User Tools

Site Tools


publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications [2019/01/31 05:59] wigner_userpublications [2021/07/14 08:03] (current) – [Classical, Semiclassical and Quantum Physics] weinbub
Line 1: Line 1:
-======= Recent Publications and Publication History =======+======= Publication History =======
  
-====== Recent Publications ====== +====== General / Inter-Disciplinary ======
- +
-===== Books =====+
  
 +===== Books and Conference Proceedings =====
 +=== 2019 ===
 +  * [[Xavier Oriols]] and Jordi Mompart, [[http://www.panstanford.com/books/9789814800105.html|Applied Bohmian Mechanics - From Nanoscale Systems to Cosmology, 2nd Edition]], (Pan Stanford Publishing, 2019)
 +  * Dagmar Bruss and [[Gerd Leuchs]], [[https://www.wiley.com/en-us/Quantum+Information%3A+From+Foundations+to+Quantum+Technology+Applications%2C+2+Volume+Set%2C+2nd+Edition-p-9783527805792|Quantum Information: From Foundations to Quantum Technology Applications]], (Wiley, 2019)
 +  * [[David K. Ferry]], Stephen Goodnick, and [[Josef Weinbub]], [[http://www.iue.tuwien.ac.at/iwcn2019/wp-content/uploads/2019/06/IW2-2019-Book-of-Abstracts.pdf|Book of Abstracts of the 3rd International Wigner Workshop (IW2)]] (TU Wien, 2019)
 +=== 2018 ===
   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)   * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)
 +=== 2017 ===
 +  * [[Apostol Vourdas]], [[https://www.springer.com/gp/book/9783319594941|Finite and Profinite Quantum Systems]] (Springer, 2017)
 +  * [[Maurice de Gosson]], [[http://www.worldscientific.com/worldscibooks/10.1142/q0089|The Wigner Transform]], Advanced Textbooks in Mathematics (World Scientific, 2017)
 +  * [[Josef Weinbub]], [[David K. Ferry]], [[Irena Knezevic]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[http://www.iue.tuwien.ac.at/pdf/ib_2017/hashed_links/p54PChrcQOaqwqrCY_us.pdf|Book of Abstracts of the 2nd International Wigner Workshop (IW2)]] (TU Wien, 2017)
 +=== 2016 ===
 +  * [[Olafur Jonasson]], [[https://homepages.cae.wisc.edu/~knezevic/pdfs/Olafur_Jonasson_Dissertation_2016.pdf|Quantum Transport in Semiconductor Heterostructures Using Density-Matrix and Wigner-Function Formalisms]], PhD thesis, University of Wisconsin-Madison (2016)
 +  * [[Paul Ellinghaus]], [[http://www.iue.tuwien.ac.at/phd/ellinghaus/|Two-Dimensional Wigner Monte Carlo Simulation for Time-Resolved Quantum Transport with Scattering]], Doctoral dissertation, TU Wien (2016)
  
- +=== 2015 === 
-===== Journal Articles ===== +  * [[David K. Ferry]] and [[Josef Weinbub]], [[http://www.iue.tuwien.ac.at/pdf/ib_2015/hashed_links/p54PCkrcQOaqwqr9Y_us.pdf|Booklet of the 1st International Wigner Workshop (IW2)]] (TU Wien2015
-==== Reviews ==== +=== 2014 ===
-  * [[Josef Weinbub]] and [[David K. Ferry]][[https://aip.scitation.org/doi/10.1063/1.5046663|Recent Advances in Wigner Function Approaches]], Appl. Phys. Rev. **5**, 041104 (2018) +
-==== Regular Articles ==== +
-  * R.P. Rundle, [[Todd Tilma]], [[John Samson]], V.M. Dwyer, [[Raymond Bishop]] and [[Mark Everitt]]: "General approach to quantum mechanics as a statistical theory" Phys Rev A. [[http://dx.doi.org/10.1103/PhysRevA.99.012115|10.1103/PhysRevA.99.012115]] [[https://arxiv.org/abs/1708.03814|arXiv]] 2019. +
-  * [[Mihail (MixiNedjalkov]], [[Josef Weinbub]], M. Ballicchia, [[Siegfried Selberherr]], [[Ivan Dimov]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014423|Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform]], Phys. Rev. B **99**,  014423 (2019) +
-  * Yunfeng Xiong and [[Sihong Shao]][[http://www.global-sci.com/intro/article_detail/cicp/12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]], Commun. Comput. Phys **25**, 871 (2019) +
--------------------------- +
-====== Publication History ====== +
- +
-===== Books ===== +
- +
-  * [[David K. Ferry]] and [[Mihail (Mixi) Nedjalkov]], [[http://iopscience.iop.org/book/978-0-7503-1671-2|The Wigner Function in Science and Technology]] (IOP Publishing, 2018)+
   * T. L. Curtright, D. B. Fairlie and C. K. Zachos, [[https://www.worldscientific.com/worldscibooks/10.1142/8870|A Concise Treatise on Quantum Mechanics in Phase Space]] (World Scientific Publishing Co Pte Ltd, 2014)   * T. L. Curtright, D. B. Fairlie and C. K. Zachos, [[https://www.worldscientific.com/worldscibooks/10.1142/8870|A Concise Treatise on Quantum Mechanics in Phase Space]] (World Scientific Publishing Co Pte Ltd, 2014)
-  * D. Querlioz and P. Dollfus, [[https://onlinelibrary.wiley.com/doi/book/10.1002/9781118618479|The Wigner Monte Carlo Method for Nanoelectronic Devices]] (John Wiley & Sons, Inc. 2010)+=== 2013 === 
 +  * [[Damien Querlioz]] and [[Philippe Dollfus]], [[https://onlinelibrary.wiley.com/doi/book/10.1002/9781118618479|The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence]] (John Wiley & Sons, 2013) 
 +=== 2012 === 
 +  * [[Xavier Oriols]] and Jordi Mompart, [[http://www.panstanford.com/books/9789814316392.html|Applied Bohmian Mechanics - From Nanoscale Systems to Cosmology]], (Pan Stanford Publishing, 2012) 
 +=== 2010 === 
 +  * D. Querlioz and P. Dollfus, [[https://onlinelibrary.wiley.com/doi/book/10.1002/9781118618479|The Wigner Monte Carlo Method for Nanoelectronic Devices]] (John Wiley & Sons, 2010) 
 +=== 2005 ===
   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)   * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005)
-  WP. Schleich, [[https://onlinelibrary.wiley.com/doi/book/10.1002/3527602976|Quantum Optics in Phase Space]] (Wiley‐VCH Verlag Berlin GmbH, 2001)+=== 2003 === 
 +  [[Christoph Jungemann]] and Bernd Meinerzhagen, [[https://www.springer.com/gp/book/9783211013618|Hierarchical Device Simulation]], (Springer, 2003) 
 +=== 2001 === 
 +  * [[Wolfgang Schleich]], [[https://onlinelibrary.wiley.com/doi/book/10.1002/3527602976|Quantum Optics in Phase Space]] (Wiley‐VCH Verlag Berlin GmbH, 2001) 
 +=== 1998 === 
 +  * [[Hans Georg Feichtinger]] and Thomas Strohmer, [[https://www.springer.com/gp/book/9780817639594|Gabor Analysis and Algorithms]], (Springer, 1998) 
 +=== 1991 ===
   * Y. S. Kim and M. E. Noz, [[https://doi.org/10.1142/1197|Phase Space Picture of Quantum Mechanics. Group Theoretical Approach]] (World Scientific, 1991)   * Y. S. Kim and M. E. Noz, [[https://doi.org/10.1142/1197|Phase Space Picture of Quantum Mechanics. Group Theoretical Approach]] (World Scientific, 1991)
-  * S. R. Groot, [[La transformation de Weyl et la fonction de Wigner, une forme alternative de la +=== 1974 === 
 +  * S. R. Groot, [[https://cheap-library.com/book/23c997f932b9bc0e28708bdd792fda0a|La transformation de Weyl et la fonction de Wigner, une forme alternative de la 
 mecanique quantique]] (Les Presses de l'Universitié de Montréal, 1974) mecanique quantique]] (Les Presses de l'Universitié de Montréal, 1974)
  
 ===== Journal Articles ===== ===== Journal Articles =====
  
-==== Genesis ====  +==== Reviews ====
-  * J. E. Moyal, [[https://doi.org/10.1017/S0305004100000487|Quantum mechanics as a statistical theory]] Proc. Cambridge Phil. Soc. **45**, 99 (1949) +
-  * H. J. Groenewold, [[https://doi.org/10.1016/S0031-8914(46)80059-4|On the principles of elementary quantum mechanics]] Physica **12**, 405 (1946) +
-   * E. P. Wigner, [[https://link.aps.org/doi/10.1103/PhysRev.40.749|On the Quantum Correction For Thermodynamic Equilibrium]], Phys. Rev. **40**, 749 (1932)+
  
-==== Reviews ====+=== 2018 ===
   * [[Josef Weinbub]] and [[David K. Ferry]], [[https://aip.scitation.org/doi/10.1063/1.5046663|Recent Advances in Wigner Function Approaches]], Appl. Phys. Rev. **5**, 041104 (2018)   * [[Josef Weinbub]] and [[David K. Ferry]], [[https://aip.scitation.org/doi/10.1063/1.5046663|Recent Advances in Wigner Function Approaches]], Appl. Phys. Rev. **5**, 041104 (2018)
 +=== 2016 ===
 +  * Y. P. Kalmykov,  W. T. Coffey and S. V. Titov, [[ https://doi.org/10.1002/9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**, 41 (2016)
 +=== 2015 ===
 +  * [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527600441.oe1013|The Wigner function in optics]], in: The Optics Encyclopedia (Wiley VCH, 2015)
 +=== 2011 ===
 +  * [[Miguel A. Alonso]], [[https://www.osapublishing.org/aop/abstract.cfm?uri=aop-3-4-272|Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles]], Adv. Opt. Photon. **3**, 272 (2011)
 +=== 1995 ===
   * H.-W. Lee, [[https://doi.org/10.1016/0370-1573(95)00007-4|Theory and application of the quantum phase-space distribution functions]], Phys. Rep. **259**,  147 (1995)   * H.-W. Lee, [[https://doi.org/10.1016/0370-1573(95)00007-4|Theory and application of the quantum phase-space distribution functions]], Phys. Rep. **259**,  147 (1995)
 +=== 1986 ===
   * K. Takahashi, [[https://doi.org/10.1143/JPSJ.55.762|Wigner and Husimi Functions in Quantum Mechanics]], J. Phys. Soc. Jpn. **55**,  762 (1986)   * K. Takahashi, [[https://doi.org/10.1143/JPSJ.55.762|Wigner and Husimi Functions in Quantum Mechanics]], J. Phys. Soc. Jpn. **55**,  762 (1986)
 +=== 1984 ===
   * M. Hillery,  R. F. O'Connell,  M.O. Scully,  and E. P. Wigner, [[https://doi.org/10.1016/0370-1573(84)90160-1|Distribution functions in physics: Fundamentals]], Phys. Rep. **106**, 121 (1984)   * M. Hillery,  R. F. O'Connell,  M.O. Scully,  and E. P. Wigner, [[https://doi.org/10.1016/0370-1573(84)90160-1|Distribution functions in physics: Fundamentals]], Phys. Rep. **106**, 121 (1984)
 +=== 1983 ===
   * V. I. Tatarskiĭ,[[https://doi.org/10.1070/PU1983v026n04ABEH004345|The Wigner representation of quantum mechanics]], Sov. Phys. Usp. **26**, 311 (1983)   * V. I. Tatarskiĭ,[[https://doi.org/10.1070/PU1983v026n04ABEH004345|The Wigner representation of quantum mechanics]], Sov. Phys. Usp. **26**, 311 (1983)
   * P. Carruthers and F. Zachariasen, [[https://link.aps.org/doi/10.1103/RevModPhys.55.245|Quantum collision theory with phase-space distributions]], Rev. Mod. Phys. **55**,  245 (1983)   * P. Carruthers and F. Zachariasen, [[https://link.aps.org/doi/10.1103/RevModPhys.55.245|Quantum collision theory with phase-space distributions]], Rev. Mod. Phys. **55**,  245 (1983)
 +=== 1958 ===
   * G. A. Baker, Jr., [[https://doi.org/10.1103/PhysRev.109.2198|Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space]], Phys. Rev. **109**, 2198 (1958)   * G. A. Baker, Jr., [[https://doi.org/10.1103/PhysRev.109.2198|Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space]], Phys. Rev. **109**, 2198 (1958)
  
  
 +==== Genesis ==== 
 +=== 1949 ===
 +  * J. E. Moyal, [[https://doi.org/10.1017/S0305004100000487|Quantum mechanics as a statistical theory]] Proc. Cambridge Phil. Soc. **45**, 99 (1949)
 +=== 1946 ===
 +  * H. J. Groenewold, [[https://doi.org/10.1016/S0031-8914(46)80059-4|On the principles of elementary quantum mechanics]] Physica **12**, 405 (1946)
 +=== 1932 ===
 +   * E. P. Wigner, [[https://link.aps.org/doi/10.1103/PhysRev.40.749|On the Quantum Correction For Thermodynamic Equilibrium]], Phys. Rev. **40**, 749 (1932)
  
 +
 +
 +====== Topics ======
  
 ==== Classical, Semiclassical and Quantum Physics ====  ==== Classical, Semiclassical and Quantum Physics ==== 
 +
 +=== 2021 ===
 +  * [[Michael te Vrugt]], Gyula I Tóth, [[Raphael Wittkowski]], [[https://arxiv.org/abs/2106.00137|Master equations for Wigner functions with spontaneous collapse and their relation to thermodynamic irreversibility]], arXiv:2106.00137 (2021)
 +
 +=== 2020 ===
 +
 +  * [[Michael te Vrugt]], [[Raphael Wittkowski]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/andp.202000266|Orientational order parameters for arbitrary quantum systems]], Annalen der Physik **532**, 2000266 (2020)
 +  * [[Michael te Vrugt]], Hartmut Löwen, [[Raphael Wittkowski]], [[https://www.tandfonline.com/doi/full/10.1080/00018732.2020.1854965|Classical dynamical density functional theory: from fundamentals to applications]], Advances in Physics **69**, 121-247 (2020) 
 +
 === 2019 ===  === 2019 === 
-  * R.P. Rundle, [[Todd Tilma]], [[John Samson]], V.MDwyer, [[Raymond Bishop]] and [[Mark Everitt]]: "General approach to quantum mechanics as a statistical theory" Phys Rev A. [[http://dx.doi.org/10.1103/PhysRevA.99.012115|10.1103/PhysRevA.99.012115]] [[https://arxiv.org/abs/1708.03814|arXiv]] 2019. +  * TIkedaA.G. Dijkstra and [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.5086948|Modeling and analyzing a photo-driven molecular motor system: Ratchet dynamics and non-linear optical spectra]], JChemPhys. **150**114103 (2019) 
-  * [[Mihail (MixiNedjalkov]], [[Josef Weinbub]], MBallicchia, [[Siegfried Selberherr]], [[Ivan Dimov]], and [[David KFerry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014423|Wigner equation for general electromagnetic fieldsThe Weyl-Stratonovich transform]], Phys. Rev. B **99**,  014423 (2019)+  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b01195|Low-Temperature Quantum Fokker–Planck and Smoluchowski Equations and Their Extension to Multistate Systems]], J. Chem. Theory Comput. **15**, 2517-2534 (2019) 
 +  * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032104|Quantum Kerr oscillators' evolution in phase space: Wigner current, symmetries, shear suppression, and special states]], PhysRev**99**, 032104 (2019) 
 +  * Maxime Oliva and [[Ole Steuernagel]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.020401|Dynamic Shear Suppression in Quantum Phase Space]], Phys. Rev. Lett. **122**, 020401 (2019) 
 +  * Z. Xiao, T. Fuse, S. Ashhab, F. Yoshihara, [[Kouichi Semba]], M. Sasaki, M. Takeoka, and J. P. Dowling, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013827|Fast amplification and rephasing of entangled cat states in a qubit-oscillator system]], Phys. Rev. A **99**, 013827 (2019) 
 +  * T. Hahn, D. Groll, T. Kuhn and [[Daniel Wigger]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.024306|Influence of excited state decay and dephasing on phonon quantum state preparation]], Phys. Rev. B **100**, 024306 (2019) 
 +  * [[Guillem Albareda Piquer]], Aaron Kelly, and Angel Rubio, [[https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.3.023803|Nonadiabatic quantum dynamics without potential energy surfaces]], Phys. Rev. Materials **3**, 023803 (2019
 +  * Eric GArrais, Diego A. Wisniacki, Augusto J. Roncaglia, and [[Fabricio Toscano]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.052136|Work statistics for sudden quenches in interacting quantum many-body systems]], Phys. Rev. E **100**, 052136 (2019) 
 +  * A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and [[Franco Nori]], [[https://www.nature.com/articles/s42254-018-0006-2|Ultrastrong coupling between light and matter]], Nature Rev. Phys. **1**, 19 (2019) 
 +  * W. Qin, A. Miranowicz, G. Long, J.Q. You, and [[Franco Nori]], [[https://www.nature.com/articles/s41534-019-0172-9|Proposal to test quantum wave-particle superposition on massive mechanical resonators]], npj QuantInf. **5**58 (2019) 
 +  * Hong-Bin Chen, Ping-Yuan Lo, Clemens Gneiting, Joonwoo Bae, Yueh-Nan Chen, and [[Franco Nori]], [[https://www.nature.com/articles/s41467-019-11502-4|Quantifying the nonclassicality of pure dephasing]], Nature Comm. **10**, 3794 (2019) 
 +  * Gui-Lei Zhu, Xin-You Lü, Li-Li Zheng, Zhi-Ming Zhan, [[Franco Nori]], and Ying Wu, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.023825|Single-photon-triggered quantum chaos]], Phys. Rev. A **100**, 023825 (2019) 
 +  * J. Tuorila, J. Stockburger, T. Ala-Nissila, [[Joachim Ankerhold]], and Mikko Möttönen, [[https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.013004|System-environment correlations in qubit initialization and control]], Phys. Rev. Res. **1**, 013004 (2019) 
 +  * J. Gosner, B. Kubala, and [[Joachim Ankerhold]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.144524|Quantum properties of a strongly driven Josephson junction]], Phys. Rev. B **99**, 144524 (2019) 
 +  * S. Dambach, [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]], [[https://iopscience.iop.org/article/10.1088/1402-4896/ab2a90/meta|Josephson junction cavity systems as cousins of the quantum optical micromaser]], Phys. Script**94**, 104001 (2019) 
 +  * S. Dambacha, P. Egetmeyer, [[Joachim Ankerhold]], and B. Kubala, [[https://link.springer.com/article/10.1140%2Fepjst%2Fe2018-800062-8|Quantum thermodynamics with a Josephson-photonics setup]], Europ. Phys. J. Spec. Top. **227**, 2053 (2019) 
 +  * Chao Song, Kai Xu, Hekang Li, et al., [[https://science.sciencemag.org/content/365/6453/574|Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits]], Science **365**, 574 (2019) 
 +  * R.P. Rundle, [[Todd Tilma]], [[John Samson]], V.M. Dwyer, [[Raymond Bishop]], and [[Mark Everitt]], [[http://dx.doi.org/10.1103/PhysRevA.99.012115|General approach to quantum mechanics as a statistical theory]], Phys Rev A **99**, 012115 (2019) 
 +  * B.I. Davies, R.P. Rundle, V.M. Dwyer, [[John Samson]], [[Todd Tilma]], and [[Mark Everitt]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.042102|Visualizing spin degrees of freedom in atoms and molecules]], Phys. Rev. A **100**, 042102 (2019) 
 +  * Tian Zhang, [[Oscar C O Dahlsten]], and Vlatko Vedral, [[https://arxiv.org/abs/1903.06312|Constructing continuous-variable spacetime quantum states from measurement correlations]], arXiv (2019) 
 === 2018 === === 2018 ===
 +  * Jack Clarke and [[Michael R. Vanner]], [[https://iopscience.iop.org/article/10.1088/2058-9565/aada1d/meta|Growing macroscopic superposition states via cavity quantum optomechanics]], Quantum Science and Technology **4**, 014003 (2018)
 +  * K. E. Khosla, [[Michael R. Vanner]], N. Ares, and E. A. Laird, [[https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021052|Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator]], Phys. Rev. X **8**, 021052 (2018)
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1016/j.chemphys.2018.07.013|Phase-Space Wavepacket Dynamics of Internal Conversion via Conical Intersection: Multi-State Quantum Fokker-Planck Equation Approach]], Chem. Phys. **515**, 203-213 (2018)
 +  * V. M. Bastidas, B. Renoust, [[Kae Nemoto]], and W. J. Munro, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224307|Ergodic-localized junctions in periodically driven systems]], Phys. Rev. B **98**, 224307 (2018)
 +  * [[Omar Morandi]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aac3ef/meta|Quantum motion with trajectories: beyond the Gaussian beam approximation]], J. Phys. A: Math. Theor. **51**, 255301 (2018)
 +  * Demid V. Sychev, Alexander E. Ulanov, Egor S. Tiunov, Anastasia A. Pushkina, A. Kuzhamuratov, Valery Novikov, and [[Alexander Lvovsky]], [[https://www.nature.com/articles/s41467-018-06055-x|Entanglement and teleportation between polarization and wave-like encodings of an optical qubit]], Nature Comm. **9**, 3672 (2018)
 +  *  L. Happ, [[Maxim A. Efremov]], H. Nha, and [[Wolfgang Schleich]], [[https://iopscience.iop.org/article/10.1088/1367-2630/aaac25|Sufficient condition for a quantum state to be genuinely quantum non-Gaussian]], New J. Phys. **20**, 039601 (2018)
 +  * Manuel R. Gonçalves, [[William B. Case]], Ady Arie, and [[Wolfgang Schleich]], [[https://link.springer.com/chapter/10.1007/978-3-319-64346-5_30|Single-Slit Focusing and Its Representations]], Expl. Worl. Las., 529 (2018)
 +  * R.P. Rundle, B.I. Davies, V.M. Dwyer, [[Todd Tilma]], and [[Mark Everitt]], [[https://arxiv.org/abs/1809.10564|Quantum State Spectroscopy of Atom-Cavity Systems]], arXiv (2018)
 +  * M. Filipovic and [[Wolfgang Belzig]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.115441|Shot noise of charge and spin transport in a junction with a precessing molecular spin]], Phys. Reg. B **97**, 115441 (2018)
 +  * Johannes Bulte, Adam Bednorz, [[Christoph Bruder]], and [[Wolfgang Belzig]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.140407|Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors]], Phys. Rev. Lett **120**, 140407 (2018)
   * R. Sala Mayato, P. Loughlin, and [[Leon Cohen]], [[https://doi.org/10.1016/j.physleta.2018.08.012|M-indeterminate distributions in quantum mechanics and the non-overlapping wave function paradox]], Phys. Lett. A **382**,  2914 (2018)   * R. Sala Mayato, P. Loughlin, and [[Leon Cohen]], [[https://doi.org/10.1016/j.physleta.2018.08.012|M-indeterminate distributions in quantum mechanics and the non-overlapping wave function paradox]], Phys. Lett. A **382**,  2914 (2018)
   * V. Filinov, A. Larkin, [[https://doi.org/10.3390/universe4120133|Quantum Dynamics of Charged Fermions    * V. Filinov, A. Larkin, [[https://doi.org/10.3390/universe4120133|Quantum Dynamics of Charged Fermions 
Line 58: Line 128:
   * Humberto C. F. Lemos, Alexandre C. L. Almeida, Barbara Amaral, and Adélcio C. Oliveira, [[https://doi.org/10.1016/j.physleta.2018.01.023|Roughness as classicality indicator of a quantum state]], Phys. Lett. A **382**, 823 (2018)   * Humberto C. F. Lemos, Alexandre C. L. Almeida, Barbara Amaral, and Adélcio C. Oliveira, [[https://doi.org/10.1016/j.physleta.2018.01.023|Roughness as classicality indicator of a quantum state]], Phys. Lett. A **382**, 823 (2018)
   * Mauricio Reis and Adelcio C. Oliveira, [[https://ieeexplore.ieee.org/document/8610886|Roughness as Entanglement Witness: The two Coupled Cavity Model]], SBFoton IOPC **2018**, 1 (2018)   * Mauricio Reis and Adelcio C. Oliveira, [[https://ieeexplore.ieee.org/document/8610886|Roughness as Entanglement Witness: The two Coupled Cavity Model]], SBFoton IOPC **2018**, 1 (2018)
 +  * Alex E. Bernardini, [[https://link.aps.org/doi/10.1103/PhysRevA.98.052128|Testing nonclassicality with exact Wigner currents for an anharmonic quantum system]], Phys. Rev. A **98**, 052128 (2018)
 +
 +
 === 2017 === === 2017 ===
 +  * T. Ikeda and [[Yoshitaka Tanimura]], [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017)
 +  * X. Gu, A.F. Kockum, A. Miranowicz, Y.X. Liu, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317303290|Microwave photonics with superconducting quantum circuits]], Phys. Rep. **718-719**, 1 (2017)
 +  * J. Zhang, Y.X. Liu, R.B. Wu, K. Jacobs, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157317300479|Quantum feedback: theory, experiments, and applications]], Phys. Rep. **679**, 1 (2017)
 +  * [[Andrew Armour]], B. Kubala, and [[Joachim Ankerhold]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.214509|Noise switching at a dynamical critical point in a cavity-conductor hybrid]], Phys. Rev. B **96**, 214509 (2017)
   * R.P. Rundle, P.W. Mills, [[Todd Tilma]], [[John Samson]], [[Mark Everitt]]: “Simple procedure for phase-space measurement and entanglement validation”,  Phys Rev A.[[http://dx.doi.org/10.1103/PhysRevA.96.022117|10.1103/PhysRevA.96.022117]] [[https://arxiv.org/abs/1605.08922|arXiv]], 2017.   * R.P. Rundle, P.W. Mills, [[Todd Tilma]], [[John Samson]], [[Mark Everitt]]: “Simple procedure for phase-space measurement and entanglement validation”,  Phys Rev A.[[http://dx.doi.org/10.1103/PhysRevA.96.022117|10.1103/PhysRevA.96.022117]] [[https://arxiv.org/abs/1605.08922|arXiv]], 2017.
   * Alex E. Bernardini and Mariana Chinaglia, [[https://doi.org/10.1088/1742-6596/880/1/012038|Topological view of quantum tunneling coherent destruction]], J. Phys.: Conf. Ser.  **880**, 012038 (2017)   * Alex E. Bernardini and Mariana Chinaglia, [[https://doi.org/10.1088/1742-6596/880/1/012038|Topological view of quantum tunneling coherent destruction]], J. Phys.: Conf. Ser.  **880**, 012038 (2017)
   * Alex E. Bernardini and Orfeu Bertolami, [[https://doi.org/10.1209/0295-5075/120/20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]], EPL **120**, 20002 (2017)   * Alex E. Bernardini and Orfeu Bertolami, [[https://doi.org/10.1209/0295-5075/120/20002|Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics]], EPL **120**, 20002 (2017)
 +  * A. Larkin, V. Filinov, [[https://www.doi.org/10.4236/jamp.2017.52035|Phase Space Path Integral Representation for Wigner Function]], Journal of Applied Mathematics and Physics **5**, 392 (2017)
 +  * Dimitris Kakofengitis and [[Ole Steuernagel]], [[https://link.springer.com/article/10.1140/epjp/i2017-11634-2|Wigner's quantum phase space current in weakly anharmonic weakly excited two-state systems]], European Physical Journal Plus. **132**, 381 (2017)
 +  * Dimitris Kakofengitis, Maxime Oliva, and [[Ole Steuernagel]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022127|Wigner's representation of quantum mechanics in integral form and its applications]], Physical Review A. **95**, 022127 (2017)
 +
 === 2016 === === 2016 ===
 +  * R. Grossmann, A. Sakurai, and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016) 
 +  * [[Daniel Wigger]], H. Gehring, V.M. Axt, [[Doris Reiter]] and T. Kuhn, [[https://link.springer.com/article/10.1007/s10825-016-0856-8|Quantum dynamics of optical phonons generated by optical excitations of a quantum dot]], J. Comput. Electron **15**, 1158 (2016)
   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”,  Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://dx.doi.org/10.1103/PhysRevLett.117.180401|10.1103/PhysRevLett.117.180401]], [[https://arxiv.org/abs/1601.07772|arXiv]], 2016.   * [[Todd Tilma]], [[Mark Everitt]], [[John Samson]], W. J. Munro, and [[Kae Nemoto]]: “Wigner Functions for Arbitrary Quantum Systems”,  Phys. Rev. Lett., Vol.117, 180401, DOI: [[http://dx.doi.org/10.1103/PhysRevLett.117.180401|10.1103/PhysRevLett.117.180401]], [[https://arxiv.org/abs/1601.07772|arXiv]], 2016.
   * A. S. Larkin, V. S. Filinov, and V. E. Fortov, [[https://doi.org/10.1002/ctpp.201500078|Path Integral Representation of the Wigner Function in Canonical Ensemble]], Contrib. Plasma Phys. **56**, 187 (2016)   * A. S. Larkin, V. S. Filinov, and V. E. Fortov, [[https://doi.org/10.1002/ctpp.201500078|Path Integral Representation of the Wigner Function in Canonical Ensemble]], Contrib. Plasma Phys. **56**, 187 (2016)
   * Jonas F. G. Santos and Alex E. Bernardini, [[https://doi.org/10.1016/j.physa.2015.10.033|Gaussian fidelity distorted by external fields]], Phys. A **445**, 75 (2016)   * Jonas F. G. Santos and Alex E. Bernardini, [[https://doi.org/10.1016/j.physa.2015.10.033|Gaussian fidelity distorted by external fields]], Phys. A **445**, 75 (2016)
 +  * Keyu Xia, Mattias Johnsson, [[Peter Knight]], and Jason Twamley, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.023601|Cavity-Free Scheme for Nondestructive Detection of a Single Optical Photon]], Phys. Rev. Lett. **116**, 023601 (2016)
 +  * Yin Long Lin and [[Oscar C O Dahlsten]], [[https://arxiv.org/abs/1607.01764|Tunnelling necessitates negative Wigner function]], arXiv (2016)
 +
 === 2015 === === 2015 ===
-  * Catarina Bastos, Alex E. Bernardini, and Jonas F. G. Santos, [[https://doi.org/10.1016/j.physa.2015.07.009|Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors]], Phys. A **438**, 340 (2015)+  * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015) 
 +  * Peter Degenfeld-Schonburg, Carlos Navarrete–Benlloch, and [[Michael J. Hartmann]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053850|Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators]], Phys. Rev. A **91**, 053850 (2015) 
 +  * Mehdi Abdi, Matthias Pernpeintner, Rudolf Gross, Hans Huebl, and [[Michael J. Hartmann]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.173602|Quantum State Engineering with Circuit Electromechanical Three-Body Interactions]], Phys. Rev. Lett. **114**, 173602 (2015) 
 +  * Catarina Bastos, Alex E. Bernardini, and Jonas F. G. Santos, [[https://doi.org/10.1016/j.physa.2015.07.009|Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors]], Phys. A **438**, 340 (2015)  
 +  * J. T. Mendonça, W. Horton, R. M. O. Galvão and Yves Elskens, [[https://doi.org/10.1017/S0022377814001032|Transport equations for lower hybrid waves in a turbulent plasma]], J. Plasma Physics **81**, 905810206 (2015) 
 +  * O de los Santos-Sánchez, J Récamier and R Jáuregui, [[https://doi.org/10.1088/0031-8949/90/7/074018|Markovian master equation for nonlinear systems]], Phys. Scr. **90**, 074018 (2015) 
 +  * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://link.springer.com/article/10.1140/epjd/e2015-50861-9|Bistability effect in the extreme strong coupling regime of the Jaynes-Cummings model]], Europ. Phys. J. D **69**, 60 (2015) 
 +  * [[David K. Ferry]], [[http://link.springer.com/article/10.1007%2Fs10825-015-0731-z|Phase-Space Functions: Can They Give a Different View of Quantum Mechanics?]], J. Comp. Electron. **14**, 864 (2015) 
 +  * [[David K. Ferry]], R. Akis, and R. Brunner, [[http://iopscience.iop.org/article/10.1088/0031-8949/2015/T165/014010/meta|Probing the Quantum - Classical Connection with Open Quantum Dots]], Phys. Script. **2015**, T165 (2015) 
 + 
 + 
 +=== 2014 === 
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[http://iopscience.iop.org/article/10.1088/1367-2630/16/1/015002/meta|Self-excited current oscillations in a resonant tunneling diode described by a model based on the Caldeira-Leggett Hamiltonian]], New J. of Phys. **16**, 015002 (2014) 
 +  * I. Georgescu, S. Ashhab, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.153|Quantum Simulation]], Rev. Mod. Phys. **86**, 153 (2014) 
 +  * Miranowicz, J. Bajer, M. Paprzycka, Y.X. Liu, A.M. Zagoskin, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033831|State-dependent photon blockade via quantum-reservoir engineering]], Phys. Rev. A **90**, 033831 (2014) 
 +  * T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and [[Christian Glattli]], [[https://www.nature.com/articles/nature13821|Quantum tomography of an electron]], Nature **514**, 603 (2014)  
 +  * [[Mark Everitt]], Timothy P. Spiller, Gerard J. Milburn, Richard D. Wilson, and Alexandre M. Zagoskin, [[https://www.frontiersin.org/articles/10.3389/fict.2014.00001/full|Engineering dissipative channels for realizing Schrödinger cats in SQUIDs]], Front. ICT **1**, 1 (2014) 
 +  * T. L. Curtright, D. B. Fairlie and C. K. Zachos, [[https://www.worldscientific.com/worldscibooks/10.1142/8870|A Concise Treatise on Quantum Mechanics in Phase Space]] (World Scientific Publishing Co Pte Ltd, 2014) 
 +  * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9444-1|Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States]],  J. Russ. Las. Res. **35**, 427 (2014) 
 +  * [[Peter Adam]], V.A. Andreev, I. Ghiu, A. Isar, M.A. Man'ko and V.I. Man'ko, [[http://dx.doi.org/10.1007/s10946-014-9395-6|Wigner Functions and Spin Tomograms for Qubit States]], J. Russ. Las. Res. **35**, 3 (2014) 
 +  * [[Enno Giese]], Wolfgang Zeller, Stephan Kleinert, Matthias Meister, Vincenzo Tamma, [[Albert Roura]], and [[Wolfgang Schleich]], [[http://ebooks.iospress.nl/publication/38097|The interface of gravity and quantum mechanics illuminated by Wigner phase space]], Proc. Intern. School Phys “Enrico Fermi” **188**, 171 (2014) 
 +  * D. Bakalov and [[Stephan Schiller]], [[https://link.springer.com/article/10.1007/s00340-013-5703-z|The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock]], Appl. Phys. B **114**, 213 (2014) 
 + 
 +=== 2013 === 
 +  * A. Kato and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp403056h|Quantum Suppression of Ratchet Rectification in a Brownian System Driven by a Biharmonic Force]], J. Phys. Chem. B **117**, 13132-13144 (2013) 
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.7566/JPSJ.82.033707|An approach to quantum transport based on reduced hierarchy equations of motion: Application to resonant tunneling diode]], J. Phys. Soc. Jpn **82**, 033707 (2013) 
 +  * [[Daniel Wigger]], [[Doris Reiter]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.085301|Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Rev. B **87**, 085301 (2013) 
 +  * Z.L. Xiang, S. Ashhab, J.Q. You, and [[Franco Nori]], [[https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.85.623|Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems]], Rev. Mod. Phys. **85**, 623 (2013) 
 +  * A. Miranowicz, M. Paprzycka, Y.X. Liu, J. Bajer, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.023809|Two-photon and three-photon blockades in driven nonlinear systems]], Phys. Rev. A **87**, 023809 (2013) 
 +  * C. Wickles and [[Wolfgang Belzig]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.045308|Effective quantum theories for Bloch dynamics in inhomogeneous systems 
 +with nontrivial band structure]], Phys. Rev. B **88**, 045308 (2013) 
 +  * R. Schmidt, J.T. Stockburger, and [[Joachim Ankerhold]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.052321|Almost local generation of Einstein-Podolsky-Rosen entanglement in nonequilibrium open systems]], Phys. Rev. A **88**, 052321 (2013) 
 +  * V. Gramich, B. Kubala, S. Rohrer, and [[Joachim Ankerhold]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.247002|From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator]], Phys. Rev. Lett. **111**, 247002 (2013) 
 +  * [[Andras Dombi]], [[Andras Vukics]], and [[Peter Domokos]], [[https://iopscience.iop.org/article/10.1088/0953-4075/46/22/224010/meta|Optical Bistability in Strong-Coupling Cavity QED with a Few Atoms]],  J. Phys. B Atom. Mol. Opt. Phys. **46**, 224010 (2013) 
 +  * [[Stephan Schiller]] and Gerd Breitenbach, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/phbl.19990550509|Die Vermessung optischer Quantenzustände]], Phys. Bl. **55**, 39 (2013) 
 + 
 +=== 2012 === 
 +  * Simon Rips, Martin Kiffner, Ignacio Wilson-Rae, and [[Michael J. Hartmann]], [[https://iopscience.iop.org/article/10.1088/1367-2630/14/2/023042|Steady-state negative Wigner functions of nonlinear nanomechanical oscillators]], New J. Phys. **14**, 023042 (2012) 
 +  * R. Schmidt, S. Rohrer, [[Joachim Ankerhold]], and J.T. Stockburger, [[https://dx.doi.org/10.1088/0031-8949/2012/T151/014034|Cooling of quantum systems through optimal control and dissipation]], Phys. Script. **T151**, 014034 (2012) 
 +  * Derek Harland, [[Mark Everitt]], [[Kae Nemoto]], [[Todd Tilma]], and TP Spiller, [[https://doi.org/10.1103/PhysRevA.86.062117|Towards a complete and continuous Wigner function for an ensemble of spins or qubits]], Phys. Rev. A **86**, 062117 (2012) 
 + 
 +=== 2011 === 
 +  * A. Sakurai and [[Yoshitaka Tanimura]], [[https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/jp1095618|Does hbar play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations]], J. Phys. Chem. A **115**, 4009-4022 (2011) 
 +  * [[Doris Reiter]], [[Daniel Wigger]], J.M. Daniels, T. Papenkort, A. Vagov, V.M. Axt and T. Kuhn, [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssb.201000783|Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot]], Phys. Status Solidi B 248, No. 4, 825-828 (2011) 
 +  * [[Doris Reiter]], [[Daniel Wigger]], V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.195327|Generation and dynamics of phononic cat states after optical excitation of a quantum dot]], Phys. Rev. B. 84, 195327 (2011) 
 +  * A. Bednorz and [[Wolfgang Belzig]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.052113|Fourth moments reveal the negativity of the Wigner function]], Phys. Rev. A **83**, 052113 (2011) 
 +  * A.R.R. Carvalho, A. Kenfack, [[Fabricio Toscano]], J.M. Rost, and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960111012758?via%3Dihub|Gaussian representation of extended quantum states]], Phys. Lett. A **376**, 19 (2011)  
 +  * J.Q. You and [[Franco Nori]], [[https://www.nature.com/articles/nature10122|Atomic physics and quantum optics using superconducting circuits]], Nature **474**, 589 (2011) 
 +  * J. Ma, X. Wang, C. P. Sun, and [[Franco Nori]], [[https://www.sciencedirect.com/science/article/pii/S0370157311002201|Quantum spin squeezing]], Phys. Rep. **509**, 89 (2011) 
 +  * I. Buluta, S. Ashhab, and [[Franco Nori]], [[https://iopscience.iop.org/article/10.1088/0034-4885/74/10/104401/meta|Natural and artificial atoms for quantum computation]], Rep.. Prog. Phys. **74**, 104401 (2011) 
 +  * [[Todd Tilma]] and [[Kae Nemoto]], [[https://iopscience.iop.org/article/10.1088/1751-8113/45/1/015302|SU(N)-symmetric quasi-probability distribution functions]], J. Phys. A. Math. and Theor. **45**, 015302 (2011) 
 + 
 +=== 2010 === 
 +  * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://www.sciencedirect.com/science/article/pii/S0375960110005700?via%3Dihub|Quantum measurement with chaotic apparatus]], Phys. Lett. A **374**, 2809 (2010) 
 +  * S. Ashhab and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.042311|Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states]], Phys. Rev. A **81**, 042311 (2010) 
 +  * Y.X. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, and [[Franco Nori]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.032101|Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators]], Phys. Rev. A **82**, 032101 (2010) 
 + 
 +=== 2009 === 
 +  * [[Mark Everitt]], WJ Munro, and TP Spiller, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.79.032328|Quantum-classical crossover of a field mode]], Phys. Rev. A **79**, 032328 (2009)   
 +  * I.Buluta and [[Franco Nori]], [[https://science.sciencemag.org/content/326/5949/108|Quantum Simulators]], Science **326**, 108 (2009) 
 + 
 +=== 2007 === 
 +  * [[Doris Reiter]], M. Glanemann, V.M. Axt and T. Kuhn, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.205327|Spatiotemporal dynamics in optically excited quantum wire-dot systems: Capture, escape, and wave-front dynamics]], Phys. Rev. B. 75, 205327  (2007) 
 + 
 +=== 2006 === 
 +  * [[Yoshitaka Tanimura]], [[https://journals.jps.jp/doi/abs/10.1143/JPSJ.75.082001|Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems]], J. Phys. Soc. Jpn. **75**, 082001 (2006) 
 +  * Brad A. Rowland, [[Robert Wyatt]], [[https://doi.org/10.1016/j.cplett.2006.05.041|Local and non-local force analysis for Wigner function barrier scattering]] Chem. Phys. Lett. **426**, 209 (2006)  
 + 
 +=== 2005 === 
 +  * C. K. Zachos, D. B. Fairlie and T. L. Curtright, [[https://doi.org/10.1142/5287|Quantum Mechanics in Phase Space. An Overview with Selected Papers]] (World Scientific Publishing Co Pte Ltd, 2005) 
 +  * J.Q. You and [[Franco Nori]], [[https://physicstoday.scitation.org/doi/10.1063/1.2155757?feed=most-cited|Superconducting circuits and quantum information]], Phys. Today **58**, 42 (2005) 
 + 
 +=== 2004 === 
 +  * [[Mark Everitt]], TD Clark, PB Stiffell, A Vourdas, JF Ralph, RJ Prance, and H Prance, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.69.043804|Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference]], Phys. Rev. A **69**, 043804 (2004) 
 + 
 +=== 2003 === 
 +  * Kyungsun Na, [[Robert Wyatt]], [[https://doi.org/10.1238/Physica.Regular.067a00169|Quantum Hydrodynamic Analysis of Decoherence]], Phys. Scr. **67**, 169 (2003) 
 + 
 +=== 2002 === 
 +  * Lorenzo Galleani and [[Leon Cohen]], [[https://www.sciencedirect.com/science/article/pii/S0375960102011386|The Wigner distribution for classical systems]], Phys. Lett. A **302**, 149 (2002) 
 + 
 +=== 2001 === 
 +  * [[Peter Domokos]], P. Horak and H. Ritsch, [[https://iopscience.iop.org/article/10.1088/0953-4075/34/2/306|Semiclassical Theory of Cavity-Assisted Atom Cooling]],  J. Phys. B **34**, 187 (2001) 
 +  * [[Alexander Lvovsky]], H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.050402|Quantum state reconstruction of the single-photon Fock state]], Phys. Rev. Lett. **87**, 050402 (2001) 
 + 
 +=== 2000 === 
 +  * [[Giovanni Manfredi]] and M.R. Feix, [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.4665|Entropy and Wigner functions]], Phys. Rev. E **62**, 4665 (2000) 
 + 
 +=== 1998 === 
 +  * [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0370157397000707|The Weyl representation in classical and quantum mechanics]], Phys. Rep. **295**, 265 (1998) 
 +  * G. Breitenbach, F. Illuminati, [[Stephan Schiller]], and J. Mlynek, [[https://iopscience.iop.org/article/10.1209/epl/i1998-00456-2/fulltext/|Broadband detection of squeezed vacuum: A spectrum of quantum states]], Europhysics Letters **44**, 192 (1998) 
 + 
 +=== 1997 === 
 +  * S. Bose, K. Jacobs, and [[Peter Knight]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.56.4175|Preparation of nonclassical states in cavities with a moving mirror]], Phys. Rev. A **56**, 4175 (1997) 
 + 
 + 
 +=== 1996 === 
 +  * S. Szabo, P. Adam, J. Janszky and [[Peter Domokos]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.53.2698|Construction of Quantum States of the Radiation Field by Discrete Coherent–State Superpositions]], Phys. Rev. A **53**, 2698 (1996) 
 +  * [[Stephan Schiller]], G. Breitenbach, S. F. Pereira, T. Müller, and J. Mlynek, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.2933|Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrixin the Number State Representation]], Phys. Rev. Lett. **77**, 2933 (1996) 
 ==== Gravitation and High Energy Physics ====  ==== Gravitation and High Energy Physics ==== 
-=== 2019 ===+
 === 2018 === === 2018 ===
 +  * Alex E. Bernardini, Pedro Leal, and Orfeu Bertolami, [[https://doi.org/10.1088/1475-7516/2018/02/025|Quantum to classical transition in the Hořava-Lifshitz quantum cosmology]], JCAP**02**, 025 (2018)
 +
 === 2017 === === 2017 ===
   * Giovanni Manfredi, [[Omar Morandi]], Lazar Friedland, Tobias Jenke, and Hartmut Abele, [[https://link.aps.org/doi/10.1103/PhysRevD.95.025016|Chirped-frequency excitation of gravitationally bound ultracold neutrons.]], Phys. Rev. D **95**, 025016 (2017)   * Giovanni Manfredi, [[Omar Morandi]], Lazar Friedland, Tobias Jenke, and Hartmut Abele, [[https://link.aps.org/doi/10.1103/PhysRevD.95.025016|Chirped-frequency excitation of gravitationally bound ultracold neutrons.]], Phys. Rev. D **95**, 025016 (2017)
-=== 2016 ===+
 === 2015 === === 2015 ===
   * Alex E. Bernardini, Salomon S. Mizrahi, [[https://doi.org/10.1088/0031-8949/90/7/074011|Coherent quantum squeezing due to the phase space noncommutativity]], Phys. Scr.  **90**, 074011 (2015)   * Alex E. Bernardini, Salomon S. Mizrahi, [[https://doi.org/10.1088/0031-8949/90/7/074011|Coherent quantum squeezing due to the phase space noncommutativity]], Phys. Scr.  **90**, 074011 (2015)
 +
 +=== 1991 ===
 +  * Y. S. Kim and M. E. Noz, [[https://doi.org/10.1142/1197|Phase Space Picture of Quantum Mechanics. Group Theoretical Approach]] (World Scientific, 1991)
 +
 +=== 1983 ===
 +  * P. Carruthers and F. Zachariasen, [[https://link.aps.org/doi/10.1103/RevModPhys.55.245|Quantum collision theory with phase-space distributions]], Rev. Mod. Phys. **55**,  245 (1983)
 +  * V. I. Tatarskiĭ,[[https://doi.org/10.1070/PU1983v026n04ABEH004345|The Wigner representation of quantum mechanics]], Sov. Phys. Usp. **26**, 311 (1983)
 +
 +=== 1958 ===
 +  * G. A. Baker, Jr., [[https://doi.org/10.1103/PhysRev.109.2198|Formulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase Space]], Phys. Rev. **109**, 2198 (1958)
 +
 ==== Atomic Physics and Quantum Optics ====  ==== Atomic Physics and Quantum Optics ==== 
 +
 === 2019 === === 2019 ===
 +  * [[Stefano Olivares]], Alessia Allevi, Giovanni Caiazzo, M. G. A. Paris, and Maria Bondani, [[https://iopscience.iop.org/article/10.1088/1367-2630/ab4afb/meta|Quantum tomography of light states by photon-number-resolving detectors]], New. J. Phys. **21**, 103045 (2019)
 +  * Dmitry V. Strekalov and [[Gerd Leuchs]], [[https://link.springer.com/chapter/10.1007/978-3-319-98402-5_3|Nonlinear Interactions and Non-classical Light]], Quant. Photon., 51 (2019)
 +  * Yosuke Hashimoto, Takeshi Toyama, Jun-ichi Yoshikawa, Kenzo Makino, Fumiya Okamoto, Rei Sakakibara, Shuntaro Takeda, Peter van Loock, and [[Akira Furusawa]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.113603|All-Optical Storage of Phase-Sensitive Quantum States of Light]], Phys. Rev. Lett. **123**, 113603 (2019)
 +  * R Gutierrez-Cuevas, M R Dennis, and [[Miguel A. Alonso]], [[https://iopscience.iop.org/article/10.1088/2040-8986/ab2c52/meta|Generalized Gaussian beams in terms of Jones vectors]], J. Opt. **21**, 084001 (2019)
 +
 === 2018 === === 2018 ===
 +  * H. Le Jeannic, A. Cavaillès, K. Huang, R. Filip, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.073603|Slowing Quantum Decoherence by Squeezing in Phase Space]], Phys. Rev. Lett. **120**, 073603 (2018)
 +  * A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. D. Shaw, V. B. Verma, S. W. Nam, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170403|Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light]], Phys. Rev. Lett. **121**, 170403 (2018)
   * C. Flühmann and V. Negnevitsky and M. Marinelli and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevX.8.021001|Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator]], Phys. Rev. X **8**,  021001 (2018)   * C. Flühmann and V. Negnevitsky and M. Marinelli and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevX.8.021001|Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator]], Phys. Rev. X **8**,  021001 (2018)
-=== 2017 ===+  * [[Enno Giese]], Robert Fickler, Wuhong Zhang, Lixiang Chen, and Robert W. Boyd, [[https://iopscience.iop.org/article/10.1088/1402-4896/aace12/meta|Influence of pump coherence on the quantum properties of spontaneous parametric down-conversion]], Phys. Script. **93**, 084001 (2018) 
 +  * Richard Birrittella, M. El Baz, and [[Christopher C. Gerry]], [[https://www.osapublishing.org/josab/abstract.cfm?uri=josab-35-7-1514|Photon catalysis and quantum state engineering ]], J. Opt. Soc. Amer. B **35**, 1514 (2018) 
 +  * J. T. Mendonça, H. Terças, and A. Gammal, [[https://link.aps.org/doi/10.1103/PhysRevA.97.063610|Quantum Landau damping in dipolar Bose-Einstein condensates]], Phys. Rev. A **97**, 063610 (2018) 
 === 2016 === === 2016 ===
 +  * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.023810|Gaussian-state interferometry with passive and active elements]], Phys. Rev. A **93**, 023810 (2016)
 +  * S. Cialdi, C. Porto, D. Cipriani, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.043805|Full quantum state reconstruction of symmetric two-mode squeezed thermal states via spectral homodyne detection and a state-balancing detector]], Phys. Rev. A **93**, 043805 (2016)
 +  * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto, Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)
 +  * Kenzo Makino, Yosuke Hashimoto, Jun-ichi Yoshikawa, Hideaki Ohdan, Takeshi Toyama, Peter van Loock, and [[Akira Furusawa]], [[https://advances.sciencemag.org/content/2/5/e1501772|Synchronization of Optical Photons for Quantum Information Processing]], Sci. Adv. **2**, e1501772 (2016) 
   * D. Kienzler and C. Flühmann and V. Negnevitsky and H.-Y. Lo and M. Marinelli and D. Nadlinger and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevLett.116.140402|Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets]], Phys. Rev. Lett **116**,  140402 (2016)   * D. Kienzler and C. Flühmann and V. Negnevitsky and H.-Y. Lo and M. Marinelli and D. Nadlinger and J. P. Home, [[https://link.aps.org/doi/10.1103/PhysRevLett.116.140402|Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets]], Phys. Rev. Lett **116**,  140402 (2016)
 +  * Juan  Mauricio Torres, Jozsef Zsolt Bernad, and [[Gernot Alber]], [[https://link.springer.com/article/10.1007/s00340-016-6382-3|Unambiguous atomic Bell measurement assisted by multiphoton states]], Appl. Phys. B **122**, 117 (2016)
 +
 === 2015 === === 2015 ===
-==== Condensed Matter: optical and transport properties of systems ==== +  * C. Sparaciari, [[Stefano Olivares]], and M. G. A. Paris, [[https://www.osapublishing.org/josab/abstract.cfm?uri=josab-32-7-1354|Bounds to precision for quantum interferometry with Gaussian states and operations]], J. Opt. Soc. Am. B **32**, 1354 (2015) 
 +  * Richard Birrittella, Kezi Cheng, and [[Christopher C. Gerry]], [[https://www.sciencedirect.com/science/article/pii/S0030401815004447?via%3Dihub|Photon-Number Parity Oscillations in the Resonant Jaynes-Cummings Model]], Opt. Comm. **354**, 286 (2015)  
 +  * K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and [[Julien Laurat]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.023602|Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources]], Phys. Rev. Lett. **115**, 023602 (2015) 
 + 
 +=== 2014 === 
 +  * M. Esposito, F. Benatti, R. Floreanini, [[Stefano Olivares]], F. Randi, K. Titimbo, M. Pividori, F. Novelli, F. Cilento, F. Parmigiani, and D. Fausti, [[http://iopscience.iop.org/article/10.1088/1367-2630/16/4/043004|Pulsed homodyne Gaussian quantum tomography with low detection efficiency]], New. J. Phys. **16**, 043004 (2014) 
 +  * Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic, Claude Fabre, and [[Julien Laurat]], [[https://www.nature.com/articles/nphoton.2014.137|Remote creation of hybrid entanglement between particle-like and wave-like optical qubits]], Nature Photon. **8**, 570 (2014) 
 + 
 +=== 2013 === 
 +  * A. Meda, [[Stefano Olivares]], I. P. Degiovanni, G. Brida, M. Genovese, and M. G. A. Paris, [[https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-16-3099|Revealing interference by continuous variable discordant states]], Optics Letters **38**, 3099 (2013) 
 +  * M. G. Genoni, M. L. Palma, T. Tufarelli, [[Stefano Olivares]], M. S. Kim, and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.062104|Detecting quantum non-Gaussianity via the Wigner function]], Phys. Rev. A **87**, 062104 (2013) 
 + 
 +=== 2012 === 
 +  * [[Stefano Olivares]], [[http://link.springer.com/article/10.1140/epjst/e2012-01532-4|Quantum optics in the phase space - A tutorial on Gaussian states]]; Eur. Phys. J. Special Topics **203**, 3-24 (2012) 
 + 
 +=== 2011 === 
 +  * [[Stefano Olivares]] and M. G. A. Paris, [[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.170505|Fidelity matters: the birth of entanglement in the mixing of Gaussian states]], Phys. Rev. Lett. **107**, 170505 (2011) 
 + 
 +=== 2009 === 
 +  * S. Cho, [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://www.tandfonline.com/doi/full/10.1080/09500340903377766|Wigner functions for paraxial and nonparaxial fields]] J. Mod. Opt. **56**, 1843 (2009) 
 +  * V. D'Auria, S. Fornaro, A. Porzio, S. Solimeno, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.020502|Full characterization of Gaussian bipartite entangled states by a single homodyne detector]], Phys. Rev. Lett. **102**, 020502 (2009) 
 +  * R. Vasile, [[Stefano Olivares]], M. G. A. Paris, and S. Maniscalco, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.062324|Continuous-variable-entanglement dynamics in structured reservoirs]], Phys. Rev. A **80**, 062324 (2009) 
 + 
 +=== 2008 === 
 +  * Patrick Loughlin and [[Leon Cohen]], [[https://www.tandfonline.com/doi/full/10.1080/09500340802220745|Approximate wave function from approximate non-representable Wigner distributions]], J.  Mod. Opt. **55**, 3379 (2008) 
 + 
 +=== 2007 === 
 +  * S. Maniscalco, [[Stefano Olivares]], and M. G. A. Paris, [[http://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.062119|Entanglement oscillations in non-Markovian quantum channels]], Phys. Rev. A **75**, 062119 (2007) 
 +  * [[Jonathan Petruccelli]] and [[Miguel A. Alonso]], [[https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-24-9-2590|Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions]] J. Opt. Soc. Am. A **24**, 2590 (2007) 
 + 
 + 
 + 
 + 
 +==== Condensed Matter: Optical and Transport properties of Systems ==== 
 === 2019 === === 2019 ===
 +  * [[Nicola Zamponi]] and Ansgar Jüngel, [[https://arxiv.org/abs/1905.10186|Two spinorial drift-diffusion models for quantum electron transport in graphene]], arXiv:1905.10186 (2019)
 +  * [[Nicola Zamponi]], [[https://arxiv.org/abs/1905.10185|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]], arXiv:1905.10185 (2019)
 +  * [[Dmitry Karlovets]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aaf9d8|On Wigner function of a vortex electron]], J. Phys. A: Math. Theor. **52**, 05LT01 (2019)
 +  * [[Thierry Goudon]] and Alexis F. Vasseur, [[https://epubs.siam.org/doi/abs/10.1137/18M1184643|Statistical Stability for Transport in Random Media]], SIAM Multiscale Model. Simul. **17**, 507 (2019)
 +  * Matteo Acciai, Matteo Carrega, Jérôme Rech, Thibaut Jonckheere, [[Dario Ferraro]], Thierry Martin, and Maura Sassetti, [[https://iopscience.iop.org/article/10.1088/1742-6596/1182/1/012003/meta|Single-electron excitations and interactions in integer quantum Hall systems at ν = 2]], J. Phys. Conf. Ser. **1182**, 012003 (2019)
 +  * R. Bisognin, A. Marguerite, B. Roussel, M. Kumar, C. Cabart, C. Chapdelaine, A. Mohammad-Djafari, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, U. Gennser, Y. Jin, [[Pascal Degiovanni]], and [[Gwendal Fève]], [[https://www.nature.com/articles/s41467-019-11369-5|Quantum tomography of electrical currents]], Nat. Comm. **10**, 3379 (2019)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], Mauro Ballicchia, [[Siegfried Selberherr]], [[Ivan Dimov]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014423|Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform]], Phys. Rev. B **99**,  014423 (2019)
 +  * Mauro Ballicchia, [[David K. Ferry]], [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[https://www.mdpi.com/2076-3417/9/7/1344|Investigating Quantum Coherence by Negative Excursions of the Wigner Quasi-Distribution]], Appl. Sci. **9**, 1344 (2019)
 +  * Martin Koppenhöfer, [[Christoph Bruder]], and Niels Lörch, [[https://arxiv.org/abs/1906.05126|Heralded dissipative preparation of nonclassical states in a Kerr oscillator]], arXiv (2019)
 +  * Niels Lörch, Yaxing Zhang, [[Christoph Bruder]], and M. I. Dykman, [[https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.023023|Quantum state preparation for coupled period tripling oscillators]], Phys. Rev. Res. **1**, 023023 (2019)
 +  * David Picconi, Jeffrey A. Cina, and [[Irene Burghardt]], [[https://aip.scitation.org/doi/10.1063/1.5082650|Quantum dynamics and spectroscopy of dihalogens in solid matrices. I. Efficient simulation of the photodynamics of the embedded I2Kr18 cluster using the G-MCTDH method]], J. Chem. Phys. **150**, 064111 (2019)
 +  * David Picconi and [[Irene Burghardt]], [[https://pubs.rsc.org/en/content/articlehtml/2019/fd/c9fd00065h|Time-resolved spectra of I2 in a krypton crystal by G-MCTDH simulations: nonadiabatic dynamics, dissipation and environment driven decoherence]], Farad. Discuss. (2019)
 +  * Robert Binder and [[Irene Burghardt]], [[https://pubs.rsc.org/en/content/articlehtml/2019/fd/c9fd00066f|First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature]], Farad. Discuss. (2019)
 +  * David Picconi and [[Irene Burghardt]], [[https://aip.scitation.org/doi/full/10.1063/1.5099983|Open system dynamics using Gaussian-based multiconfigurational time-dependent Hartree wavefunctions: Application to environment-modulated tunneling]], J. Chem. Phys. **150**, 224106 (2019)
 +  * [[Giovanni Manfredi]], Paul-Antoine Hervieux, and Jerome Hurst, [[https://link.springer.com/article/10.1007/s41614-019-0034-0|Phase-space modeling of solid-state plasmas]], Rev. Mod. Plasm. Phys. **3**, 13 (2019)
 +
 === 2018 === === 2018 ===
 +  * Alexandre Roulet and [[Christoph Bruder]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.053601|Synchronizing the Smallest Possible System]], Phys. Rev. Lett. **121**, 053601 (2018)
 +  * Ehud Amitai, Martin Koppenhöfer, Niels Lörch, and [[Christoph Bruder]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.052203|Quantum effects in amplitude death of coupled anharmonic self-oscillators]], Phys. Rev. E **97**, 052203 (2018)
 +  * Tianji Ma, Matteo Bonfanti, Pierre Eisenbrandt, Rocco Martinazzo, and [[Irene Burghardt]], [[https://aip.scitation.org/doi/full/10.1063/1.5062608|Multi-configurational Ehrenfest simulations of ultrafast nonadiabatic dynamics in a charge-transfer complex ]], J. Chem. Phys. **149**, 244107 (2018)
 +  * [[Luigi Barletti]], Giovanni Frosali, and Elisa Giovanni, [[https://www.tandfonline.com/doi/full/10.1080/23324309.2018.1520732|Adding Decoherence to the Wigner Equation]], J. Comp. Theor. Trans. **47**, 209 (2018)
 +  * [[Josef Weinbub]], Mauro Ballicchia, and [[Mihail (Mixi) Nedjalkov]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.201800111|Electron Interference in a Double‐Dopant Potential Structure]], Phys. Stat. Sol. RRL **12**,  1800111 (2018)
 +  * Mauro Ballicchia, [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[https://pubs.rsc.org/en/content/articlelanding/2018/NR/C8NR06933F#!divAbstract|Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects]], Nanoscale **10**, 23037 (2018)
 +
 === 2017 === === 2017 ===
 +  * Talitha Weiss, Stefan Walter, and [[Florian Marquardt]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.041802|Quantum-coherent phase oscillations in synchronization]], Phys. Rev. A **95**, 041802(R) (2017)
 +  * [[Dmitry Karlovets]],[[https://link.springer.com/article/10.1007/JHEP03(2017)049|Scattering of wave packets with phases]], J. High Energy Physics **2017**, 49 (2017)
 +  * [[Dmitry Karlovets]] and V.G. Serbo, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.173601|Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms]], Phys. Rev. Lett. **119**, 173601 (2017)
   *  [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**,  075440 (2017)   *  [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**,  075440 (2017)
 +  * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]] and [[Siegfried Selberherr]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssr.201700102|Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics]], Phys. Stat. Sol. RRL **11**, 1700102 (2017).
   * T. Ikeda and Y. Tanimura, [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by    * T. Ikeda and Y. Tanimura, [[https://doi.org/10.1063/1.4989537|Probing photoisomerization processes by 
 means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017) means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchal Fokker-Planck Equation approach]], J. Chem. Phys. **146**, 014102 (2017)
Line 94: Line 369:
   * [[Gerald J Iafrate]], V. N. Sokolov, and J. B. Krieger, [[https://link.aps.org/doi/10.1103/PhysRevB.96.144303|Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields]], Phys. Rev. B **96**, 144303 (2017)   * [[Gerald J Iafrate]], V. N. Sokolov, and J. B. Krieger, [[https://link.aps.org/doi/10.1103/PhysRevB.96.144303|Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields]], Phys. Rev. B **96**, 144303 (2017)
   * * A.S. Larkin, V.S. Filinov, V.E. Fortov, [[https://doi.org/10.1002/ctpp.201700082|Pauli blocking by effective pair pseudopotential in degenerate Fermi systems of particles]], Contrib. Plasma Phys. **57**, 187506 (2017)   * * A.S. Larkin, V.S. Filinov, V.E. Fortov, [[https://doi.org/10.1002/ctpp.201700082|Pauli blocking by effective pair pseudopotential in degenerate Fermi systems of particles]], Contrib. Plasma Phys. **57**, 187506 (2017)
 +
 === 2016 === === 2016 ===
 +  * [[Christian B. Mendl]], Jianfeng Lu, and Jani Lukkarinen, [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062104|Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory]], Phys. Rev. E **94**, 062104 (2016)
 +  * Vittorio Peano, Martin Houde, [[Florian Marquardt]], and Aashish A. Clerk, [[https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041026|Topological Quantum Fluctuations and Traveling Wave Amplifiers]], Phys. Rev. X **6**, 041026 (2016)
   * R. Grossmann, A. Sakurai,  and Y. Tanimura, [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016)   * R. Grossmann, A. Sakurai,  and Y. Tanimura, [[https://journals.jps.jp/doi/10.7566/JPSJ.85.034803|Electron pumping under non-Markovian dissipation: The role of the self-consistent field]], J. Phys. Soc. Jpn. **85**, 034803 (2016)
 +  * J. T. Mendonça and A Serbeto, [[https://doi.org/10.1088/0031-8949/91/9/095601|Photon and electron Landau 
 +damping in quantum plasmas]], Phys. Scr. ** 91**, 095601  (2016)
 +  * Y. P. Kalmykov,  W. T. Coffey and S. V. Titov, [[ https://doi.org/10.1002/9781119290971.ch2|Spin relaxation in phase space]], Adv. Chem. Phys.**161**, 41 (2016)
 +
 === 2015 === === 2015 ===
 +  * [[Mihail (Mixi) Nedjalkov]], [[Josef Weinbub]], [[Paul Ellinghaus]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0732-y|The Wigner Equation in the Presence of Electromagnetic Potentials]], J. Comp. Electron. **14**, 888 (2015)
 +  * [[Olafur Jonasson]] and [[Irena Knezevic]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0734-9|Dissipative transport in superlattices within the Wigner function formalism]], J. Comp. Electron. **14**, 879 (2015)
   * Y. Tanimura, [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015)   * Y. Tanimura, [[https://aip.scitation.org/doi/10.1063/1.4916647|Real-Time and Imaginary-Time Quantum Hierarchal Fokker-Planck Equations]], J. Chem. Phys. **142**, 144110 (2015)
 +
 +=== 2014 ===
 +  * Pierrat, Romain and Ambichl, Philipp and Gigan, Sylvain and Haber, Alexander and Carminati, Rémi and [[Stefan Rotter]], [[https://www.pnas.org/content/111/50/17765.short|Invariance Property of Wave Scattering Through Disordered Media]], Proceedings of the National Academy of Sciences **111**, 17765 (2014)
 +  * N. Crouseilles and [[Giovanni Manfredi]], [[https://www.sciencedirect.com/science/article/pii/S0010465513001963|Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit]], Comp. Phys. Comm. **185**, 448 (2014)
 +
 +=== 2013 ===
 +  * [[Dario Ferraro]], A. Feller, A. Ghibaudo, E. Thibierge, E. Bocquillon, [[Gwendal Fève]], Ch. Grenier, and [[Pascal Degiovanni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.88.205303|Wigner function approach to single electron coherence in quantum Hall edge channels]], Phys. Rev. B **88**, 205303 (2013)
 +  * [[Xavier Oriols]] and [[David K. Ferry]], [[https://link.springer.com/article/10.1007%2Fs10825-013-0461-z|Quantum Transport Beyond DC]], J. Comp. Electron. **12**, 317 (2013)
 +  * Ansgar Jüngel, [[Nicola Zamponi]], [[http://dx.doi.org/10.4310/CMS.2013.v11.n3.a7|Two spinorial drift-diffusion models for quantum electron transport in graphene]], COMMUN. MATH. SCI. **11**, 807 (2013)
 +
 +
 +=== 2012 ===
 +  * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[https://iopscience.iop.org/article/10.1088/1751-8113/44/26/265301|Wigner model for quantum transport in graphene]], J. Phys. A: Math. Theor. **44**, 265301 (2012)
 +  * [[Nicola Zamponi]], [[https://www.aimsciences.org/article/doi/10.3934/krm.2012.5.203|Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization]], Kinet. Relat. Models **5**, 203 (2012)
 +
 +=== 2011 ===
 +  * [[Nicola Zamponi]] and [[Luigi Barletti]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/mma.1403|Quantum Electronic Transport in Graphene: A Kinetic and Fluid-Dynamic Approach]], Mathematical Methods in the Applied Sciences **34**, 807 (2011)
 +  * [[Omar Morandi]] and [[Ferdinand Schürrer]], [[http://caim.simai.eu/index.php/caim/article/view/360|Wigner model for Klein tunneling in graphene]], Comm. Appl. Indust. Math. **2**, (2011)
 +  * [[Nicola Zamponi]], [[Luigi Barletti]], [[ https://doi.org/10.1002/mma.1403|Quantum electronic transport in graphene: A kinetic and fluid‐dynamic approach]], MATH METHOD APPL SCI **34** 807 (2011)
 +  * [[Stefan Rotter]] and Ambichl, Philipp and Libisch, Florian, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.120602|Generating Particlelike Scattering States in Wave Transport]]", Physical Review Letters **106**, 120602 (2011)
 +
 +=== 2010 ===
 +  * R. Jasiak, [[Giovanni Manfredi]], and Paul-Antoine Hervieux, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.241401|Electron Thermalization and Quantum Decoherence in Thin Metal films]], Phys. Rev. B **81**, 241401(R) (2010)
 +
 +=== 2009 ===
 +  * [[Omar Morandi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.024301|Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor]], Phys. Rev. B **80**, 024301 (2009)
 +  * R. Jasiak, [[Giovanni Manfredi]], and Paul-Antoine Hervieux, [[https://iopscience.iop.org/article/10.1088/1367-2630/11/6/063042|Quantum-classical transition in the electron dynamics of thin metal films]], New J. Phys. **11**, 063042 (2009)
 +
 +=== 2008 ===
 +  * F. Haas, B. Eliasson, P. K. Shukla, and [[Giovanni Manfredi]], [[https://journals.aps.org/pre/abstract/10.1103/PhysRevE.78.056407|Phase-space structures in quantum-plasma wave turbulence]], Phys. Rev. E **78**, 056407 (2008)
 +
 +=== 2005 ===
 +  * J. B. Krieger, A. A. Kiselev, and [[Gerald J Iafrate]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.72.195201|Quantum transport for a Bloch electron quasiparticle in an inhomogeneous electric field scattering from a random distribution of impurities: A Wigner approach]], Phys. Rev. B **72**, 195201 (2005) 
 +
 +=== 2001 ===
 +  * M. Levanda and [[Victor Fleurov]], [[https://www.sciencedirect.com/science/article/pii/S0003491601961706?via%3Dihub|A Wigner Quasi-distribution Function for Charged Particles in Classical Electromagnetic Fields]], Ann. Phys. **292**, 199 (2001)
 +
 +
 +
 +=== 1988 ===
 +  * [[Gerald J Iafrate]], [[https://link.springer.com/chapter/10.1007%2F978-1-4899-2382-0_16|Quantum Transport and the Wigner Function]], The Physics of Submicron Semiconductor Devices, NATO ASI Series **180**, 521 (1988)
 +
 +==== Engineering (Acoustics, Electronics, Seismology, Signals, etc.) ==== 
 +
 +=== 2021 ===
 +  * R. Panda, S. Jain, R.K. Tripathy, R.R. Sharma, and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007/s00034-020-01537-0|Sliding mode singular spectrum analysis for the elimination of cross-terms in Wigner-Ville distribution]], Circ. Sys. Sig. Proc. **40**, 1207 (2021)
 +
 +=== 2019 ===
 +  * [[Joon-Ho Lee]], [[Mincheol Shin]], and Jeong Hyeon Seo, [[https://aip.scitation.org/doi/full/10.1063/1.5085569|Performance limitations of nanowire resonant-tunneling transistors with steep switching analyzed by Wigner transport simulation]], J. Appl. Phys. **125**, 174502 (2019)
 +  * R.R. Sharma, A. Kalyani,  and [[Ram Bilas Pachori]], [[https://doi.org/10.1007/s11760-019-01549-7|An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution]], SIViP **2019**, 1 (2019)
 +  * Arnab K. Majee, Adithya Kommini, and [[Zlatan Aksamija]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/andp.201800510|Electronic Transport and Thermopower in 2D and 3D Heterostructures—A Theory Perspective]], Ann. Phys. **531**, 1800510 (2019)
 +  * R.R. Sharma, Avinash Kalyani, and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007%2Fs11760-019-01549-7|An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution]], Sig. Imag. Vid. Proc. (2019)
 +
 +=== 2018 ===
 +  * [[Kyoung-Youm Kim]],  [[Ting-wei Tang]], and Saehwa Kim, [[https://aip.scitation.org/doi/full/10.1063/1.5055686|Accuracy balancing for the simulation of gate-all-around junctionless nanowire transistors using discrete Wigner transport equation ]], AIP Adv. **8**, 115105 (2018)
 +  * Rita Claudia Iotti and [[Fausto Rossi]], [[https://www.mdpi.com/1099-4300/20/10/726|Microscopic Theory of Energy Dissipation and Decoherence in Solid-State Quantum Devices: Need for Nonlocal Scattering Models ]], Entropy **20**, 726 (2018)
 +  * [[Mihail (Mixi) Nedjalkov]], [[Paul Ellinghaus]], [[Josef Weinbub]], Toufik Sadi, Asen Asenov, [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/pii/S0010465518300821?via%3Dihub|Stochastic Analysis of Surface Roughness Models in Quantum Wires]], Comp. Phys. Commun. **228**, 30 (2018)
 +  * [[David K. Ferry]] and Ian Welland, [[https://link.springer.com/article/10.1007%2Fs10825-017-1094-4|Relativistic Wigner Functions in Transition Metal Dichalcogenides]], J. Comp. Electron. **17**, 110 (2018)
 +  * [[Gabriele Gradoni]], L. R. Arnaut, [[Stephen Creagh]], [[Gregor Tanner]], M. H. Baharuddin, C. Smartt, and D. W. P. Thomas, [[https://ieeexplore.ieee.org/document/8046114/authors#authors|Wigner-Function-Based Propagation of Stochastic Field Emissions From Planar Electromagnetic Sources]], IEEE T. Electromag. Compa. **60**, 580 (2018)
 +  * R.R. Sharma and R.B. Pachori, [[https://doi.org/10.1007/s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]], Circuits Syst Signal Process **37**, 3330 (2018)
 +  * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://ieeexplore.ieee.org/abstract/document/8605839/authors#authors|Role of Interfacial and Intrinsic Coulomb Impurities in Monolayer MoS2 FETs]], Proc. IEEE Nanotechnology Materials and Devices Conference (NMDC), (2018)
 +  * R.R. Sharma and [[Ram Bilas Pachori]], [[https://link.springer.com/article/10.1007/s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]], Circ. Sys. Sig. Proc. **37**, 3330 (2018)
 +  * Chenglong Bao, George Barbastathis, Hui Ji, Zuowei Shen and [[Zhengyun Zhang]], [[https://epubs.siam.org/doi/abs/10.1137/17M1124097|Coherence Retrieval Using Trace Regularization]], SIAM J. Imag. Sci. **11**, 679 (2018)
 +
 +=== 2017 ===
 +  * [[Maciej Woloszyn]] and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.075440|Dissipative transport of thermalized electrons through a nanodevice]], Phys. Rev. B **96**, 075440 (2017)  
 +  * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://ieeexplore.ieee.org/document/8013152|Quantum transport simulation of nanowire resonant tunneling diodes based on a Wigner function model with spatially dependent effective masses]], IEEE T. Nanotech. **16**, 1028 (2017)
 +  * Rita Claudia Iotti and [[Fausto Rossi]], [[https://link.springer.com/article/10.1140/epjb/e2017-80462-3|Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments]], Europ. Phys. J. B **90**, 250 (2017)
 +  * Rita Claudia Iotti, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.115420|Wigner-function formalism applied to semiconductor quantum devices: Need for nonlocal scattering models]], Phys. Rev. B **96**, 115420 (2017)
 +  * [[Joon-Ho Lee]] and [[Mincheol Shin]], [[https://www.ingentaconnect.com/contentone/asp/jctn/2017/00000014/00000003/art00013|Interplay Between a Gaussian Wave Packet and a Non-Reflecting Potential Analyzed Using the Wigner Equation]], J. Comput. Theor. Nanosci. **14**, 1329 (2017)
 +  * Khadija A. Khair, [[Shaikh S. Ahmed]], [[https://ieeexplore.ieee.org/abstract/document/8117451|Effects of uniaxial strain on polar optical phonon scattering and electron transport in monolayer MoS2 FETs]], Proc. IEEE  International Conference on Nanotechnology (NANO), (2017)
 +  * Adithya Kommini and [[Zlatan Aksamija]], [[https://iopscience.iop.org/article/10.1088/1361-648X/aaa110/meta|Thermoelectric properties of periodic quantum structures in the Wigner–Rode formalism]], J. Phys. Cond. Matt. **30**, 044004 (2017)
 +  * [[Zlatan Aksamija]], [[https://www.taylorfrancis.com/books/e/9781315108223|Nanophononics: Thermal Generation, Transport, and Conversion at the Nanoscale]] (Jenny Stanford Publishing, 2017)
 +  * [[Zhengyun Zhang]], Chenglong Bao, Hui Ji, Zuowei Shen, George Barbastathis, [[https://doi.org/10.1364/JOSAA.34.002025|Apparent coherence loss in phase space tomography]], J. Opt. Soc. Am. A **34**, 2025 (2017)
 +
 +=== 2016 ===
 +  * U. Kaczor, B. Klimas, D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://www.degruyter.com/view/j/phys.2016.14.issue-1/phys-2016-0036/phys-2016-0036.xml|Phase-space description of the coherent state dynamics in a small one-dimensional system]], Open Phys. **14**, 354 (2016)  
 +  * R.B. Pachori and A. Nishad, [[https://doi.org/10.1016/j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Signal Process **120**, 288 (2016)
 +  * Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi and [[Fausto Rossi]], [[https://link.springer.com/article/10.1007/s10825-016-0858-6|Electron–phonon dissipation in quantum nanodevices]], J. Comput. Electron. **15**, 1170 (2016)
 +  * [[Shaikh S. Ahmed]], et al., [[https://ieeexplore.ieee.org/abstract/document/7853846/authors#authors|Multiscale-multiphysics modeling of nonclassical semiconductor devices]], Proc. International Conference on Electrical and Computer Engineering (ICECE), (2016)
 +  * [[Ram Bilas Pachori]] and A. Nishad, [[https://www.sciencedirect.com/science/article/pii/S0165168415002637|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Sig. Proc. **120**, 288 (2016)
 +
 +=== 2015 ===
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], D. Szydlowski, [[https://link.springer.com/article/10.1007/s10825-015-0733-x|Dynamical localisation of conduction electrons in one-dimensional disordered systems]], J. Comput. Electron. **14**, 916 (2015) 
 +  * Roberto Rosati, Fabrizio Dolcini and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.235423|Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation]], Phys. Rev. B **92**, 235423 (2015)
 +
 +=== 2014 ===
 +  * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://link.springer.com/article/10.1007/s10825-013-0510-7|Wigner transport equation with finite coherence length]], J. Comp. Electron. **13**, 257 (2014)
 +  * [[Olafur Jonasson]] and [[Irena Knezevic]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.165415|Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure]], Phys. Rev. B **90**, 165415 (2014)
 +  * [[Gabriele Gradoni]], [[Stephen Creagh]], and [[Gregor Tanner]], [[https://ieeexplore.ieee.org/document/6899092|A Wigner Function Approach for Describing the Radiation of Complex Sources]], Proc. IEEE International Symposium on Electromagnetic Compatibility (EMC) (2014)
 +  * [[Gabriele Gradoni]], [[Stephen Creagh]], and [[Gregor Tanner]], [[https://ieeexplore.ieee.org/document/6931029|Radiation of complex sources in reflecting environments: A Wigner function approach]], Proc. of IEEE International Symposium on Electromagnetic Compatibility (EMC) (2014)
 +  * J.M. Sellier, S. Amoroso, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], Asen Asenov, and [[Ivan Dimov]], [[https://www.sciencedirect.com/science/article/pii/S0378437113011862?via%3Dihub|Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches]], Physica A **398**, 194 (2014)
 +
 +=== 2013 ===
 +  * Rosati, Roberto and Dolcini, Fabrizio and Iotti, Rita Claudia and [[Fausto Rossi]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.035401|Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme]], Phys. Rev. B **88**, 035401 (2013)
 +  * P. Jain and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/abs/pii/S0016003213000069|Marginal energy density over the low frequency range as a feature for voiced/non-voiced detection in noisy speech signals]], J. Frank. Ins. **350**, 678 (2013)
 +  * V. Bajaj and [[Ram Bilas Pachori]], [[https://www.sciencedirect.com/science/article/pii/S0169260713002265|Automatic classification of sleep stages based on the time-frequency image of EEG signals]], Comp. Meth. Prog. Biomed. **112**, 320 (2013)
 +  * Lei Tian, [[Zhengyun Zhang]], [[Jonathan Petruccelli]], and George Barbastathis, [[https://doi.org/10.1364/OE.21.010511|Wigner function measurement using a lenslet array]], Opt. Express **21**, 10511 (2013)
 +  * D. Szydlowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://iopscience.iop.org/article/10.1088/0268-1242/28/10/105022/pdf|Phase-space description of wave packet approach to electronic transport in nanoscale systems]], Semicond. Sci. Technol. **28**, 105022 (2013) 
 +  * P. Wójcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://aip.scitation.org/doi/abs/10.1063/1.4811836?journalCode=apl|Spin filter effect at room temperature in GaN/GaMnN ferromagnetic resonant tunnelling diode]], Appl. Phys. Lett. **102**, 242411 (2013) 
 +
 +=== 2012 ===
 +  * P. Wojcik, J. Adamowski, [[Maciej Woloszyn]], and [[Bartlomiej Spisak]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165318|Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode]], Phys. Rev. B **86**, 165318 (2012) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], and J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/27/11/115004/meta|Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode]], Semicond. Sci. Technol. **27**, 115004 (2012) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://aip.scitation.org/doi/10.1063/1.4729895|Tuning of terahertz intrinsic oscillations in asymmetric triple-barrier resonant tunneling diodes]], J. Appl. Phys. **111**, 124310 (2012) 
 +
 +=== 2011 ===
 +  * [[Sylvain Barraud]], [[https://aip.scitation.org/doi/10.1063/1.3654143|Dissipative quantum transport in silicon nanowires based on Wigner transport equation]], J. Appl. Phys. **110**, 093710 (2011)
 +
 +=== 2010 ===
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and Philipp Schwaha, [[https://link.springer.com/article/10.1007%2Fs10825-010-0316-9|Device Modeling in the Wigner Picture]], J. Comp. Electron. **9**, 218 (2010)
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/25/12/125012|Intrinsic current oscillations in an asymmetric triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **25**, 125012 (2010) 
 +
 +=== 2009 ===
 +  * [[Sylvain Barraud]], [[https://aip.scitation.org/doi/10.1063/1.3226856|Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism]], J. Appl. Phys. **106**, 063714 (2009)
 +  * Huu-Nha Nguyen, [[Damien Querlioz]], Sylvie Galdin-Retailleau, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/document/5091161|Wigner Monte Carlo simulation of CNTFET: Comparison between semi-classical and quantum transport]], Proc. IWCE, 257 (2009)
 +  * [[Zhengyun Zhang]] and Marc Levoy, [[https://ieeexplore.ieee.org/document/5559007|Wigner distributions and how they relate to the light field]], Proc. IEEE International Conference on Computational Photography (ICCP), 1-10 (2009)
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], P. Wojcik, G.J. Morgan, [[https://iopscience.iop.org/article/10.1088/1742-6596/193/1/012130|Wigner distribution function description of a multilayered nanostructure with magnetic impurities]], J. Phys.: Conf. Ser. **193**, 012130 (2009) 
 +  * P. Wojcik, [[Bartlomiej Spisak]], [[Maciej Woloszyn]], J. Adamowski, [[https://iopscience.iop.org/article/10.1088/0268-1242/24/9/095012|Self-consistent Wigner distribution function study of gate-voltage controlled triple-barrier resonant tunnelling diode]], Semicond. Sci. Technol. **24**, 095012 (2009) 
 +  * [[Bartlomiej Spisak]], [[Maciej Woloszyn]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.035127|Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field]], Phys. Rev. B **80**, 035127 (2009) 
 +
 +=== 2008 ===
 +  * [[Damien Querlioz]], Jerome Saint-Martin, Arnaud Bournel, and [[Philippe Dollfus]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.165306|Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices]], Phys. Rev. B **78**, 165306 (2008)
 +  * Taj, David and [[Fausto Rossi]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssc.200776527|Quantum non-locality in systems with open boundaries: From the Wigner-function formalism to non-homogeneous Markovian master equations]], physica status solidi (c) **5**, 66 (2008)
 +
 +=== 2007 ===
 +  * [[Clemens Heitzinger]], [[Christian Ringhofer]], [[Shaikh S. Ahmed]], and [[Dragica Vasileska]], [[https://link.springer.com/article/10.1007/s10825-006-0058-x|3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions]],  J. Comput. Electron. **6**, 15 (2007)
 +  * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://journals.aps.org/prb/pdf/10.1103/PhysRevB.76.214301|Effect of symmetry in the many-particle Wigner function]], Phys. Rev. B **76**, 214301 (2007)
 +  * Emiliano Cancellieri, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[http://eprints.whiterose.ac.uk/84429/|Effect of the Pauli Exclusion Principle in the Many-Electron Wigner Function]] (2007)
 +  * [[Ram Bilas Pachori]] and P. Sircar, [[https://www.sciencedirect.com/science/article/pii/S1051200406001436|A new technique to reduce cross terms in the Wigner distribution]], Dig. Sig. Proc. **17**, 466 (2007)
 +  * [[Hans Kosina]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129156407004667|Nanoelectronic Device Simulation Based on the Wigner Function Formalism]], Int. J. High Speed Electron. Sys. **17**, 475 (2007)
 +
 +=== 2006 ===
 +  * Taj, D and Genovese, L and [[Fausto Rossi]], [[https://iopscience.iop.org/article/10.1209/epl/i2006-10047-3|Quantum-transport simulations with the Wigner-function formalism: Failure of conventional boundary-condition schemes]], Europhys. Lett. **74**, 1060 (2006)
 +  * Taj, David and Genovese, L and [[Fausto Rossi]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssc.200668052|Transport in quantum devices: modelling contacts in the Wigner formalism]], physica status solidi (c) **3**, 2419 (2006)
 +  * [[Harold Grubin]], [[https://www.scientific.net/AST.52.36|Transient Wigner function studies of DMS barrier devices]], Adv. Sci. Techn. **52**, 36 (2006)
 +  * V. Sverdlov, T. Grasser, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-006-0041-6|Scattering and Space-Charge Effects in Wigner Monte Carlo Simulations of Single and Double Barrier Devices]],  J. Comp. Electron. **5**, 447 (2006)
 +  * [[Damien Querlioz]], Jerome Saint-Martin , Van-Nam Do, Arnaud Bournel, and [[Philippe Dollfus]], [[https://ieeexplore.ieee.org/abstract/document/4011939|A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach]], IEEE T. Nanotechnol. **5**, 737 (2006)
 +  * [[Damien Querlioz]], [[Philippe Dollfus]], Van-Nam Do, Bournel, Arnaud, et al., [[https://link.springer.com/article/10.1007/s10825-006-0044-3|An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs]], J. Comput. Electron. **5**, 443 (2006)
 +  * [[Hans Kosina]], [[http://www.inderscience.com/offer.php?id=12762|Wigner function approach to nano device simulation]], Int. J. Comp. Sci. Eng. **2**, 100 (2006)
 +
 +
 +=== 2005 ===
 +  * Patrick Loughlin and [[Leon Cohen]], [[https://asa.scitation.org/doi/10.1121/1.2001488|A Wigner approximation method for wave propagation]], J. Acoust. Soc. Amer **118**, 1268 (2005)
 +  * V. Sverdlov, A. Gehring, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/pii/S003811010500198X?via%3Dihub|Quantum Transport in Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo Approach]], Sol. Stat. Electron. **49**, 1510 (2005)
 +  * Genovese, Luigi and Taj, David and [[Fausto Rossi]], [[https://arxiv.org/abs/cond-mat/0506757|Quantum Non-Locality in Systems with Open Boundaries: Failure of the Wigner-Function Formalism]], arXiv:cond-mat/0506757 (2005)
 +  * Chiara Manzini and [[Luigi Barletti]], [[https://www.sciencedirect.com/science/article/pii/S0362546X04003359|An analysis of the Wigner--Poisson problem with inflow boundary conditions]], Nonl. Anal. Theor. Meth. Appl. **60**, 77 (2005)
 +  * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/abs/10.1080/00411450508951151|Multiband, non-parabolic Wigner-function approach to electron transport in semiconductors]], Trans. Theor Stat. Phys. **34**, 499 (2005)
 +  * A. Gehring and [[Hans Kosina]], [[https://link.springer.com/article/10.1007/s10825-005-7109-6|Wigner Function-Based Simulation of Quantum Transport in Scaled DG-MOSFETs Using a Monte Carlo Method]], J. Comp. Electron. **4**, 67 (2005)
 +  * [[Bartlomiej Spisak]], A. Paja, G.J. Morgan, [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200440024|Influence of spin–orbit interaction on the electrical conductivity of three-dimensional disordered systems]], phys. stat. sol. (b) **242**, 1460 (2005) 
 +
 +=== 2004 ===
 +  * [[Carlo Jacoboni]] and [[Paolo Bordone]], [[https://iopscience.iop.org/article/10.1088/0034-4885/67/7/R01/meta|The Wigner-function approach to non-equilibrium electron transport]], Rep. Prog. Phys. **67**, 1033 (2004)
 +  * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/086|Generalized Weyl--Wigner formalism for the simulation of open quantum devices: a density-matrix approach]], Semicond. Sci. Techn. **19**, S257 (2004)
 +  * [[Harold Grubin]], [[https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5584/0000/Wigner-function-studies-of-spin-transport-in-dilute-magnetic-semiconductor/10.1117/12.582770.short?SSO=1|Wigner function studies of spin transport in dilute magnetic semiconductor barrier structures]], Proc. SPIE **5584** (2004)
 +  * [[Lucio Demeio]], [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/082|Numerical simulation of intervalley transitions by the Wigner-function approach]], Semicond. Sci. Techn. **19**, S244 (2004)
 +  * Rossella Brunetti, Stefano Monastra, and [[Carlo Jacoboni]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/084|Quantum dynamics of polaron formation with the Wigner-function approach]], Semicond. Sci. Techn. **19**, S250 (2004)
 +
 +=== 2003 ===
 +  * [[Luigi Barletti]], [[https://www.tandfonline.com/doi/full/10.1081/TT-120024764|Wigner envelope functions for electron transport in semiconductor devices]], Trans. Theor Stat. Phys. **32**, 253 (2003)
 +  * [[Luigi Barletti]], [[http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_693_0|A mathematical introduction to the Wigner formulation of quantum mechanics]], Bollettino dell'Unione Matematica Italiana **6**, 693 (2003)
 +  * Zaccaria, Remo Proietti and Iotti, Rita C and [[Fausto Rossi]], [[https://link.springer.com/article/10.1023/B:JCEL.0000011415.34531.b1|Microscopic Modelling of Quantum Open Systems: A Generalized Wigner-Function Approach]], J. Comput. Electron. **2**, 141 (2003)
 +  * [[Lucio Demeio]], [[Luigi Barletti]], [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://www.tandfonline.com/doi/full/10.1081/TT-120024766|Wigner function for multiband transport in semiconductors]], Trans. Theor Stat. Phys. **32**, 307 (2003)
 +  * [[Paolo Bordone]], Alberto Bertoni, Rossella Brunetti, and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0378475402002410|Monte Carlo simulation of quantum electron transport based on Wigner paths]], Math. Comput. Simul. **62**, 307 (2003)
 +  * [[Carlo Jacoboni]], Rossella Brunetti, and Stefano Monastra: "Quantum dynamics of polaron formation with the Wigner-function approach", Physical Review B, Vol.68, No.12, p.125205, 2003.
 +  * [[Bartlomiej Spisak]], A. Paja, [[https://www.worldscientific.com/doi/abs/10.1142/9789812704474_0036|New Approach to the Spin-Orbit Scattering of Electrons in Disordered Metallic Systems]], Proceedings of the 7th International School on Theoretical Physics, World Scientific, New Jersey-London-Hong Kong-Singapore 2003
 +
 +=== 2002 === 
 +  * Zaccaria, Remo Proietti and [[Fausto Rossi]], [[https://arxiv.org/abs/cond-mat/0204637|Generalized Wigner Function Formulation for Quantum Systems with Open Boundaries]], arXiv:cond-mat/0204637 (2002)
 +  * Michalopoulou, Zoi-Heleni and [[Leon Cohen]], [[https://asa.scitation.org/doi/abs/10.1121/1.4778105|Wigner--Ville representations for acoustic source localization]], J. Acoust. Soc. Amer. **111**, 2386 (2002)
 +  * [[Lucio Demeio]], [[Luigi Barletti]], Andrea Bertoni, [[Paolo Bordone]], and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013540|Wigner-function approach to multiband transport in semiconductors]], Phys. B Cond. Matt. **314**, 104 (2002)
 +  * [[Paolo Bordone]] and [[Carlo Jacoboni]], [[https://link.springer.com/article/10.1023/A:1020715827744|Wigner Paths for Quantum Transport]], J. Comput. Electron. **1**, 67 (2002)
 +  * [[Paolo Bordone]], Andrea Bertoni,  and [[Carlo Jacoboni]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013552|Infinite barriers and classical force in the Wigner-function approach to quantum electron transport]], Phys. B Cond. Matt. **314**, 123 (2002)
 +  * Patrick Loughli and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/0950034021000016784|Wigner distributions local properties of dispersive pulses]], J. Mod. Opt. **49**, 2645 (2002)
 +  * [[Harold Grubin]], R.C. Buggeln, [[https://link.springer.com/article/10.1023/A:1020751308180|RTD Relaxation Oscillations, the Time Dependent Wigner Equation and Phase Noise]], J. Comp. Electron. **1**, 33 (2002)
 +
 +=== 2001 ===
 +  * [[Luigi Barletti]] and Paul F Zweifel, [[https://www.tandfonline.com/doi/full/10.1081/TT-100105935|Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions]], Trans. Theor Stat. Phys. **30**, 507 (2001)
 +  * [[Carlo Jacoboni]], Rossella Brunetti, [[Paolo Bordone]], and Andrea Bertoni, [[https://www.worldscientific.com/doi/abs/10.1142/S0129156401000897|Quantum transport and its simulation with the Wigner-function approach]], Int. J. High Speed Electron. Sys. **11**, 387 (2001)
 +  * [[Carlo Jacoboni]], Andrea Bertoni, [[Paolo Bordone]], and Rossella Brunetti, [[https://www.sciencedirect.com/science/article/pii/S0378475400002470|Wigner-function formulation for quantum transport in semiconductors: theory and Monte Carlo approach]], Math. Comput. Simul. **55**, 67 (2001)
 +
 +=== 1998 ===
 +  * Sangchul Oh, Kyoung-Wan Park, [[Mincheol Shin]], Seongjae Lee, and El-Hang Lee, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.57.2368|Master Equation for the Wigner Function of Normal and Superconducting Single-electron Transistors]], Phys. Rev. B **57**, 57 (1998)
 +  * [[Harold Grubin]], [[https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3277/0000/Wigner-function-and-density-matrices-and-their-application-to-transport/10.1117/12.306157.short|Wigner function and density matrices and their application to transport properties of semiconductor devices]], Proc. SPIE **3277** (1998)
 +
 +=== 1993 ===
 +  * [[David K. Ferry]] and J.-R. Zhou, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.7944|Form of the Quantum Potential for use in Hydrodynamic Equations for Semiconductor Device Modeling]], Phys. Rev. B **48**, 7944 (1993)
 +
 +=== 1989 ===
 +  * [[Walter Poetz]], [[https://aip.scitation.org/doi/abs/10.1063/1.344257|Self‐consistent model of transport in quantum well tunneling structures]], J. Appl. Phys. **66**, 2458 (1989)
 +
 +
 +=== 1987 ===  
 +  * N. Kluksdahl, [[Walter Poetz]], U. Ravaioli and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0749603687901753|Wigner function study of a double quantum barrier resonant tunnelling diode]], Superlatt. Microstruct. **3**, 41 (1987)
 +
 +=== 1985 ===
 +  * U. Ravaioli, M.A. Osman, [[Walter Poetz]], N. Kluksdahl and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0378436385903171|Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach]]", Physica B+C **134**, 36 (1985)
 +
 +=== 1981 ===
 +  * [[Gerald J Iafrate]], [[Harold Grubin]], and [[David K. Ferry]], [[https://jphyscol.journaldephysique.org/articles/jphyscol/abs/1981/07/jphyscol198142C737/jphyscol198142C737.html|Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport]], J. Phys. Colloques **42**, 307 (1981)
 +
 ==== Mathematical and Theoretical Physics ====  ==== Mathematical and Theoretical Physics ==== 
 === 2019 === === 2019 ===
 +  * [[Herbert Spohn]], [[https://link.springer.com/article/10.1007/s10955-019-02320-5|Generalized Gibbs Ensembles of the Classical Toda Chain]], Journal of Statistical Physics (2019)
 +  * Marcos Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8121/aafdc2|Translations and reflections on the torus: identities for discrete Wigner functions and transforms]], J. Phys. A **52**, 095301 (2019)
 +  * Xiang-Guo Meng, Jian-Ming Liu, Ji-Suo Wang, and [[Hongyi Fan]], [[https://link.springer.com/article/10.1140/epjd/e2018-90224-6|New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications]], Europ. Phys. J. D **73**, 32 (2019)
 +  * [[Haiyan Jiang]], [[Tiao Lu]], and Xiangjiang Zhu, [[https://link.springer.com/article/10.1007/s11464-019-0750-3|Well-posedness of a non-local abstract Cauchy problem with a singular integral]], Front. Math. Chin. **14**, 77 (2019)
 +  * [[Franz Luef]] and Eirik Skrettingland, [[https://link.springer.com/article/10.1007/s00041-019-09663-3|Mixed-State Localization Operators: Cohen’s Class and Trace Class Operators]], J. Four. Anal. Appl. **25**, 2064 (2019)
 +
 +
 === 2018 === === 2018 ===
     * [[Leon Cohen]], [[https://doi.org/10.1088/1402-4896/aad0fc|Transformation of quasi-distributions]], Phys. Scr. **93**,  094001 (2018)     * [[Leon Cohen]], [[https://doi.org/10.1088/1402-4896/aad0fc|Transformation of quasi-distributions]], Phys. Scr. **93**,  094001 (2018)
 +  * Claude Bardos and [[Norbert J. Mauser]], [[https://www.ems-ph.org/journals/show_abstract.php?issn=1027-488X&vol=9&iss=109&rank=5|Kinetic Equations: A French History]], EMS Newsletter (2018)
 +
 === 2017 === === 2017 ===
 +  * Jonathan S. Ben‐Benjamin, Moochan B. Kim, [[Wolfgang Schleich]], [[William B. Case]], and [[Leon Cohen]], [[https://onlinelibrary.wiley.com/doi/full/10.1002/prop.201600092|Working in phase‐space with Wigner and Weyl]], Fortschr. Phys. **65**, 1600092 (2017)
 +  * S Agyo, [[Ci Lei]], and A Vourdas, [[https://aip.scitation.org/doi/full/10.1063/1.4983917|The groupoid of bifractional transformations ]], J. Math. Phys. **58**, 052103 (2017)
 +  * [[Hans Kastrup]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.052111|Wigner functions for angle and orbital angular momentum: Operators and dynamics]], Phys. Rev. A **95**, 052111 (2017)
 +
 +
 === 2016 === === 2016 ===
 +  * M. Saraceno and [[Alfredo Miguel Ozorio de Almeida]], [[https://iopscience.iop.org/article/10.1088/1751-8113/49/14/145302|Representation of superoperators in double phase space]], J. Phys A **49**, 145302 (2016)
 +  * Christian R Müller, Christian Peuntinger, Thomas Dirmeier, Imran Khan, Ulrich Vogl, Ch Marquardt, [[Gerd Leuchs]], Luis L Sánchez-Soto, Yong Siah Teo, Zdenek Hradil, Jaroslav Řeháček, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.070801|Evading Vacuum Noise: Wigner Projections or Husimi Samples?]], Phys. Rev. Lett. **117**, 070801 (2016)
 +  * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-23413-7_97|Neumann Series Analysis of the Wigner Equation Solution]], in: Progress in Industrial Mathematics, The European Consortium for Mathematics in Industry **22**, 701 (2016)
 +  * [[Hans Kastrup]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.062113|Wigner functions for the pair angle and orbital angular momentum]], Phys. Rev. A **94**, 062113 (2016)
 +
 === 2015 === === 2015 ===
 +  * E. Colomés, Z. Zhan, and [[Xavier Oriols]], [[http://link.springer.com/article/10.1007/s10825-015-0737-6|Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?]], J. Comp. Electro. **14**, 894 (2015)
 +  * P. Evangelides, [[Ci Lei]], and A. Vourdas, [[https://aip.scitation.org/doi/full/10.1063/1.4927256|Analytic representations with theta functions for systems on ℤ(d) and on 𝕊]], J. Math. Phys. **56**, 072108 (2015)
 +  * S Agyo, [[Ci Lei]], and A Vourdas, [[https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012007|Bi-fractional Wigner functions]], J. Phys.: Conf. Ser. **597**, 012007 (2015)
 +  * S Agyo, [[Ci Lei]], and A Vourdas, [[https://www.sciencedirect.com/science/article/pii/S0375960114011633|Interpolation between phase space quantities with bifractional displacement operators]], Phys. Lett. A **379**, 255 (2015)
 +
 +=== 2014 ===
 +  * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://www.ams.org/journals/proc/2014-142-09/S0002-9939-2014-12311-2/S0002-9939-2014-12311-2.pdf|Maximal covariance group of Wigner transforms and pseudo-differential operators]], Proc. Amer. Math. Soc. **142**, 3183 (2014)
 +  * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://epubs.siam.org/doi/abs/10.1137/130941754|Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution?]], SIAM J. Appl. Math. **74**, 885 (2014)
 +  * [[Ruo Li]], [[Tiao Lu]], and [[Zhangpeng Sun]], [[https://arxiv.org/abs/1406.4213v1|Convergence of semi-discrete stationary Wigner equation with inflow boundary conditions]], arXiv:1406.4213 (2014)
 +
 +=== 2013 ===
 +  * [[Alfredo Miguel Ozorio de Almeida]], R.O. Vallejos, and E. Zambrano, [[https://iopscience.iop.org/article/10.1088/1751-8113/46/13/135304/meta|Initial or final values for semiclassical evolutions in the Weyl-Wigner representation]], J. Phys. A **46**, 13504 (2013)
 +  * [[Nuno Costa Dias]], [[Maurice de Gosson]], and [[João Nuno Prata]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129055X13430101|Metaplectic formulation of the Wigner transform and applications]], Rev. Math. Phys. **25**, 1343010 (2013)
 +  * Zhenning Cai, Yuwei Fan, [[Ruo Li]], [[Tiao Lu]], and Yanli Wang, [[https://aip.scitation.org/doi/full/10.1063/1.4748971|Quantum hydrodynamic model by moment closure of Wigner equation]], J. Math. Phys. **53**, 103503 (2012)
 +
 +=== 2012 ===
 +  * Earnshaw RA, Lei C, Li J, Mugassabi S and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S0378437111008958|Large scale data analysis using the Wigner function]], Physica A **391**, 2401-2407 (2012)
 +  * [[Anton Arnold]], I. Gamba, M.P. Gualdani, S. Mischler, C. Mouhot, C. Sparber, [[https://www.worldscientific.com/doi/abs/10.1142/S0218202512500340|The Wigner-Fokker-Planck equation: stationary states and large time behavior]], Math. Mod. Methods Appl. Sc. **22**, 1250034 (2012)
 +  * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s11868-012-0054-9|Quantum Mechanics in Phase Space: The Schrodinger and the Moyal Representations]], J. Pseudodiff. Oper. Appl. **3**, 367 (2012)
 +  * [[Maurice de Gosson]] and Serge M. de Gosson, [[https://www.sciencedirect.com/science/article/pii/S0375960111013326?via%3Dihub|Weak values of a quantum observable and the cross-Wigner distribution]], Phys. Lett. A **376**, 293 (2012)
 +
 +=== 2011 ===
 +  * Timothy M. Coffey, [[Robert Wyatt]], and Wm. C. Schieve, [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.230403|Reconstruction of the Time-Dependent Wave Function Exclusively from Position Data]], Phys. Rev. Lett. **107**, 230403 (2011)
 +  * K. Ma, [[Jian-Hua Wang]], Y. Yuan, [[http://iopscience.iop.org/article/10.1088/1674-1137/35/1/003|Wigner Function for the Dirac Oscillator in Spinor Space]], Chinese Physics C **35**, 11-15 (2011)
 +  * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0021782411000912|A Pseudo-Differential Calculus on Non-Standard Symplectic Space; Spectral and Regularity Results in Modulation Spaces]], J. Math. Pur. Appl. **96**, 423 (2011)
 +  * [[Maurice de Gosson]], [[https://link.springer.com/article/10.1007/s11868-011-0023-8|A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms]], J. Pseudo-Differ. Oper. Appl. **2**, 91 (2011)
 +
 +=== 2010 ===
 +  * R. Mack, J. P. Dahl, H. Moya-Cessa, W. T. Strunz, [[Reinhold Walser]], and [[Wolfgang Schleich]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.032119|Riemann ζ function from wave-packet dynamics]], Phys. Rev. A **82**, 032119 (2010)
 +  *[[Apostol Vourdas]], [[https://link.springer.com/article/10.1134/S1063778810020055|Wigner and Weyl functions for p-adic quantum mechanics]], Physics of atomic nuclei **73**, 237-241 (2010)
 +  * O. Brodier and [[Alfredo Miguel Ozorio de Almeida]], [[https://www.sciencedirect.com/science/article/abs/pii/S0375960110004007?via%3Dihub|Markovian evolution of Gaussian states in the semiclassical limit]], Phys. Lett. A **374**, 2315 (2010)
 +  * [[Basil J. Hiley]], [[https://link.springer.com/article/10.1007/s10701-009-9320-y|On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?]], Found. Phys. **40**, 356 (2010)
 +  * [[Nuno Costa Dias]], [[Maurice de Gosson]], [[Franz Luef]], and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.3436581|A Deformation Quantization Theory for Noncommutative Quantum Mechanics]], J. Math. Phys. **51**, 072101 (2010)
 +  * Bastos, C., [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://link.springer.com/article/10.1007/s00220-010-1109-5|Wigner Measures in Noncommutative Quantum Mechanics]], Comm. Math. Phys. **299**, 709 (2010)
 +
 +=== 2009 ===
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0034487709000081|The Narcowich-Wigner spectrum of a pure state]], Rep. Math. Phys. **63**, 43 (2009)
 +  * Agissilaos G. Athanassoulis, [[Norbert J. Mauser]], and Thierry Paul, [[https://www.sciencedirect.com/science/article/pii/S0021782409000038|Coarse-scale representations and smoothed Wigner transforms]], J. Math. Pur. Appl. **91**, 296 (2009) 
 +  * Remi Carles, Clotilde Fermanian Kammerer, [[Norbert J. Mauser]], and Hans Peter Stimming, [[https://www.aimsciences.org/journals/displayArticles.jsp?paperID=3858|On the time evolution of Wigner measures for Schrodinger equations]],  Commun. Pure Appl. Anal. **8**, 559 (2009) 
 +
 +=== 2008 ===
 +  * [[Fabricio Toscano]], A. Kenfack, A. R. R. Carvalho, J. M. Rost, and [[Alfredo Miguel Ozorio de Almeida]],[[https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2007.0263|Husimi-Wigner representation of chaotic eigenstates]], Proc. Roy. Soc. A **464**, 1503 (2008)
 +  * [[William B. Case]], [[http://aapt.scitation.org/doi/10.1119/1.2957889|Wigner functions and Weyl transforms for pedestrians]], Amer. J. Phys. **76**, 937 (2008)
 +  * Bastos, Catarina, Bertolami, Orfeu, [[Nuno Costa Dias]], and [[João Nuno Prata]], [[https://aip.scitation.org/doi/full/10.1063/1.2944996|Weyl--Wigner formulation of noncommutative quantum mechanics]], J. Math. Phys. **49**, 072101 (2008)
 +
 +=== 2007 ===
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/full/10.1063/1.2409495|Features of Moyal trajectories]], J. Math. Phys. **48**, 012109 (2007) 
 +  * [[Basil J. Hiley]], [[https://www.worldscientific.com/doi/abs/10.1142/9789812771186_0017|Phase Space Description of Quantum Mechanics and Non-commutative Geometry: Wigner-Moyal and Bohm in a wider context]], in //Beyond the Quantum//, 203 (2007)
 +
 +=== 2006 ===
 +  * [[Leon Cohen]], [[https://www.tandfonline.com/doi/full/10.1080/09500340600952051|Wigner distribution for operators at different times]], J. Mod. Opt. **53**, 2377 (2006)
 +  * [[Nuno Costa Dias]], Mikovic, A., and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.2227259|Coherent States Expectation Values as Semiclassical Trajectories]], J. Math. Phys. **47**, 082101 (2006) 
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491605001922|Comment on Infinite Walls in Deformation Quantization]], Ann. Phys. **321**, 495 (2006) 
 +
 +=== 2005 ===
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1948327|Stargenfunctions, General Parametrized Systems and a Causal Formulation of Phase Space Quantum Mechanics]], J. Math. Phys. **46**, 072107 (2005)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.worldscientific.com/doi/abs/10.1142/S0217732305017822|Deformation quantization and Wigner functions]], Mod. Phys. Lett. A **20**, 1371 (2005)
 +  * [[Maurice de Gosson]], [[https://www.sciencedirect.com/science/article/pii/S0007449704001095|Cellules quantiques symplectiques et fonctions de Husimi-Wigner]], Bull. Sci. Math. **129**, 211 (2005)
 +
 +=== 2004 ===
 +  * [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340408231835|Wigner quasi-distributions for arbitrary operators]], J. Mod. Opt. **51**, 2761 (2004)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491604000648|Admissible States in Quantum Phase Space]], Ann. Phys. **313**, 110 (2004)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1641152|Time Dependent Transformations in Deformation Quantization]], J. Math. Phys. **45**, 887 (2004)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0003491603002690|Formal Solutions of Stargenvalue Equations]], Ann. Phys. **311**, 120 (2004)
 +
 +=== 2003 ===
 +  * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340308234579|Reply to:‘Comment on “wigner equation of motion for time-dependent potentials”’by besieris and davis]], J. Mod. Opt. **50**, 2275 (2003)
 +  * [[Hongyi Fan]], [[https://iopscience.iop.org/article/10.1088/0253-6102/40/4/409|General Wigner Transforms Studied by Virtue of Weyl Ordering of the Wigner Operator]], Commun. Theor. Phys. **40**, 409 (2003)
 +  * Christof Sparber, Peter A. Markowich, and [[Norbert J. Mauser]], [[https://content.iospress.com/articles/asymptotic-analysis/asy540|Wigner Functions versus WKB-Methods in Multivalued Geometrical Optics]], Asymp. Anal. **33**, 153 (2003) 
 +
 +
 +=== 2002 ===
 +  * [[Thierry Goudon]], [[https://epubs.siam.org/doi/abs/10.1137/S0036142901388366|Analysis of a semidiscrete version of the Wigner equation]], SIAM J. Num. Anal. **40**, 2007 (2002)
 +  * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/0950034021000011518|Wigner distribution for random systems]], J. Mod. Opt. **49**, 2657 (2002)
 +  * [[Leon Cohen]] and Patrick Loughli, [[https://www.tandfonline.com/doi/abs/10.1080/09500340110087642|Generalized Wigner distributions, moments and conditional correspondence rules]], J. Mod. Opt. **49**, 539 (2002)
 +  * Lorenzo Galleani and [[Leon Cohen]], [[https://www.tandfonline.com/doi/abs/10.1080/09500340110088515|Wigner equation of motion for time-dependent potentials]], J. Mod. Opt. **49**, 561 (2002)
 +  * [[Anton Arnold]], J. Carrillo, E. Dhamo, [[https://www.sciencedirect.com/science/article/pii/S0022247X0200327X|On the periodic Wigner-Poisson-Fokker-Planck system]], J. Math. Anal. Appl. **275**, 263 (2002)
 +  * Lorenzo Galleani and [[Leon Cohen]], [[https://link.springer.com/article/10.1155/S1110865702000458|Approximation of the Wigner distribution for dynamical systems governed by differential equations]], EURASIP J. Appl. Sig. Proc. **2002**, 67 (2002)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0375960102011751|Bohmian Trajectories and Quantum Phase Space Distributions]], Phys. Lett. A **302**, 261 (2002)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/abs/10.1063/1.1504885|Wigner functions with boundaries]], J. Math. Phys. **43**, 4602 (2002)
 +
 +=== 2001 ===
 +  * [[Fabricio Toscano]], Marcus A. M. de Aguiar, and [[Alfredo Miguel Ozorio de Almeida]], [[https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.86.59|Scars of the Wigner function]], Phys. Rev. Lett. **86**, 59 (2001)
 +  * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://www.sciencedirect.com/science/article/pii/S0375960101007472|Causal Interpretation and Quantum Phase Space]], Phys. Lett. A **291**, 355 (2001)
 +   * [[Nuno Costa Dias]] and [[João Nuno Prata]], [[https://aip.scitation.org/doi/10.1063/1.1415086|Generalized Weyl--Wigner map and Vey quantum mechanics]], J. Math. Phys. **42**, 5565 (2001)
 +
 +=== 2000 ===
 +  * G. Giakasa, L.K. Stergioulas, and [[Apostol Vourdas]], [[https://www.sciencedirect.com/science/article/pii/S002192909900216X|Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative]], Journal Biomech. **33**, 567-574 (2000)
 +  *  [[Anton Arnold]], H. Lange, P.F. Zweifel, [[https://aip.scitation.org/doi/10.1063/1.1318732|A discrete-velocity, stationary Wigner equation]], J. Math. Phys. **41**, 7167 (2000)
 +
 +=== 1999 ===
 +  * S. Chountasis, [[Apostol Vourdas]], and C. Bendjaballah, [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.60.3467|Fractional fourier operators and generalized Wigner functions]], Physical Review A **60**, 3467 (1999)
 +  * S. Chountasis, L. K. Stergioulas, and [[Apostol Vourdas]], [[https://www.tandfonline.com/doi/abs/10.1080/09500349908231397|Quantum filtering of noise in the Wigner function]], Journal Mod. Optics **46**, 2131-2134 (1999)
 +  * [[Jan Naudts]], [[https://link.springer.com/article/10.1023/A:1026614130824|Off-Shell Relativistic Quantum Mechanics and Formulation of Dirac's Equation Using Characteristic Matrices]], Int. J. Theor. Phys. **38**, 431 (1999)
 +
 +=== 1998 ===
 +  * S. Chountasis and [[Apostol Vourdas]], [[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.1794|Weyl and Wigner functions in an extended phase space formalism]], Physical Review A **58**, 1794-1798 (1998)
 +
 +=== 1996 ===
 +  * [[Anton Arnold]], [[Christian Ringhofer]], [[https://epubs.siam.org/doi/abs/10.1137/S003614299223882X?journalCode=sjnaam|An operator splitting method for the Wigner-Poisson problem]], SIAM J. Num. Anal. **33**, 1622 (1996)
 +
 +=== 1995 ===
 +  * H.-W. Lee, [[https://doi.org/10.1016/0370-1573(95)00007-4|Theory and application of the quantum phase-space distribution functions]], Phys. Rep. **259**,  147 (1995)
 +
 +=== 1986 ===
 +  * K. Takahashi, [[https://doi.org/10.1143/JPSJ.55.762|Wigner and Husimi Functions in Quantum Mechanics]], J. Phys. Soc. Jpn. **55**,  762 (1986)
 +
 +=== 1982 ===
 +  * [[Gerald J Iafrate]], [[Harold Grubin]], and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/0375960182900974|The Wigner distribution function]], Phys. Lett. A **87**, 145 (1982)
 +
 +
 +=== 1974 ===
 +  * S. R. Groot, [[https://cheap-library.com/book/23c997f932b9bc0e28708bdd792fda0a|La transformation de Weyl et la fonction de Wigner, une forme alternative de la 
 +mecanique quantique]] (Les Presses de l'Universitié de Montréal, 1974)
 +
 ==== Quantum Information and Processing ====  ==== Quantum Information and Processing ==== 
-=== 2019 === 
 === 2018 === === 2018 ===
 +  * O de los Santos-Sánchez, [[https://doi.org/10.1088/1751-8121/aac9e4|Qubit-nonlinear-oscillator systems: 
 +from the moderate-coupling limit to the ultrastrong-coupling regime]], J. Phys. A: Math. Theor. **51**, 305303 (2018)
 +
 === 2017 === === 2017 ===
   * Robert Raussendorf, Dan E. Browne, Nicolas Delfosse, Cihan Okay, and Juan Bermejo-Vega, [[https://link.aps.org/doi/10.1103/PhysRevA.95.052334|Contextuality and Wigner-function negativity in qubit quantum computation]], Phys. Rev. A **95**, 052334 (2017)   * Robert Raussendorf, Dan E. Browne, Nicolas Delfosse, Cihan Okay, and Juan Bermejo-Vega, [[https://link.aps.org/doi/10.1103/PhysRevA.95.052334|Contextuality and Wigner-function negativity in qubit quantum computation]], Phys. Rev. A **95**, 052334 (2017)
-=== 2016 ===+
 === 2015 === === 2015 ===
   * Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf, [[https://link.aps.org/doi/10.1103/PhysRevX.5.021003|Wigner Function Negativity and Contextuality in Quantum Computation on Rebits]], Phys. Rev. X **5**, 021003 (2015)   * Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf, [[https://link.aps.org/doi/10.1103/PhysRevX.5.021003|Wigner Function Negativity and Contextuality in Quantum Computation on Rebits]], Phys. Rev. X **5**, 021003 (2015)
-==== Numerical Methods for Wigner Equation ==== + 
 +==== Numerical Methods ====  
 +=== 2020 === 
 +  * [[Yoshitaka Tanimura]], [[https://aip.scitation.org/doi/10.1063/5.0011599|Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM)]], J. Chem. Phys. **153**, 020901 (2020) 
 === 2019 === === 2019 ===
 +  * Zhenzhu Chen, [[Sihong Shao]], and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999119304553|A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences]], J. Comput. Phys. **396**, 54 (2019)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/8794705|Complex Absorbing Potential Formalism Accounting for Open Boundary Conditions Within the Wigner Transport Equation]], IEEE Trans. Nanotechnology **18**, 830 (2019)
 +  * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://content.sciendo.com/view/journals/caim/10/1/article-p20.xml|Wigner Monte Carlo simulation without discretization error of the tunneling rectangular barrier]], Commun. Appl. Ind. Math. **10**, 20 (2019)
 +  * [[Orazio Muscato]] and Wolfgang Wagner, [[https://www.aimsciences.org/article/doi/10.3934/krm.2019003|A stochastic algorithm without time discretization error for the Wigner equation]], Kin. Rel. Mod. **12**, 59 (2019)
   * Yunfeng Xiong and [[Sihong Shao]], [[http://www.global-sci.com/intro/article_detail/cicp/12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]], Commun. Comput. Phys **25**, 871 (2019)   * Yunfeng Xiong and [[Sihong Shao]], [[http://www.global-sci.com/intro/article_detail/cicp/12832.html|The Wigner Branching Random Walk: Efficient Implementation and Performance Evaluation]], Commun. Comput. Phys **25**, 871 (2019)
   * [[Sihong Shao]] and Yunfeng Xiong, [[http://global-sci.com/intro/article_detail/nmtma/12690.html|A branching    * [[Sihong Shao]] and Yunfeng Xiong, [[http://global-sci.com/intro/article_detail/nmtma/12690.html|A branching 
 random walk method for many-body Wigner quantum dynamics]], Numer. Math. Theor. Meth. Appl. **12**, 21 (2019) random walk method for many-body Wigner quantum dynamics]], Numer. Math. Theor. Meth. Appl. **12**, 21 (2019)
 +  * Zhenzhu Chen, Yunfeng Xiong, and [[Sihong Shao]], [[https://link.springer.com/article/10.1007/s10915-018-0853-0|Numerical Methods for the Wigner Equation with Unbounded Potential]], J. Sci. Comput. **79**, 345 (2019)
 +  * M. Benam, [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-030-10692-8_29|A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **11189**, 263 (2019)
 +
 +
 === 2018 === === 2018 ===
   * A S Larkin, V S Filinov and V E Fortov [[https://doi.org/10.1088/1751-8121/aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)   * A S Larkin, V S Filinov and V E Fortov [[https://doi.org/10.1088/1751-8121/aa98d0|Peculiarities of the momentum distribution functions of strongly correlated charged fermions]], J. Phys. A: Math. Theor. **51**, 035002 (2018)
-  * Zhenzhu Chen, Yunfeng Xiong, and [[Sihong Shao]], [[https://doi.org/10.1007/s10915-018-0853-0|Numerical methods for the Wigner equation with unbounded potential]], J Sci Comput ** **,(2018)+  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8464085|Numerical Analysis of the Transient Behavior of the Non-Equilibrium Quantum Liouville Equation]], IEEE Trans. Nanotechnology **17**, 1197(2018) 
 === 2017 === === 2017 ===
 +  *[[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/pii/S002199911730640X|Efficient solution of the Wigner–Liouville equation using a spectral decomposition of the force field]], J. Comp. Phys. **350**, 314 (2017)
 +  * [[Orazio Muscato]] and Vincenza Di Stefano, [[https://iopscience.iop.org/article/10.1088/1742-6596/906/1/012011/meta|Efficient Monte Carlo-based algorithms for the Wigner transport equation]], J. Phys. Conf. Ser. **906**, 012011 (2017)
   * Andrea Thomann and Alfio Borzì, [[https://doi.org/10.1002/num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)   * Andrea Thomann and Alfio Borzì, [[https://doi.org/10.1002/num.22072|Stability and accuracy of a pseudospectral scheme for the Wigner function equation]], Numer. Meth. Part. Differ. Equat. **33**, 62 (2017)
 +  * Khuram Shahzad Khalid, Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/abstract/document/8023854|Self-Energy Concept for the Numerical Solution of the Liouville-von Neumann Equation]], IEEE Trans. Nanotechnology **16**, 1053 (2017)
 +
 === 2016 === === 2016 ===
   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://doi.org/10.1137/15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]], SIAM J. Sci. Comput **38**, B491 (2016)   * Yunfeng Xiong, Zhenzhu Chen, and [[Sihong Shao]], [[https://doi.org/10.1137/15M1051373|An advective-spectral-mixed method for time-dependent many-body Wigner simulations]], SIAM J. Sci. Comput **38**, B491 (2016)
 +  * [[Orazio Muscato]] and Wolfgang Wagner, [[https://epubs.siam.org/doi/10.1137/16M105798X|A Class of Stochastic Algorithms for the Wigner Equation]], SIAM J. Sci. Comp. **38**, A1483 (2016)
 +  * Lukas Schulz and [[Dirk Schulz]], [[https://ieeexplore.ieee.org/document/7501465|Application of a slowly varying Envelope Function onto the Analysis of the Wigner Transport Equation]], IEEE Trans. Nanotechnology **15**, 801 (2016)
 +  * [[Dirk Schulz]] and Azhar Mahmood, [[https://ieeexplore.ieee.org/document/7339425|Approximation of a Phase Space Operator for the Numerical Solution of the Wigner Equation]], IEEE J. Quantum Electron. **52**,  8700109 (2016)
 +
 === 2015 === === 2015 ===
   * [[Sihong Shao]] and Jean Michel Sellier, [[https://doi.org/10.1016/j.jcp.2015.08.002|Comparison of deterministic and stochastic methods for time-dependent Wigner simulations]], J. Comput. Phys. **300**, 167 (2015)   * [[Sihong Shao]] and Jean Michel Sellier, [[https://doi.org/10.1016/j.jcp.2015.08.002|Comparison of deterministic and stochastic methods for time-dependent Wigner simulations]], J. Comput. Phys. **300**, 167 (2015)
-==== Engineering (AcousticsElectronicsSeismologySignalsetc.) ====  +  * [[Christian B. Mendl]], [[https://www.worldscientific.com/doi/abs/10.1142/S0129183115501132|Matrix-valued quantum lattice Boltzmann method]], Int. J Mod. Phys. C **26**, 1550113 (2015) 
-=== 2019 === +  * Martin L. R. Fürst, Markus Kotulla, [[Christian B. Mendl]], and [[Herbert Spohn]], [[https://iopscience.iop.org/article/10.1088/1751-8113/48/9/095204/meta|Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime]], J. Phys. A: Math. Theo. **48**, 095204 (2015) 
-=== 2018 === +  * [[Josef Weinbub]], [[Paul Ellinghaus]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-26520-9_34|Parallelization of the Two-Dimensional Wigner Monte Carlo Method]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 309 (2015) 
-  * R.RSharma and R.BPachori, [[https://doi.org/10.1007/s00034-018-0846-0|Improved eigenvalue decomposition-based approach for reducing cross-terms in Wigner-Ville distribution]], Circuits Syst Signal Process **37**, 3330 (2018+  * [[Josef Weinbub]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0730-0|Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method]], J. Comp. Electron. **14**, 922 (2015) 
-=== 2017 === +  * [[Paul Ellinghaus]], [[Josef Weinbub]], [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], and [[Ivan Dimov]], [[https://link.springer.com/article/10.1007%2Fs10825-014-0635-3|Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition]], J. Comp. Electron. **14**, 151 (2015) 
-=== 2016 === +  * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0378475414001530?via%3Dihub|A Comparison of Approaches for the Solution of the Wigner Equation]], Math. Comp. Sim. **107**, 108 (2015) 
-  * * R.BPachori and A. Nishad, [[https://doi.org/10.1016/j.sigpro.2015.07.026|Cross-terms reduction in Wigner-Ville distribution using tunable-Q wavelet transform]], Signal Process **120**, 288 (2016+  * [[Ivan Dimov]], [[Mihail (Mixi) Nedjalkov]], J.M. Sellier, and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-015-0720-2|Boundary Conditions and the Wigner Equation Solution]], J. Comp. Electron. **14**, 859 (2015) 
-=== 2015 ===+  * [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_3|Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 27 (2015) 
 +  * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], [[https://link.springer.com/chapter/10.1007%2F978-3-319-15585-2_17|Deterministic Solution of the Discrete Wigner Equation]], in: Numerical Methods and Applications, Lecture Notes in Computer Science **8962**, 149 (2015 
 +  * [[Johann Cervenka]], [[Paul Ellinghaus]], [[Mihail (Mixi) Nedjalkov]], Erasmus Langer, [[https://link.springer.com/chapter/10.1007%2F978-3-319-26520-9_29|Optimization of the Deterministic Solution of the Discrete Wigner Equation]], in: large Scale Scientific Computing, Lecture Notes in Computer Science **9374**, 269 (2015) 
 +  * [[Antonius Dorda]] and [[Ferdinand Schürrer]], [[https://www.sciencedirect.com/science/article/pii/S0021999114008432?via%3Dihub|A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes]], J. Comp. Phys. **284**, 95 (2015) 
 +  * [[Maarten Van de Put]], [[Wim Magnus]], and Bart Soree, [[http://meetings.aps.org/Meeting/MAR15/Event/238491|A spectral force based version of the Wigner-Liouville equation]], Bull. Amer. Phys. Soc. **60** (2015) 
 + 
 +=== 2014 === 
 +  * [[Haiyan Jiang]], Tiao Lu, and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999113007572|A device adaptive inflow boundary condition for Wigner equations of quantum transport]], J. Comput. Phys. **258**, 773 (2014) 
 +  * J.M. Sellier[[Mihail (Mixi) Nedjalkov]][[Ivan Dimov]]and [[Siegfried Selberherr]][[https://link.springer.com/chapter/10.1007%2F978-3-662-43880-0_20|The Role of Annihilation in a Wigner Monte Carlo Approach]], in: Large-Scale Scientific Computing, Lecture Notes in Computer Science **8353**, 186 (2014) 
 +  * J.M. Sellier, [[Mihail (Mixi) Nedjalkov]], [[Ivan Dimov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2014.20.issue-1/mcma-2013-0018/mcma-2013-0018.xml|A Benchmark Study of the Wigner Monte Carlo Method]], Mon. Carl. Meth. Appl. **20**, 43 (2014) 
 +  * J.M. Sellier and [[Ivan Dimov]], [[https://www.sciencedirect.com/science/article/pii/S0021999114002526|A Wigner Monte Carlo approach to density functional theory]], J. Comp. Phys. **270**, 265 (2014) 
 +  * [[Maarten Van de Put]], Bart Soree, and [[Wim Magnus]], [[http://meetings.aps.org/Meeting/MAR14/Session/S45.7|An envelope function expansion of the Wigner transport equation]], Bull. Amer. Phys. Soc. **59** (2014) 
 + 
 +=== 2013 === 
 +  * [[Mihail (Mixi) Nedjalkov]], P. Schwaha, [[Siegfried Selberherr]], J.M. Sellier, and [[Dragica Vasileska]], [[https://aip.scitation.org/doi/10.1063/1.4802931|Wigner Quasi-Particle Attributes - An Asymptotic Perspective]], Appl. Phys. Lett. **102**, 163113 (2013) 
 +  * P. Schwaha, [[Damien Querlioz]], [[Philippe Dollfus]], J. Saint-Martin, [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1007%2Fs10825-013-0480-9|Decoherence Effects in the Wigner Function Formalism]], J. Comput. Electron. **12**, 388 (2013) 
 +  * Dries Sels, Fons Brosens, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/pii/S0378437112008412|Wigner distribution functions for complex dynamical systems: A path integral approach]], Phys. A: Statis. Mech. Appl. **392**, 326 (2013) 
 + 
 +=== 2012 === 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Siegfried Selberherr]], [[David K. Ferry]], [[Dragica Vasileska]], [[Philippe Dollfus]], [[Damien Querlioz]], [[Ivan Dimov]], and P. Schwaha, [[https://www.sciencedirect.com/science/article/pii/S0003491612001558?via%3Dihub|Physical Scales in the Wigner-Boltzmann Equation]], Ann. Phys. **328**, 220 (2012) 
 +  * Earnshaw R.A., [[Ci Lei]], Li J., Mugassabi S. and Vourdas A., [[https://www.sciencedirect.com/science/article/pii/S0378437111008958|Large-scale data analysis using the Wigner function]],  Phys. A: Statis. Mech. Appl. **391**, 2401 (2012) 
 +  * Dries Sels, Fons Brosens, and [[Wim Magnus]], [[https://www.sciencedirect.com/science/article/abs/pii/S037596011200045X|On the path integral representation of the Wigner function and the Barker--Murray ansatz]], Phys. Lett. A **376**, 809 (2012) 
 + 
 +=== 2011 === 
 +  * [[Sihong Shao]], Tiao Lu, and [[Wei Cai]], [[https://www.cambridge.org/core/journals/communications-in-computational-physics/article/adaptive-conservative-cell-average-spectral-element-methods-for-transient-wigner-equation-in-quantum-transport/71FE2A189AAB8391E03EA9D1A6F06923|Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport]], Commun. Comput. Phys **9**, 711 (2011) 
 +  * [[Haiyan Jiang]], [[Wei Cai]], and Raphael Tsu, [[https://www.sciencedirect.com/science/article/pii/S0021999110006662|Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes]], J. Comput. Phys. **230**, 2031 (2011) 
 + 
 +=== 2010 === 
 +  * [[Haiyan Jiang]] and [[Wei Cai]], [[https://www.sciencedirect.com/science/article/pii/S0021999110000811|Effect of boundary treatments on quantum transport current in the Green’s function and Wigner distribution methods for a nano-scale DG-MOSFET]], J. Comput. Phys. **229**, 4461 (2010) 
 +  * [[Damien Querlioz]], Jerome Saint-Martin, and [[Philippe Dollfus]], [[https://link.springer.com/article/10.1007/s10825-010-0319-6|Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation]], J. Comput. Electron. **9**, 224 (2010) 
 + 
 +=== 2009 === 
 + 
 +  * [[Damien Querlioz]], Huu-Nha Nguyen, Jerome Saint-Martin, Arnaud Bournel, Sylvie Galdin-Retailleau, and [[Philippe Dollfus]], [[https://link.springer.com/article/10.1007/s10825-009-0281-3|Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport]], J. Comput. Electron. **8**, 324 (2009) 
 +  * Fons Brosens and [[Wim Magnus]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200844424|Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions]], Phys. Stat. Sol. (b) **246**, 1656 (2009) 
 +  * Fons Brosens and [[Wim Magnus]], [[https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200844424|Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions]], Phys. Stat. Sol. (b) **246**, 1656 (2009) 
 + 
 +=== 2008 === 
 + 
 +  * [[Kyoung-Youm Kim]], [[https://iopscience.iop.org/article/10.1143/JJAP.47.358|Nonuniform mesh application to discrete Wigner transport equation]], Jap. J. Appl. Phys. **47**, 358 (2008) 
 + 
 +=== 2007 === 
 +  * [[Kyoung-Youm Kim]], [[https://aip.scitation.org/doi/full/10.1063/1.2818363?showFTTab=true&containerItemId=content%2Faip%2Fjournal%2Fjap|discrete formulation of the Wigner transport equation]], JAppl. Phys. **102**, 113705 (2007) 
 + 
 +=== 2004 === 
 +  * [[Hans Kosina]], [[Mihail (Mixi) Nedjalkov]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.359/mcma.2004.10.3-4.359.xml|Solution of the Space-dependent Wigner Equation Using a Particle Model]], Mon. Carl. Meth. Appl. **10**, 359 (2004) 
 +  * [[Mihail (Mixi) Nedjalkov]], E. Atanassov, [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.degruyter.com/view/j/mcma.2004.10.issue-3-4/mcma.2004.10.3-4.461/mcma.2004.10.3-4.461.xml|Operator-Split Method for Variance Reduction in Stochastic Solutions of the Wigner Equation]], Mon. Carl. Meth. Appl. **10**, 461 (2004) 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Siegfried Selberherr]], [[Christian Ringhofer]], and [[David K. Ferry]], [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.115319|Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices]], Phys. Rev. B **70**, 115319 (2004) 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], E. Ungersboeck, and [[Siegfried Selberherr]], [[https://iopscience.iop.org/article/10.1088/0268-1242/19/4/076|A Quasi-Particle Model of the Electron-Wigner Potential Interaction]], Semicon. Sci. Techn. **19**, 226 (2004) 
 + 
 +=== 2003 === 
 +  * [[Christoph Jungemann]] and Bernd Meinerzhagen, [[https://www.springer.com/gp/book/9783211013618|Hierarchical Device Simulation]], (Springer, 2003) 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0026269203000697?via%3Dihub|Stochastic Interpretation of the Wigner Transport in Nanostructures]], Microelectron. J. **34**, 443 (2003) 
 + 
 +=== 2002 === 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://link.springer.com/article/10.1023%2FA%3A1020799224110|Space Dependent Wigner Equation Including Phonon Interaction]], J. Comput. Electron. **1**, 27 (2002) 
 +  * [[Mihail (Mixi) Nedjalkov]], [[Hans Kosina]], [[Robert Kosik]], and [[Siegfried Selberherr]], [[https://www.sciencedirect.com/science/article/abs/pii/S0167931702006251?via%3Dihub|A Wigner Equation with Quantum Electron-Phonon Interaction]], Microelectron. Engin. **63**, 199 (2002) 
 +  * L. Shifren and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/S0921452601013928?via%3Dihub|Wigner Function Quantum Monte Carlo]], Phys. B Cond. Matt. **314**, 72 (2002)
  
-===== Miscellaneous =====+=== 2001 === 
 +  * L. Shifren and [[David K. Ferry]], [[https://www.sciencedirect.com/science/article/pii/S0375960101003449?via%3Dihub|Particle Monte Carlo Simulation of Wigner Function Tunneling]], Phys. Lett. A **285**, 217 (2001) 
 +  * [[Kyoung-Youm Kim]] and Byoungho Lee, [[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.64.115304|Wigner-function formulation in anisotropic semiconductor quantum wells]], Phys. Rev. B **64**, 115304 (2001)
  
publications.1548914388.txt.gz · Last modified: 2019/01/31 05:59 by wigner_user

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki