transistors,'' IEEE Trans.Electron Devices, vol. 31, no. 6, pp. 773-784, 1984.

78
T. Simlinger, Simulation von Heterostruktur-Feldeffekttransistoren.
Dissertation, Technische Universität Wien, 1996.

79
M. Grupen, K. Hess, and G. Song, ``Simulation of Transport over Heterojunctions,'' in Simulation of Semiconductor Devices and Processes (W. Fichtner and D. Aemmer, eds.), (Konstanz, Switzerland), vol. 4, pp. 303-310, Hartung-Gorre, 1991.

80
S. Mottet and J. Viallet, ``Thermionic Emission in Heterojunctions,'' in Simulation of Semiconductor Devices and Processes (G. Baccarani and M. Rudan, eds.), (Bologna, Italy), vol. 3, pp. 97-108, Tecnoprint, 1988.

81
C. Wu and E. Yang, ``Carrier Transport Across Heterojunction Interfaces,'' Solid-State Electron., vol. 22, pp. 241-248, 1979.

82
K. Yang, J. East, and G. Haddad, ``Numerical Modeling of Abrupt Heterojunctions Using a Thermionic-Field Emission Boundary Condition,'' Solid-State Electron., vol. 36, no. 3, pp. 321-330, 1993.

83
T. Simlinger, M. Rottinger, and S. Selberherr, ``A Method for Unified Treatment of Interface Conditions Suitable for Device Simulation,'' in Simulation of Semiconductor Processes and Devices, (Cambridge, USA), pp. 173-176, 1997.

84
M. Fischetti, ``Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures-Part I: Homogeneous Transport,'' IEEE Trans.Electron Devices, vol. 38, no. 3, pp. 634-649, 1991.

85
K. Ng, Complete Guide to Semiconductor Devices.
McGraw-Hill, 1995.

86
S. Sze, Physics of Semiconductor Devices.
New York: Wiley, second ed., 1981.

87
T. González Sánchez, J. Velázques Pérez, P. Gutiérrez Conde, and D. Pardo Collantes, ``Five-Valley Model for the Study of Electron Transport Properties at Very High Electric Fields in GaAs,'' Semicond.Sci.Technol., vol. 6, pp. 862-871, 1991.

88
K. Brennan and K. Hess, ``High Field Transport in GaAs, InP and InAs,'' Solid-State Electron., vol. 27, no. 4, pp. 347-357, 1984.

89
J. Blakemore, Gallium Arsenide.
American Institute of Physics, 1987.

90
J. Singh, Physics of Semiconductors and their Heterostructures.
McGraw Hill, 1993.

91
M. Landolt and J. Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, vol. 17/A of Neue Serie, Gruppe III.
Berlin: Springer, 1982.

92
S. Tiwari, Compound Semiconductor Device Physics.
Academic Press, 1992.

93
E. Schubert, Doping in III-V Semiconductors.
Cambridge University Press, 1993.

94
M. Fischetti and S. Laux, ``Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures-Part II: Submicrometer MOSFET's,'' IEEE Trans.Electron Devices, vol. 38, no. 3, pp. 650-660, 1991.

95
D. Bose and B. Nag, ``Electron Velocity in Indium Phosphide Single-Heterojunction Quantum Wells,'' Semicond.Sci.Technol., vol. 6, pp. 1135-1140, 1991.

96
T. González Sánchez, J. Velázques Pérez, P. Gutiérrez Conde, and D. Pardo Collantes, ``Electron Transport in InP Under High Electric Field Conditions,'' Semicond.Sci.Technol., vol. 7, pp. 31-36, 1992.

97
M. Gospodinova-Daltcheva, R. Arnaudov, and P. Philippov, ``Energy Propagation Properties of Al-Lossy Lines in High-Speed Circuits on Silicon Substrate,'' in Proc. High Performance Electron Devices for Microwave and Optoelectronic Applications EDMO, (London, UK), pp. 295-300, 1999.

98
Ferro-Ceramic Grinding Inc., ``Ceramic Materials Physical, Mechanical, Thermal and Electrical Properties Reference Chart,'' http://ferroceramic.com/tables/, 2000.

99
B. Cheng, M. Cao, R. Rao, A. Inani, P. Voorde, W. Greene, J. Stork, Z. Yu, P. Zeitzoff, and J. Woo, ``The Impact of High-k Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET's,'' IEEE Trans.Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.

100
S. Krishnan, G. Yeap, B. Yu, Q. Xiang, and M. Lin, ``High-k Scaling of Gate Insulators: an Insightful Study,'' in Proc. Conf. on Microelectronic Device Technology, vol. 3506, (Santa Clara, USA), pp. 65-72, SPIE, 1998.

101
G. Bai, ``High k Gate Stack for Sub-0.1 um CMOS Technology,'' in Advances in Rapid Thermal Processing, (Pennington, USA), pp. 39-44, Electrochem. Soc., 1999.

102
M. Littlejohn, K. Kim, and H. Tian, ``High-Field Transport in InGaAs and Related Heterostructures,'' in Bhattacharya [111], section 4.2, pp. 107-116.

103
C. Besikci and M. Razeghi, ``Electron Transport Properties of Ga$_{0.51}$In$_{0.49}$P for Device Applications,'' IEEE Trans.Electron Devices, vol. 41, no. 6, pp. 1066-1069, 1994.

104
S. Adachi, ``GaAs, AlAs, and Al$_x$Ga$_{1-x}$As: Material Parameters for Use in Research and Device Applications,'' J.Appl.Phys., vol. 58, pp. R1-R29, 1985.

105
J. King, ed., Material Handbook for Hybrid Microelectronics.
Artech House, 1988.

106
P. Maycock, ``Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys,'' Solid-State Electron., vol. 10, pp. 161-168, 1967.

107
M. Landolt and J. Börnstein, Numerical Data and Functional Relationships in Science and Techology, vol. 22/A of New Series, Group III.
Berlin: Springer, 1987.

108
A. Katz, Indium Phosphide and Related Materials.
Boston: Artech House, 1992.

109
S. Adachi, Physical Properties of III-V Semiconductor Compounds.
Wiley, 1992.

110
S. Adachi, ed., Properties of Aluminium Gallium Arsenide.
No. 7 in EMIS Datareviews Series, IEE INSPEC, 1993.

111
P. Bhattacharya, ed., Properties of Lattice-Matched and Strained Indium Gallium Arsenide.
No. 8 in EMIS Datareviews Series, IEE INSPEC, 1993.

112
Y. Varshni, ``Temperature Dependence of the Energy Gap in Semiconductors,'' Physica, vol. 34, pp. 149-154, 1967.

113
V. Wilkinson and A. Adams, ``The Effect of Temperature and Pressure on InGaAs Band Structure,'' in Bhattacharya [111], section 3.2, pp. 70-75.

114
P. Wang, S. Holmes, T. Le, R. Stradling, I. Ferguson, and A. de Oliveira, ``Electrical and Magneto-Optical Studies of MBE InAs on GaAs,'' Semicond.Sci.Technol., vol. 7, pp. 767-786, 1992.

115
B. Nag, Electron Transport in Compound Semiconductors, vol. 11 of Springer Series in Solid-State Sciences.
Springer, 1980.

116
M. Krijn, ``Heterojunction Band Offsets and Effective Masses in III-V Quaternary Alloys,'' Semicond.Sci.Technol., vol. 6, pp. 27-31, 1991.

117
B. Jalali and S. Pearton, eds., InP HBTs: Growth,Processing,and Applications.
Boston: Artech House, 1995.

118
F. Gaensslen, R. Jaeger, and J. Walker, ``Low-Temperature Threshold Behavior of Depletion Mode Devices - Characterization and Simulation,'' in Intl.Electron Devices Meeting, pp. 520-524, 1976.

119
F. Gaensslen and R. Jaeger, ``Temperature Dependent Threshold Behavior of Depletion Mode MOSFET's,'' Solid-State Electron., vol. 22, pp. 423-430, 1979.

120
M. Green, ``Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon,'' J.Appl.Phys., vol. 67, no. 6, pp. 2944-2954, 1990.

121
K. Shim and H. Rabitz, ``Electronic and Structural Properties of the Pentanary Alloy Ga$_x$In$_{1-x}$P$_y$Sb$_z$As$_{1-y-z}$,'' J.Appl.Phys., vol. 85, no. 11, pp. 7705-7715, 1999.

122
K. Kim, M. Lee, J. Bahng, K. Shim, and B. Choe, ``Optical Constants and Electronic Interband Transitions of Disordered GaAs$_{1-x}$P$_x$ Alloys,'' J.Appl.Phys., vol. 84, no. 7, pp. 3696-3699, 1998.

123
M. Shur, GaAs Devices and Circuits.
Plenum Press, 1987.

124
V. Palankovski, M. Knaipp, and S. Selberherr, ``Influence of the Material Composition and Doping Profiles on HBTs Device Performance,'' in Proc. Intl. Conf. on Modelling and Simulation, (Pittsburgh, USA), pp. 7-10, 1998.

125
H. Casey and M. Panish, Heterostructure Lasers, Part B: Materials and Operating Characteristics.
Academic Press, 1978.

126
M. Bugajski, A. Kontkiewicz, and H. Mariette, ``Energy Bands of Ternary Alloy Semiconductors: Coherent-Potential-Approximation Calculations,'' Physical Review B, vol. 28, no. 12, pp. 7105-7114, 1983.

127
S. Jain, Germanium-Silicon Strained Layers and Heterostructures, vol. 24 of Advances in Electronics and Electron Physics.
Academic Press, 1994.

128
C. Köpf, H. Kosina, and S. Selberherr, ``Physical Models for Strained and Relaxed GaInAs Alloys: Band Structure and Low-Field Transport,'' Solid-State Electron., vol. 41, no. 8, pp. 1139-1152, 1997.

129
F. Capasso and G. Margaritondo, eds., Heterojunction Band Discontinuities.
Elsevier, 1987.

130
C. Van de Walle, ``Band Lineups and Deformation Potentials in the Model-Solid Theory,'' Physical Review B, vol. 39, no. 3, pp. 1871-1883, 1989.

131
C. Van de Walle and R. Martin, ``Theoretical Study of Band Offsets at Semiconductor Interfaces,'' Physical Review B, vol. 35, no. 15, pp. 8154-8165, 1987.

132
A. Lindell, M. Pessa, A. Salokatve, F. Bernardini, R. Nieminen, and M. Paalanen, ``Band Offsets at the GaInP/GaAs Heterojunction,'' J.Appl.Phys., vol. 82, no. 7, pp. 3374-3380, 1997.

133
J. Slotboom and H. de Graaff, ``Measurements of Bandgap Narrowing in Si Bipolar Transistors,'' Solid-State Electron., vol. 19, pp. 857-862, 1976.

134
V. Palankovski, G. Kaiblinger-Grujin, and S. Selberherr, ``Study of Dopant-Dependent Band Gap Narrowing in Compound Semiconductor Devices,'' Materials Science & Engineering, vol. B66, pp. 46-49, 1999.

135
D. Klaassen, J. Slotboom, and H. de Graaff, ``Unified Apparent Bandgap Narrowing in $n$- and $p$-Type Silicon,'' Solid-State Electron., vol. 35, no. 2, pp. 125-129, 1992.

136
J. DelAlamo, E. Swirhun, and R. Swanson, ``Simultaneous Measuring of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped $n$-type Silicon,'' in Intl.Electron Devices Meeting, pp. 290-293, 1985.

137
H. Bennet and C.L.Wilson, ``Statistical Comparisons of Data on Band-Gap Narrowing in Heavily Doped Silicon: Electrical and Optical Measurements,'' J.Appl.Phys., vol. 55, no. 10, pp. 3582-3587, 1984.

138
Y. Mamontov and M. Willander, ``Simulation of Bandgap Narrowing and Incomplete Ionization in Strained Si$_{1-x}$Ge$_x$ Alloys on $\langle 001 \rangle$ Si Substrate (for Temperatures from 40K up to 400K),'' Solid-State Electron., vol. 38, no. 3, pp. 599-607, 1995.

139
D. Ferry, Semiconductors.
New York: Macmillan, 1991.

140
G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, ``Influence of the Doping Element on the Electron Mobility in n-Silicon,'' J.Appl.Phys., vol. 83, no. 6, pp. 3096-3101, 1998.

141
J.-S. Park, A. Neugroschel, and F. Lindholm, ``Comments on Determination of Bandgap Narrowing from Activation Plots,'' IEEE Trans.Electron Devices, vol. 33, no. 7, pp. 1077-1078, 1986.

142
Z.H.Lu, M.C.Hanna, and A.Majerfeld, ``Determination of Band Gap Narrowing and Hole Density for Heavily C-doped GaAs by Photoluminescence Spectroscopy,'' Appl.Phys.Lett., vol. 64, no. 1, pp. 88-90, 1994.

143
B.P.Yan, J.S.Luo, and Q.L.Zhang, ``Study of Band-Gap Narrowing Effect and Nonradiative Recombination Centers for Heavily C-doped GaAs by Photoluminescence Spectroscopy,'' J.Appl.Phys., vol. 77, no. 9, pp. 4822-4824, 1995.

144
S. Jain and D. Roulston, ``A Simple Expression for Band Gap Narrowing (BGN) in Heavily Doped Si, Ge, GaAs and Ge$_x$Si$_{1-x}$ Strained Layers,'' Solid-State Electron., vol. 34, no. 5, pp. 453-465, 1991.

145
Z. Matutinovic-Krstelj, V. Venkataraman, E. Prinz, J. Sturm, and C.W.Magee, ``A Comprehensive Study of Lateral and Vertical Current Transport in Si/Si$_{1-x}$Ge$_x$/Si HBT's,'' in Intl.Electron Devices Meeting, pp. 87-90, 1993.

146
M.Libezny, S.C.Jain, J.Poortmans, M.Caymax, J.Nijs, R.Mertens, K.Werner, and P.Balk, ``Photoluminescence Determination of the Fermi Energy in Heavily Doped Strained Si$_{1-x}$Ge$_x$ Layers,'' Appl.Phys.Lett., vol. 64, no. 15, pp. 1953-1955, 1994.

147
E.S.Harmon, M.R.Melloch, and M.S.Lundstrom, ``Effective Band-Gap Shrinkage in GaAs,'' Appl.Phys.Lett., vol. 64, no. 4, pp. 502-504, 1994.

148
H.Yao and A.Compaan, ``Plasmons, Photoluminescence, and Band-Gap Narrowing in Very Heavily Doped $n$-GaAs,'' Appl.Phys.Lett., vol. 57, no. 2, pp. 147-149, 1990.

149
R.M.Sieg and S.A.Ringel, ``Reabsorption, Band Gap Narrowing, and the Reconciliation of Photoluminescence Spectra with Electrical Measurements for Epitaxial $n$-InP,'' J.Appl.Phys., vol. 80, no. 1, pp. 448-458, 1996.

150
C.-H. Wang and A. Neugroschel, ``Minority-Carrier Transport Parameters in Degenerate n-Type Silicon,'' IEEE Electron Device Lett., vol. 11, no. 12, pp. 576-578, 1990.

151
C. Köpf, Modellierung des Elektronentransports in Verbindungshalbleiterlegierungen.
Dissertation, Technische Universität Wien, 1997.

152
M. Ilegems, ``InP-Based Lattice-Matched Heterostructures,'' in Bhattacharya [111], section 1.3, pp. 16-25.

153
R. Dittrich and W. Schroeder, ``Empirical Pseudopotential Band Structure of In$_{0.53}$Ga$_{0.47}$As and In$_{0.52}$Al$_{0.48}$As,'' Solid-State Electron., vol. 43, pp. 403-407, 1999.

154
K. Brennan and P. Chiang, ``Calculated Electron and Hole Steady-State Drift Velocities in Lattice Matched GaInP and AlGaInP,'' J.Appl.Phys., vol. 71, no. 2, pp. 1055-1057, 1992.

155
B. Nag and M. Das, ``Electron Mobility in In$_{0.5}$Ga$_{0.5}$P,'' J.Appl.Phys., vol. 83, no. 11, pp. 5862-5864, 1998.

156
I. Yoon, T. Ji, S. Oh, J. Choi, and H. Park, ``Concentration Dependent Photoluminescence of Te-doped In$_{0.5}$Ga$_{0.5}$P Layers Grown by Liquid Phase Epitaxy,'' J.Appl.Phys., vol. 82, no. 8, pp. 4024-4027, 1997.

157
J. Sutherland and J. Hauser, ``A Computer Analysis of Heterojunction and Graded Composition Solar Cells,'' IEEE Trans.Electron Devices, vol. ED-24, no. 4, pp. 363-372, 1977.

158
B. Pej{\v{c\/}}\kern.05eminovi{\'{c\/}}, L. Kay, T.-W. Tang, and D. Navon, ``Numerical Simulation and Comparison of Si BJTs and Si$_{1-x}$Ge$_x$ HBTs,'' IEEE Trans.Electron Devices, vol. 36, no. 10, pp. 2129-2137, 1989.

159
S. Selberherr, ``MOS Device Modeling at 77K,'' IEEE Trans.Electron Devices, vol. 36, no. 8, pp. 1464-1474, 1989.

160
S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, ``The Evolution of the MINIMOS Mobility Model,'' Solid-State Electron., vol. 33, no. 11, pp. 1425-1436, 1990.

161
M. Fischetti and S. Laux, ``Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys,'' J.Appl.Phys., vol. 80, no. 4, pp. 2234-2252, 1996.

162
M. Sotoodeh, A. Khalid, and A. Rezazadeh, ``Empirical Low-Field Mobility Model for III-V Compounds Applicable in Device Simulation Codes,'' J.Appl.Phys., vol. 87, no. 6, pp. 2890-2900, 2000.

163
D. Caughey and R. Thomas, ``Carrier Mobilities in Silicon Empirically Related to Doping and Field,'' Proc.IEEE, vol. 52, pp. 2192-2193, 1967.

164
J. Lowney and H. Bennett, ``Majority and Minority Electron and Hole Mobilities in Heavily Doped GaAs,'' J.Appl.Phys., vol. 69, no. 10, pp. 7102-7110, 1991.

165
E. Harmon, M. Lovejoy, M. Melloch, M. Lundstrom, T. de Lyon, , and J. Woodall, ``Experimental Observation of a Minority Electron Mobility Enhancement in Degenerately Doped $p$-Type GaAs,'' Appl.Phys.Lett., vol. 63, no. 4, pp. 5597-5602, 1993.

166
H. Ito and T. Ishibashi, ``Minority-Electron Mobility in $p$-Type GaAs,'' J.Appl.Phys., vol. 65, no. 12, pp. 5197-5199, 1989.

167
G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, ``Monte Carlo Simulation of Electron Transport in Doped Silicon,'' in High Performance Computing on the Information Superhighway - HPC Asia '97, (Seoul, Korea), pp. 444-449, IEEE Computer Society Press, 1997.

168
G. Kaiblinger-Grujin, T. Grasser, and S. Selberherr, ``A Physically-Based Electron Mobility Model for Silicon Device Simulation,'' in Simulation of Semiconductor Processes and Devices (K. De Meyer and S. Biesemans, eds.), (Leuven, Belgium), pp. 312-315, Springer, 1998.

169
V. Palankovski, R. Strasser, H. Kosina, and S. Selberherr, ``A Systematic Approach for Model Extraction for Device Simulation Application,'' in Proc. Intl. Conf. Applied Modelling and Simulation, (Cairns, Australia), pp. 463-466, 1999.

170
T. Grasser, R. Strasser, M. Knaipp, K. Tsuneno, H. Masuda, and S. Selberherr, ``Device Simulator Calibration for Quartermicron CMOS Devices,'' in Simulation of Semiconductor Processes and Devices (K. De Meyer and S. Biesemans, eds.), (Leuven, Belgium), pp. 93-96, Springer, 1998.

171
C. Köpf, G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, ``Influence of Dopant Species on Electron Mobility in InP,'' in Proc. Intl. Conf. on Indium Phosphide and Related Materials, (Hyannis, USA), pp. 280-283, 1997.

172
C. Köpf, G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, ``Reexamination of Electron Mobility Dependence on Dopants in GaAs,'' in 27th European Solid-State Device Research Conference (H. Grünbacher, ed.), (Stuttgart, Germany), pp. 304-307, Editions Frontiers, 1997.

173
G. Masetti, M. Severi, and S. Solmi, ``Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus- and Boron-Doped Silicon,'' IEEE Trans.Electron Devices, vol. ED-30, no. 7, pp. 764-769, 1983.

174
J. Slotboom, G. Streutker, M. v. Dort, P. Woerlee, A. Pruijmboom, and D. Gravesteijn, ``Non-Local Impact Ionization in Silicon Devices,'' in Intl.Electron Devices Meeting, pp. 127-130, 1991.

175
M. van Dort, J. Slotboom, G. Streutker, and P. Woerlee, ``Lifetime Calculations of MOSFET's Using Depth-Dependent Non-Local Impact Ionization,'' in Simulation of Semiconductor Devices and Processes (S. Selberherr, H. Stippel, and E. Strasser, eds.), (Vienna, Austria), vol. 5, pp. 469-472, Springer, 1993.

176
C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, ``A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices,'' IEEE Trans.Computer-Aided Design, vol. 7, no. 11, pp. 1164-1171, 1988.

177
J. Xu and M. Shur, ``Velocity-Field Dependence in GaAs,'' IEEE Trans.Electron Devices, vol. ED-34, no. 8, pp. 1831-1832, 1987.

178
M. Hirose, J. Yoshida, and N. Toyoda, ``An Improved Two-Dimensional Simulation Model (MEGA) for GaAs MESFET Applicable to LSI Design,'' IEEE Trans.Computer-Aided Design, vol. 7, no. 2, pp. 225-230, 1988.

179
K. Kramer and W. Hitchon, Semiconductor Devices - A Simulation Approach.
Prentice Hall, 1997.

180
W. Hänsch, M. Orlowski, and W. Weber, ``The Hot-Electron Problem in Submicron MOSFET,'' in 18th European Solid State Device Research Conference (J.-P. Nougier and D. Gasquet, eds.), (Montpellier, France), J.Phys., vol. 49, pp. 597-606, les éditions de physique, 1988.

181
R. Deutschmann, Entwicklung eines physikalischen HFET-Modells: Parameterextraktion und Verifikation.
Dissertation, Technische Universität Wien, 1995.

182
R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr,
``A Temperature Dependent Model for the Saturation Velocity in Semiconductor Materials,''
Materials Science in Semiconductor Processing, vol. 3, no. 1-2, pp. 149-155, 2000.

183
H. Brech, Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulation.
Dissertation, Technische Universität Wien, 1998.

184
V. Agostinelli, T. Bordelon, X. Wang, C. Yeap, C. Maziar, and A. Tasch, ``An Energy-Dependent Two-Dimensional Substrate Current Model for the Simulation of Submicrometer MOSFETs,'' IEEE Electron Device Lett., vol. 13, no. 11, pp. 554-556, 1992.

185
B. Gonzales, V. Palankovski, H. Kosina, A. Hernandez, and S. Selberherr, ``An Energy Relaxation Time Model for Device Simulation,'' Solid-State Electron., vol. 43, pp. 1791-1795, 1999.

186
C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, ``Electron Drift Velocity and Diffusivity in Germanium,'' Physical Review B, vol. 24, no. 2, pp. 1014-1026, 1981.

187
A. Schenk, ``A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetimes in Silicon,'' Solid-State Electron., vol. 35, no. 11, pp. 1585-1596, 1992.

188
S. Sze, ed., Semiconductor Sensors.
Wiley, 1994.

189
G. Hurkx, D. Klaassen, and M. Knuvers, ``A New Recombination Model for Device Simulation Including Tunneling,'' IEEE Trans.Electron Devices, vol. 39, no. 2, pp. 331-338, 1992.

190
S. Sze and G. Gibbons, ``Avalanche Breakdown Voltages of Abrupt and Linearly Graded p-n Junctions in Ge, Si, GaAs, and GaP,'' Appl.Phys.Lett., vol. 8, pp. 111-113, 1966.

191
W. Quade, M. Rudan, and E. Schöll, ``Hydrodynamic Simulation of Impact-Ionization Effects in P-N Junctions,'' IEEE Trans.Computer-Aided Design, vol. 10, no. 10, pp. 1287-1294, 1991.

192
W. Quade, E. Schöll, and M. Rudan, ``Impact Ionization within the Hydrodynamic Approach to Semiconductor Transport,'' Solid-State Electron., vol. 36, no. 10, pp. 1493-1505, 1993.

193
R. Quay, H. Massler, W. Kellner, V. Palankovski, and S. Selberherr,
``Simulation of Gallium-Arsenide Based High Electron Mobility Transistors,''
in Simulation of Semiconductor Processes and Devices, (Seattle, USA), pp. 74-77, 2000.

194
R. Quay, V. Palankovski, M. Chertouk, A. Leuther, and S. Selberherr,
``Simulation of InAlAs/InGaAs High Electron Mobility Transistors with a Single Set of Physical Parameters,'' in Intl.Electron Devices Meeting, (in print), 2000.

195
V. Palankovski, M. Rottinger, T. Simlinger, and S. Selberherr, ``Two-Dimensional Simulation and Comparison of Si-based and GaAs-based HBTs,'' in Viewgraphs III-V Semiconductor Device Simulation Workshop, (Turin, Italy), 1997.

196
C. Pichler, R. Plasun, R. Strasser, and S. Selberherr, ``High-Level TCAD Task Representation and Automation,'' IEEE J.Technology Computer Aided Design, May 1997.
http://www.ieee.org/journal/tcad/accepted/pichler-may97/.

197
E. Prinz, P. Garone, P. Schwartz, X. Xiao, and J. Sturm, ``The Effect of Base-Emitter Spacers and Strain-Dependent Densities of States in Si/Si$_{1-x}$Ge$_x$/Si Heterojunction Bipolar Transistors,'' in Intl.Electron Devices Meeting, pp. 639-642, 1989.

198
R. Schultheis, N. Bovolon, J.-E. Müller, and P. Zwicknagl, ``Electrothermal Modelling of Heterojunction Bipolar Transistors (HBTs),'' in Viewgraphs III-V Semiconductor Device Simulation Workshop, (Lille, France), 1999.

199
N. Bovolon, P. Baureis, J.-E. Müller, P. Zwicknagl, R. Schultheis, and E. Zanoni, ``A Simple Method for the Thermal Resistance Measurement of AlGaAs/GaAs Heterojunction Bipolar Transistors,'' IEEE Trans.Electron Devices, vol. 45, no. 8, pp. 1846-1848, 1998.

200
S. Laux, ``Techniques for Small-Signal Analysis of Semiconductor Devices,'' IEEE Trans.Electron Devices, vol. ED-32, no. 10, pp. 2028-2037, 1986.

201
D. Peters, W. Daumann, W. Brockerhoff, R. Reuter, E. Koenig, and F. Tegude, ``Direct Calculation of the HBT Small-Signal Equivalent Circuit with Special Emphasis to the Feedback Capacitance,'' in Proc. European Microwave Conference, (Bologna, Italy), pp. 1032-1036, 1995.

202
R. Schultheis, N. Bovolon, J.-E. Müller, and P. Zwicknagl, ``Modelling of Heterojunction Bipolar Transistors (HBTs) Based on Gallium Arsenide (GaAs),'' Intl.J. of RF and Microwave Computer-Aided Engineering, vol. 10, no. 1, pp. 33-42, 2000.

203
T. Low, C. Hutchison, P. Canfield, T. Shirley, R. Yeats, J. Chang, G. Essilfie, W. Whiteley, D. D'Avanzo, N. Pan, J. Elliot, and C. Lutz, ``Migration from an AlGaAs to an InGaP emitter HBT IC process for improved reliability,'' in Tech.Dig. GaAs IC Symp., (Atlanta, USA), pp. 153-157, 1998.

204
P. Ma, P. Zampardi, L. Zhang, and M. Chang, ``Determining the Effectiveness of HBT Emitter Ledge Passivation by Using an On-Ledge Schottky Diode Potentiometer,'' IEEE Electron Device Lett., vol. 20, no. 9, pp. 460-462, 1999.

205
N. Bovolon, R. Schultheis, J.-E. Müller, P. Zwicknagl, and E. Zanoni, ``A Short-Term High-Current-Density Reliability Investigation of AlGaAs/GaAs Heterojunction Bipolar Transistors,'' Electron.Lett., vol. 19, no. 12, pp. 469-471, 1998.

206
M. Borgarino, R. Plana, S. Delage, F. Fantini, and J. Graffeuil, ``Influence of Surface Recombination on the Burn-In Effect in Microwave GaInP/GaAs HBT's,'' IEEE Trans.Electron Devices, vol. 46, no. 1, pp. 10-16, 1999.

207
K. Christianson, ``Reliability of III-V Based Heterojunction Bipolar Transistors,'' Microelectron.Reliab., vol. 38, no. 1, pp. 153-161, 1997.

208
K. Mochizuki, T. Oka, K. Ouchi, and T. Tanoue, ``Reliability Investigation of Heavily C-doped InGaP/GaAs HBTs Operated under a Very High Current-Density Condition,'' Solid-State Electron., vol. 43, pp. 1425-1428, 1999.

209
Technology Modeling Associates, Inc., Sunnyvale, California, TMA TSUPREM-4, Two-Dimensional Process Simulation Program, Version 6.5 User's Manual, 1997.

210
ISE Integrated Systems Engineering AG, Zürich, Switzerland, DIOS-ISE, ISE TCAD Release 6.0, 1999.

211
T. Grasser, R. Quay, V. Palankovski, and S. Selberherr, ``A Global Self-Heating Model for Device Simulation,'' in 30th European Solid-State Device Research Conference (W.A. Lane, G.M. Crean, F.A. McCabe, and H. Grünbacher, eds.), (Cork, Ireland), pp. 324-327, Frontier Group, 2000.


Vassil Palankovski
2001-02-28