next up previous
Next: 4.3.2 Time Step Size Up: 4.3 Time Step Size Previous: 4.3 Time Step Size


4.3.1 Time Step Size Prediction

In MINIMOS-NT a quadratic extrapolation of the norm of the potential update is used to estimate the size of the next time step $ \Delta$$ \tilde{t}$. The last two step sizes $ \Delta$tn - 1 and $ \Delta$tn and the last two potential update norms un - 1 and un are used to calculate the coefficients of a quadratic extrapolation polynomial. From this function the step size $ \Delta$$ \tilde{t}$ corresponding to the maximum update norm umax is determined (see Fig. 4.6). These calculations are performed using the L2 norm and the L$\scriptstyle \infty$ norm of the potential update. The minimum of the results is used for further checks.

$ \Delta$$ \tilde{t}$ = min($ \Delta$$ \tilde{t}_{\mathrm{L^2}}^{}$,$ \Delta$$ \tilde{t}_{\mathrm{L^\infty}}^{}$) (4.3)

Then the ratio of the estimated step size $ \Delta$$ \tilde{t}$ and the previous step size $ \Delta$tn is limited to the sectio aurea constant ( $ {\frac{1 + \sqrt{5}}{2}}$ = 1.618...), to limit the step size variations. With this restriction a quasi-uniform mesh is achieved, which gives a second order local truncation error.

$ \Delta$$ \tilde{t}$ $ \leftarrow$ min$ \left(\vphantom{\frac{\Delta\tilde{t}}{\Delta t_{n}},\frac{1 + \sqrt{5}}{2}}\right.$$ {\frac{\Delta\tilde{t}}{\Delta t_{n}}}$,$ {\frac{1 + \sqrt{5}}{2}}$ $ \left.\vphantom{\frac{\Delta\tilde{t}}{\Delta t_{n}},\frac{1 + \sqrt{5}}{2}}\right)$ (4.4)

Figure 4.6: Quadratic step size prediction.
\includegraphics[width=12cm]{eps/quadraticprediction.eps}

In order to follow the pointwise predefined input signals accurately it is necessary to calculate a time step at the instances used to specify the input signals. Therefore the step size has to be reduced if it is larger than the difference of the instance tk and the present time tn (see Fig. 4.7).

$ \Delta$$ \tilde{t}$ $ \leftarrow$ min$ \left(\vphantom{\Delta\tilde{t}, t_{k} - t_{n}}\right.$$ \Delta$$ \tilde{t}$, tk - tn$ \left.\vphantom{\Delta\tilde{t}, t_{k} - t_{n}}\right)$ (4.5)

To avoid strong step size variations when reaching the next instance tk a check is performed whether double the estimated step size is greater than the difference of the instance tk and the actual time tn. In this case the next two step sizes $ \Delta$$ \tilde{t}$ and $ \Delta$$ \hat{t}$ are chosen in such a way that the second step matches the instance and the step size ratio is the sectio aurea constant (see Fig. 4.8).

$\displaystyle \Delta$$\displaystyle \tilde{t}$ + $\displaystyle \Delta$$\displaystyle \hat{t}$ = tk - tn (4.6)
$\displaystyle {\frac{\Delta\hat{t}}{\Delta\tilde{t}}}$ = $\displaystyle {\frac{1 + \sqrt{5}}{2}}$ (4.7)

Figure 4.7: To accurately follow the predefined input signal the step size has to be reduced to match the instance tk.
Figure 4.8: When the double estimated step size is greater than the difference between the next instance tk and the current time tn the step size has to be reduced to avoid strong step size variations.
\includegraphics[width=\textwidth]{eps/predict_1_1.eps}
\includegraphics[width=\textwidth]{eps/predict_1_2.eps}

\includegraphics[width=\textwidth]{eps/predict_2_1.eps}
\includegraphics[width=\textwidth]{eps/predict_2_2.eps}

Finally there is a check whether the estimated step size $ \Delta$$ \tilde{t}$ is greater than a specified minimum step size $ \Delta$tmin and less than a specified maximum step size $ \Delta$tmax.

$\displaystyle \Delta$$\displaystyle \tilde{t}$ $\displaystyle \leftarrow$ max($\displaystyle \Delta$tmin,$\displaystyle \Delta$$\displaystyle \tilde{t}$) (4.8)
$\displaystyle \Delta$$\displaystyle \tilde{t}$ $\displaystyle \leftarrow$ min($\displaystyle \Delta$$\displaystyle \tilde{t}$,$\displaystyle \Delta$tmax) (4.9)


next up previous
Next: 4.3.2 Time Step Size Up: 4.3 Time Step Size Previous: 4.3 Time Step Size
Martin Rottinger
1999-05-31