A.2 Creation and Annihilation Operators

For each single-particle state $ \vert\lambda\rangle$ of the single-particle Hilbert space $ \mathcal{H}$ a Boson or Fermion creation operator $ a^{+}_{\lambda}$ is defined by its action on any symmetrized or antisymmetrized state $ \vert\lambda_{1}...\lambda_{N}\}$ of the Hilbert space of $ N$ Bosons, $ \mathcal{B}_{N}$, or $ N$ Fermions, $ \mathcal{F}_{N}$, as follows:

$\displaystyle a_{\lambda}^{+}\vert\lambda_{1}...\lambda_{N}\}=\vert\lambda\lambda_{1}...\lambda_{N}\}$ (A.4)

The creation operators $ a^{+}_{\lambda}$ do not operate within one space $ \mathcal{B}_{n}$ or $ \mathcal{F}_{n}$, but rather operate from any space $ \mathcal{B}_{n}$ or $ \mathcal{F}_{n}$ to $ \mathcal{B}_{n+1}$ or $ \mathcal{F}_{n+1}$. It is useful to define the Fock space as the direct sum of the Boson or Fermion spaces
    $\displaystyle \mathcal{B}=\oplus_{n=0}^{\infty}\mathcal{B}_{n},$ (A.5)
    $\displaystyle \mathcal{F}=\oplus_{n=0}^{\infty}\mathcal{F}_{n},$  

where by definition:
    $\displaystyle \mathcal{B}_{0}=\mathcal{F}_{0}=\vert\rangle,$ (A.6)
    $\displaystyle \mathcal{B}_{1}=\mathcal{F}_{1}=\mathcal{H}.$  

It can be easily shown that for Bosons the creation operators commute:

$\displaystyle a_{\lambda}^{+}a_{\mu}^{+}-a_{\mu}^{+}a_{\lambda}^{+}=0,$ (A.7)

whereas they anticommute for Fermions:

$\displaystyle a_{\lambda}^{+}a_{\mu}^{+}+a_{\mu}^{+}a_{\lambda}^{+}=0.$ (A.8)

The annihilation operators $ a_{\lambda}$ are defined as the adjoints of the creation operators $ a_{\lambda}^{+}$. The commutation and anticommutation relations of annihilation operators follow from (A.7) and (A.8), respectively. They commute for Bosons:

$\displaystyle a_{\lambda}a_{\mu}-a_{\mu}a_{\lambda}=0,$ (A.9)

whereas they anticommute for Fermions:

$\displaystyle a_{\lambda}a_{\mu}+a_{\mu}a_{\lambda}=0.$ (A.10)

The action of the annihilation operator on a many particle state is given for Bosons as

$\displaystyle a_{\lambda}\vert\alpha_{1}...\alpha_{n}\}=\sum_{i=1}^{n}\delta_{\lambda\alpha_{i}}\vert\alpha_{1}...\hat{\alpha}_{i}...\alpha_{n}\},$ (A.11)

while for Fermions it reads:

$\displaystyle a_{\lambda}\vert\alpha_{1}...\alpha_{n}\}=\sum_{i=1}^{n}(-1)^{i-1}\delta_{\lambda\alpha_{i}}\vert\alpha_{1}...\hat{\alpha}_{i}...\alpha_{n}\}.$ (A.12)

Here $ \hat{\alpha}_{i}$ shows that the state $ \alpha_{i}$ has been removed from the mani-particle state $ \vert\alpha_{1}...\hat{\alpha}_{i}...\alpha_{n}\}$.

The commutation rules for the creation and annihilation operators are:

    $\displaystyle a_{\lambda}a_{\mu}^{+}-a_{\mu}^{+}a_{\lambda}=\delta_{\lambda\mu}\thickspace ($Bosons$\displaystyle )$ (A.13)
    $\displaystyle a_{\lambda}a_{\mu}^{+}+a_{\mu}^{+}a_{\lambda}=\delta_{\lambda\mu}\thickspace ($Fermions$\displaystyle ).$  

If the orthonormal basis $ \{\alpha\}$ transforms into another basis $ \{\widetilde{\alpha}\}$, the creation and annihilation operators transform as follows:

    $\displaystyle a_{\widetilde{\alpha}}^{+}=\sum_{\alpha}\langle\alpha\vert\widetilde{\alpha}\rangle a_{\alpha}^{+},$ (A.14)
    $\displaystyle a_{\widetilde{\alpha}}=\sum_{\alpha}\langle\widetilde{\alpha}\vert\alpha\rangle a_{\alpha}.$  

Of particular importance is the coordinate basis $ \{\vert\vec{x}\rangle\}$. In this case the creation and annihilation operators are traditionally denoted by $ \hat{\psi}^{+}(\vec{x})$ and $ \hat{\psi}(\vec{x})$ and are called field operators. From (A.15) it follows:
    $\displaystyle \hat{\psi}^{+}(\vec{x})=\sum_{\alpha}\phi_{\alpha}^{*}(\vec{x})a_{\alpha}^{+},$ (A.15)
    $\displaystyle \hat{\psi}(\vec{x})=\sum_{\alpha}\phi_{\alpha}(\vec{x})a_{\alpha},$  

where $ \phi_{\alpha}(\vec{x})$ is the coordinate representation wave function of the state $ \vert\alpha\rangle$.

It can be shown that $ n$-body operators (A.3) can be expressed through the creation and annihilation operators in a simple form:

$\displaystyle \hat{U}=\frac{1}{n!}\sum_{\lambda_{1}...\lambda_{n}}\sum_{\mu_{1}...
......\mu_{n}) a_{\lambda_{1}}^{+}...a_{\lambda_{n}}^{+}a_{\mu_{n}}...a_{\mu_{1}}.$ (A.16)

For example using the coordinate representation, the kinetic energy operator $ \hat{T}$

$\displaystyle \hat{T}=\sum_{i}\frac{\hat{\vec{p}}^{2}_{i}}{2m}$ (A.17)

may be rewritten in second quantized form as:

$\displaystyle \hat{T}=-\frac{\hbar^{2}}{2m}\int\,d^{3}x\hat{\psi}^{+}(\vec{x})\nabla^{2}\hat{\psi}(\vec{x}).$ (A.18)

S. Smirnov: