2.4.2.4 Herring-Vogt Transformation

The analytical band structure given by (2.77) represents an anisotropic dispersion law. However, it is possible to transform [21] the coordinate system to obtain a spherical energy surface which is more convenient to work with. The orientation of the coordinate system is specified so that the tensors $ m_{\alpha\beta}^{-1}$ for the valleys located along the $ \Delta$ axes have the form:

$\displaystyle m^{-1}_{x}= \begin{bmatrix}\frac{1}{m_{Xl}} & 0 & 0\\ 0 & \frac{1...
...}} & 0 & 0\\ 0 & \frac{1}{m_{Xt}} & 0\\ 0 & 0 & \frac{1}{m_{Xl}} \end{bmatrix}.$ (2.78)

The transformation $ \vec{w}=T\vec{k}$ is given by matrices $ T$ of the form:
    $\displaystyle T_{x}=
\begin{bmatrix}
\sqrt{\frac{m_{0}}{m_{Xl}}} & 0 & 0\\
0 &...
...\frac{m_{0}}{m_{Xl}}} & 0\\
0 & 0 & \sqrt{\frac{m_{0}}{m_{Xt}}}
\end{bmatrix},$  
    $\displaystyle T_{z}=
\begin{bmatrix}
\sqrt{\frac{m_{0}}{m_{Xt}}} & 0 & 0\\
0 &...
...\frac{m_{0}}{m_{Xt}}} & 0\\
0 & 0 & \sqrt{\frac{m_{0}}{m_{Xl}}}
\end{bmatrix}.$ (2.79)

The dependence of energy on the wave-vector $ \vec{w}$ is now isotropic

$\displaystyle \epsilon(\vec{k})(1+\alpha\epsilon(\vec{k}))=\frac{\hbar^{2}\vec{w}^{2}}{2m_{0}}.$ (2.80)

For the valleys located at the $ L$ points the tensor $ m_{\alpha\beta}^{-1}$ is not diagonal in the coordinate system chosen above. The right hand side of (2.77) can be expressed in terms of a rotation transformation $ D$ as follows:

$\displaystyle \frac{\hbar^{2}}{2}\vec{k}^{T}D^{T}\begin{bmatrix}\frac{1}{m_{Ll}...
... 0\\ 0 & \frac{1}{m_{Lt}} & 0\\ 0 & 0 & \frac{1}{m_{Lt}} \end{bmatrix}D\vec{k},$ (2.81)

with matrix $ D$ defined as:

$\displaystyle T= \begin{bmatrix}\cos\alpha\cos\beta & \sin\alpha\cos\beta & \si...
...ha & 0\\ -\cos\alpha\sin\beta & -\sin\alpha\sin\beta & \cos\beta \end{bmatrix},$ (2.82)

where the angles $ \alpha $ and $ \beta $ specify the longitudinal direction of an $ L$ valley as shown in Fig. 2.7. This longitudinal orientation is chosen to be $ x$ axis of the rotated coordinate system.
Figure 2.7: Angels $ \alpha $ and $ \beta $ with respect to the coordinate system which diagonalizes $ m^{-1}$.
\includegraphics[width=.5\linewidth]{figures/figure_7}
Therefore the transformation matrices in this case are equal to $ SD$, where the matrix $ S$ is given as

$\displaystyle S=\begin{bmatrix}\sqrt{\frac{m_{0}}{m_{Ll}}} & 0 & 0\\ 0 & \sqrt{\frac{m_{0}}{m_{Lt}}} & 0\\ 0 & 0 & \sqrt{\frac{m_{0}}{m_{Lt}}} \end{bmatrix}.$ (2.83)

For example, for the $ [111]$ orientation the angles are $ \alpha=\frac{\pi}{4}$, $ \sin\beta=\frac{1}{\sqrt{3}}$ and the matrix $ \bf {D}$ equals

$\displaystyle D=\begin{bmatrix}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{...
...c{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}} \end{bmatrix}.$ (2.84)

Analogous expressions can easily be obtained for other orientations:

$\displaystyle D_{1}=\begin{bmatrix}-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \...
...rac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}} \end{bmatrix}$ (2.85)

where indices $ 1,2$ and $ 3$ specify orientations $ [\overline{1}11]$, $ [11\overline{1}]$, and $ [1\overline{1}1]$, respectively. S. Smirnov: