3.9.3 Current Density

To derive an equation for the current density one uses the conservation law of quantum mechanical variables [93]. The starting point is the subtraction of equation (3.62) from (3.63)

\begin{displaymath}\begin{array}{l}\displaystyle
 i\hbar \left(\partial_{t_1}+\p...
...athrm{<}(13)\
 \Sigma^\mathrm{a}(32) \ \right] \ ,
 \end{array}\end{displaymath} (3.85)

where $ H_0(1)=-{\hbar^2}/{2m}\ensuremath{{\mathbf{\nabla}}}^2_1+U(1)$ has been assumed. By taking the limit $ 1\rightarrow 2$ ( $ {\bf r_2}\rightarrow {\bf r_1}$ and $ t_2\rightarrow t_1$) and assuming that the right-hand-side of (3.85) approaches zero in this limit, one obtains

\begin{displaymath}\begin{array}{l}\displaystyle
 i\hbar \lim_{t_2\rightarrow t_...
...abla}}}_{\bf 
 r_2}) G^{<}(12) \right) \ = \ 0 \ .
 \end{array}\end{displaymath} (3.86)

By multiplying both sides by $ -\ensuremath {\mathrm{q}}$ and recalling the definition of the charge density, one recovers the continuity equation

\begin{displaymath}\begin{array}{l}\displaystyle
 \partial_{t_1} \varrho({\bf r_...
...f{\nabla}}}\cdot {\bf J}({\bf r_1},t_1) \
 = 0 \ ,
 \end{array}\end{displaymath} (3.87)

where the current density is defined as

\begin{displaymath}\begin{array}{l}\displaystyle
 {\bf J}({\bf r_1},t_1) \ = -\f...
...2}\right) G^{<}({\bf 
 r_1},t_1;{\bf r_2},t_1) \ .
 \end{array}\end{displaymath} (3.88)

Under steady-state condition the current density takes the form [60]

\begin{displaymath}\begin{array}{l}\displaystyle
 {\bf J}({\bf r_1}) \ \displays...
..._{\bf r_2}\right) G^{<}({\bf r_1},{\bf r_2},E) \ .
 \end{array}\end{displaymath} (3.89)

M. Pourfath: Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors