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Abstract The Wigner Monte Carlo method, based on

the generation and annihilation of particles,

has emerged as a promising approach to treat tran-
sient problems of quantum electron transport in nano-

structures. Tackling these simulations in multiple spa-

tial dimensions demands a parallelized approach to fa-
cilitate a practical application of the method in order

to investigate realistic problems, due to the otherwise

exorbitant execution-times and memory requirements.
Because of the annihilation step, a straight-forward par-

allelization of the Wigner Monte Carlo code is not pos-

sible, since sub-ensembles of particles can not be treated

independently. Moreover, the large memory
requirements of the annihilation procedure presents

challenges when working in a distributed-memory set-

ting. A solution to this problem is presented here with
a parallelization approach using a spatial domain de-

composition, implemented using the message passing

interface. The presented benchmark results, based on
standard one-dimensional examples, exhibit a good ef-

ficiency in the scalability of not only speed, but also

memory consumption, which is paramount for the sim-

ulation of realistic devices.
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1 Introduction

An accurate simulation of modern nanoelectronic de-

vices has to receive a fully time-dependent,

quantum treatment. Despite the existing theoretical ba-

sis to perform such simulations, almost any problem of
a size or duration of practical interest becomes com-

putationally intractable. The non-equilibrium Green’s

function (NEGF) approach has established itself as the
go-to method in the community for performing station-

ary quantum simulations. However, an application of

NEGF to time-dependent problems becomes extremely
computationally demanding.

The Wigner formalism provides an attractive al-

ternative to NEGF, as it provides a reformulation of
quantum mechanics – usually formulated through op-

erators and wave functions – in the phase space us-

ing functions and variables, thereby providing a more

intuitive description, which also facilitates the reuse
of many classical concepts and notions. Several meth-

ods have been applied to solve the Wigner equation of

which the stochastic Wigner Monte Carlo method, us-
ing the signed-particle technique, has emerged as prob-

ably the most promising approach: it has made multi-

dimensional Wigner simulations viable for the first
time [1]. An efficient distributed parallel computation

approach is the next crucial step to facilitate the use of

Wigner simulations to investigate actual devices.

The evolution step in classical Monte Carlo code

is ’embarrassingly parallel’: the particle ensemble can

be split amongst computational units and each sub-

ensemble can be treated completely independently. This
necessitates domain replication, when working in a mes-

sage passing interface (MPI)-based, distributed-

memory setting, such that the entire domain is rep-
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resented on each MPI process (computational unit) to

avoid additional communication.

Applying the same concept to the parallelization in
the Wigner Monte Carlo method is hindered by the

annihilation step: it must be performed on the global

ensemble of particles and cannot be performed inde-
pendently on single sub-ensembles without some com-

munication/synchronization. Furthermore, the memory

demands of the annihilation algorithm is proportional

to the dimensionality and chosen resolution of the do-
main(s), which can lead to exorbitant memory require-

ments. The latter makes domain replication – as is com-

mon for classical Monte Carlo simulation – unfeasible
in a distributed-memory environment. Without domain

replication, achieving good parallel efficiencies becomes

more challenging.

In light of the above, a parallelization approach us-

ing a spatial domain decomposition [2] technique is in-
vestigated here, with which the data redundancy, and

thereby the global memory footprint of the simulation,

can be greatly reduced. Furthermore, this approach is
shown to yield good efficiencies – considering the me-

thod’s need for synchronization naturally hindering

scalability – in both the speedup of execution-time and
memory consumption. The introduced techniques are

made available in the free, open source ViennaWD soft-

ware package [3].

In the following, Section 2 provides some

background on the Wigner formalism and the differ-
ent methods which have been developed to solve the

Wigner equation, with an emphasis being placed on the

stochastic methods. The signed-particle method will be
outlined to provide the basis for the discussion of the

parallelization of the Wigner Monte Carlo code, which

follows in Section 3. The results, obtained with an MPI-

based implementation of the domain decomposition ap-
proach presented here, are reported and analyzed in

Section 4, whereafter a conclusion and outlook is given.

2 Background

An overview of the various adaptations of the Wigner
formalism to semiconductor transport is presented in

the following. Some of the solution methods are out-

lined before the stochastic, signed-particle method is
looked at in more detail.

2.1 Wigner Formalism in Semiconductor Transport

The Wigner formulation of quantum mechanics retains

many classical concepts and notions, which makes it a

convenient approach to describe the transport phenom-

ena characterizing the evolution of electrons in nano-
structures.

The coherent Wigner formalism can be extended
to describe processes causing decoherence, giving rise

to a hierarchy of transport models. These begin with

the simple relaxation time approximation, the Wigner-

Boltzmann equation [4,5] which accounts for scatter-
ing, e.g., by phonons and impurities at the classical

transport level, and end with the quite complicated

Levinson and Barker-Ferry equations, which account
for the quantum character of the interaction with the

sources of decoherence [6]. Of central interest is the

Wigner-Boltzmann equation, which, as suggested by
the name, unifies the two theories and ensures a seam-

less transition between purely coherent and classical

transport [7] – the Wigner function gradually turns into

the Boltzmann distribution function. Moreover, physi-
cal averages are calculated using the same expressions

for both the Boltzmann and Wigner functions. Hence,

the Wigner function is sometimes called a quasi-
distribution function, because it may also have nega-

tive values, which are a manifestation of the uncertainty

relation in the phase space [8].

The theoretical accomplishments of the Wigner for-

malism are accompanied by challenging and sometimes

peculiar numerical aspects; several methods have been
explored over the years to solve the associated Wigner

transport equation. The first pioneering works in the

field [9,10,11,12,13] applied the intuitive finite differ-
ence scheme to directly solve the Wigner equation. This

allowed the study of physically relevant

boundary conditions and demonstrated the feasibility

of applying the Wigner formalism to study quantum
structures, like resonant tunneling diodes. Some of the

disadvantages of applying the finite difference scheme –

a deterministic method – quickly emerged: the discrete
Wigner equation yields a dense matrix, which makes

the inversion process numerically very expensive. Fur-

thermore, the solution is sensitive to the chosen dis-
cretization of the diffusion term, due to the highly os-

cillatory nature of the Wigner function in regions with

large changes in electric potential [5]. As a result, finite

difference schemes remain limited in their application to
single-dimensional structures of few tens of nanometers,

with moderate potential variations in the active regions.

Nonetheless, the high precision offered by deterministic
methods remains very desirable, which motivates the

development of novel deterministic approaches, based

on, for example, spherical harmonics [14] or, more re-
cently, wavelets [15].

Stochastic methods offer an alternative to determin-

istic methods and their application to solve the Wigner
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equation has been inspired by the great success of the

Monte Carlo approaches to the very similar classical
Boltzmann equation [16,17]. Many classical concepts

have been revised and adapted to develop numerical

models for computing the quantum quasi-distribution
function. Still, the basis of the method(s) remains the

association of trajectories to a single or an ensemble of

particle(s).

Wigner trajectories have been defined with the help

of a quantum force [18]. They give insight in quantum
phenomena like tunneling processes, but can be created

or destroyed making the important consequences of the

Liouville theorem invalid for this particle model.

Another particle model introduces the concept of

Wigner paths [19]. Here, the action of the Wigner po-
tential operator is interpreted as scattering, which links

pieces of classical trajectories to Wigner paths.

Two more recent particle models – the affinity and

signed-particle method – exhibit an improved numerical

efficiency and higher functionality. They unify classical
and quantum regions within a single transport picture

and allow the consideration of fully three-dimensional

wave-vector spaces in multi-dimensional devices.

The affinity model represents the Wigner function

as a sum of Dirac excitations in the phase-space, each
weighted by an amplitude, called affinity [20]. The affi-

nities are updated by the Wigner potential during the

particle evolution, and contain all the information on
the quantum state of the system. The

affinities can assume positive or negative values, which

act as weighting factors in the reconstruction of the

Wigner function and consequently in the computation
of all physical averages [21].

The signed-particle method is based on the alterna-

tive interpretation of the Wigner potential as a gener-

ator of signed particles (these particles are numerical,

not physical). A + or – sign is associated to each par-
ticle and carries its quantum information; the sign of

each particle is taken into account when evaluating the

physical averages. In all other aspects the evolution of
the particle is field-less and classical. Two particles with

opposite sign, which meet in the phase space, may an-

nihilate each other since they have an equivalent prob-
abilistic future but make an opposite contribution in

the process of averaging. Due to the ergodicity of such

systems, a single particle Monte Carlo algorithm has

been developed [22] and more recently the method has
been generalized to also treat transient transport [23].

The mathematical foundation of the model is discussed

in the next subsection.

2.2 Mathematical Model

The Wigner transform of the density matrix opera-

tor yields the Wigner function fw (x, p). The associ-

ated evolution equation for the Wigner function follows
from the von Neumann equation for the density matrix,

which for the one-dimensional case is

∂fw

∂t
+

p

m∗

∂fw

∂x
=

∫

dp′Vw (x, p− p′) fw (x, p′, t) . (1)

If a finite coherence length is considered [24], the mo-
mentum values are quantized and the integral is re-

placed by a summation; the semi-discrete Wigner equa-

tion results:

∂fw

∂t
+
h̄q∆k

m∗

∂fw

∂x
=

K
∑

q=−K

Vw (x, q − q′) fw (x, q′, t), (2)

where q is now an index which, henceforth, refers to the

quantized momentum, i.e. p = h̄ (q∆k), with a resolu-
tion determined by the coherence length, ∆k = π

L . The

Wigner potential (which may also be time-dependent)

is defined accordingly as

Vw (x, q) ≡
1

ih̄L

∫ L/2

−L/2

ds e−i2q∆k·sδV (s;x) ; (3)

δV (s;x) ≡ V (x+ s)− V (x− s) .

Equation (1) is reformulated as an adjoint integral

equation, yielding a Fredholm equation of the second

kind. The latter is solved by a Monte Carlo algorithm
based on an iterative application of the integral trans-

formation kernel [25,26], along with the particle-sign

technique [23]. The latter associates a + or – sign to
each numerical particle, which carries the quantum in-

formation of the particle conveyed to it by the Wigner

potential. The term on the right-hand side of (1) gives
rise to a particle generation term in the integral equa-

tion; the statistics governing the particle generation are

determined by the Wigner potential (3), which is nor-

malized to unity (denoted by Ṽw).

Particle Generation: A generation event entails the

creation of two additional particles with complemen-

tary signs and momentum offsets q′ and q′′, with re-
spect to the momentum q of the generating particle.

The two momentum offsets, q′ and q′′, are determined

by sampling the probability distributions V +
w (x, q) and

V −

w (x, q), dictated by the positive and negative values
of the normalized Wigner potential (Ṽw), respectively:

V +
w (x, q) ≡ max

(

0, Ṽw

)

; (4)

V −

w (x, q) ≡ max
(

0, −Ṽw

)

. (5)
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The generation events occur at a rate given by

γ (x) =
∑

q

V +
w (x, q) , (6)

which typically lies in the order of 1015 s−1. This rapid

increase in the number of particles is counteracted by

the notion of particle annihilation, which keeps the

number of particles under control, thereby making the
method computationally feasible.

Particle Annihilation: The particle annihilation con-
cept entails a division of the phase space into many

cells – each representing a volume (∆x∆k) of the phase

space – within which particles of opposite sign annihi-
late each other, e.g. in a given cell i with Pi particles

with a positive sign and Qi particles with a negative

sign, |Pi −Qi| particles shall remain after annihilation.
These particles are regenerated in the cell, each carry-

ing the sign of Pi −Qi.

3 Parallel Algorithm

As a preliminary to discussing the parallel algorithm,

the serial algorithm of the signed-particle method is

presented. Thereafter, possible parallelization
approaches are outlined, before the chosen domain de-

composition approach, and its implementation are dis-

cussed.

3.1 Serial Signed-Particle Algorithm

The serial algorithm implementing the mathematical
model, presented in Subsection 2.2, is discussed in the

following by hand of Fig. 1.

The simulation commences with an initialization
step, which receives inputs describing the geometry, po-

tential profile and parameters (e.g. time step, simula-

tion time) used for the simulation. Using these inputs

the (stationary) Wigner potential is computed and the
particle ensemble is initialized with values. Thereafter,

the time loop commences.

The time loop consists of the evolution and annihi-
lation modules, which are sequentially repeated for ev-

ery time-step until the total simulation time is reached.

The evolution module entails the drift and generation
of particles. Particles are drifted classically according

to their momentum value. A particle drifts freely until

the end of the time-step or until a generation event oc-

curs – whichever comes first. If a particle experiences a
generation event, two new particles are generated and

added to the particle ensemble. The processes of drift

and generation are repeated in an iterative fashion for

Fig. 1: Flowchart of the serial algorithm implementa-

tion using the signed particle method

all particles in the (growing) ensemble until the end of

the time-step is reached.

Since the annihilation procedure introduces some in-

accuracies, e.g numerical diffusion [27], it should only
be performed when needed – as opposed to perform-

ing it at every time step. Therefore, after completion of

the evolution step a prediction is made on the increase

in the number of particles for the next time step. This
can be done by considering the (stationary) generation

rate and the current number of particles. If the pre-

dicted number of particles after another time-step of
generation (in evolution) might exceed the set allowed

maximum, an annihilation step is performed. The anni-

hilation simply entails summing the signs of particles in
each cell of the phase-space, which is represented by a

multi-dimensional array of integers. After the summa-

tion, a ’fresh’ particle ensemble is generated: particles

are randomly distributed within each spatial cell and
new values of free-flight time are assigned to each. This

is valid since we are dealing with a Markov process and

regard the particles as identical and indistinguishable.
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3.2 Possible Parallelization Approaches

The general approach to parallelizing Monte Carlo code

is to split the ensemble of particles into several sub-
ensembles and treat each of these independently (to

the extent possible) with a separate computation en-

tity. In the context of a distributed-memory approach,

the latter would be an MPI process, while in a shared-
memory context the computation entity takes the form

of a thread.

The parallelization of the Wigner Monte Carlo code
is complicated by the annihilation step, which hinders

the independent treatment of sub-ensembles for two

reasons: i) The annihilation step must be performed
on the entire (global) ensemble of particles since (here)

the sub-ensembles are not regarded to be big enough to

be statistically representative1. The latter necessitates
some communication and/or synchronization between

the computational units.

The second obstacle the annihilation step presents
to parallelization is ii) the exorbitant memory demands

of the algorithm when treating higher-dimensional

problems. The annihilation step requires the phase-

space to be represented in the memory using an array
of integers, each representing the sum of particle signs

inside one cell (∆x∆k) of the phase space grid. While

for one-dimensional simulations the memory footprint
of this array remains small, one can anticipate the grow-

ing memory consumption for higher-dimensional simu-

lations, by hand of a (still conservative) example: con-
sider a 2D spatial domain of 100 nm × 100 nm with a

resolution of ∆x = 1nm and a 3D k-space with 100

k-values per direction. The associated phase-space grid

would consist of 1002 × 1003 cells, each represented by
an integer of (at least) 2 bytes. This would demand

a total memory consumption of O
(

210
)

bytes, i.e. ap-

proximately 20GB.

In a shared-memory setting – typically covering

small-scale parallelization cases – only a single instance

of the simulation (the domain and all sub-ensembles)
exists in memory and all threads have shared access

to it. The communication required due to i) is thereby

avoided to a great extent, but a synchronization
amongst the threads is still needed. The particle en-

semble can be partitioned amongst the threads, in a

load-balanced manner, using appropriate parallel loop-

scheduling techniques. This ensures that no thread is
left idle for long periods at the synchronization point

1 If a sub-ensemble is big enough to yield a statistically
representative solution to the simulation task, the ’paralleliza-
tion’ simply amounts to a simultaneous repetition of the same
experiment on different computational units, the results of
which are averaged.

before annihilation ensues. Although simple to imple-

ment, a pure shared-memory approach is confined to
a single computation node2 with a limited number of

CPU cores and memory. The latter severely restricts the

simulation problems that can be investigated, due to
excessive run-times or exorbitant memory demands of

higher-dimensional problems. Therefore, a pure shared-

memory approach is an unfeasible parallelization layer
for a future-proof simulation platform.

A large-scale, MPI-based parallel approach, is not
restricted by the computational resources of a single

node, thereby greatly expanding the scope of the sim-

ulations, which can be handled from a computational
point of view. The particle ensemble is split into many

sub-ensembles, each of which is assigned to a separate

MPI process3 for computation. However, since the pro-

cesses do not share the same memory, the sub-ensemble
of every process must be communicated to the mas-

ter node, at each time step, where they are all com-

bined and the annihilation step is performed. If a suf-
ficient number of worker processes are in operation,

the communication bandwidth of the master process’

node will quickly saturate – the worker processes re-
main idle while waiting for all other processes to com-

plete their communication and, thereafter, for the an-

nihilation step to be completed. The post-annihilation

particle ensemble is split up again and distributed
amongst the processes.

The high memory demand of the annihilation step

presents two problems in the context of a distributed-

memory parallelization approach: Today’s large-scale

clusters provide between 2− 4GB of memory per CPU
core. If each process is assigned to one CPU core, which

is desirable for an optimal utilization of the computa-

tional resources, only 2 − 4GB of memory are avail-
able to each process. This can be insufficient for a com-

plete representation of the phase-space array in multi-

dimensional problems (20GB in the example presented
before). Therefore, the master process performing the

annihilation must run on a large-memory node, which

contains significantly more memory than the common

nodes. However, typically only a limited number of such
large-memory nodes are available and a parallel imple-

mentation relying on such nodes results in decreased

accessibility to large-scale supercomputing resources.

In the above approach, the computation is not lim-

ited to a single node, however, the memory still is. This
approach does not account for the hardware configu-

rations of today’s large-scale clusters and imposes the

2 In this context a node refers to a computer, which is part
of a larger cluster.
3 For the remainder of this work, the term process refers to

an MPI process.
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same memory-limitations on the scope of the simula-

tion problems which can be treated, as in the shared-
memory approach.

An approach using a decomposition of the spatial

domain avoids the problems of the aforementioned ap-

proaches, i.e. a large memory footprint and a central-

ized communication. The advantages and challenges of
this approach and its implementation are treated in de-

tail in the remainder of this section.

3.3 Domain Decomposition Approach

The domain decomposition approach entails splitting
up the spatial domain amongst processes. Each pro-

cess represents a subdomain (i.e. a part of the global

domain) and only treats particles, which fall within
its own subdomain. Thereby, the memory requirements

to represent the (localized) phase-space, and all other

space-dependent quantities, are scaled down with the
number of processes (subdomains) used. As the parti-

cle ensemble evolves, the particles travel between sub-

domains. This necessitates an inter-process communi-

cation layer, representing spatially neighboring subdo-
mains; a centralized communication where all worker

processes transfer data via a single master process is

avoided due to the aforementioned disadvantages.

It should be noted that a decomposition of the k-

space is not attractive from a performance viewpoint
since, unlike the position, the momentum of newly gen-

erated particles can differ greatly from that of the gen-

erating particle. Therefore, it can happen that a parti-
cle must generate particles with k-values represented on

other processes – the associated communication would

be debilitating considering the exponential particle
growth, due to generation.

3.3.1 Localized Annihilation

Due to the domain decomposition, the part of the
phase-space associated to the subdomain/particles of

each process can be represented in the memory typi-

cally available to a process (2 − 4GB). The annihila-
tion step can be performed locally by each process for

the particles in its subdomain and does not require it

to be performed on a single process/node. The only re-
quirement for this is that the annihilation step must be

performed amongst all the processes at a certain time

step, i.e. if one process requires an annihilation step –

as determined by the local growth prediction – all other
processes should perform an annihilation, irrespective

of their local growth prediction. This approach ensures

the global statistics (Wigner function) are not falsified.

3.3.2 Load-balancing

The conventional approach to Monte Carlo paralleliza-

tion splits up the particle ensemble equally amongst

processes, since any process can treat an arbitrary par-
ticle, thereby achieving good load-balancing. The do-

main decomposition approach, however, places a re-

striction on which particles a process can treat based on
the position a particle has at a specific time, which com-

plicates the task of load-balancing. In a particle trans-

port problem, by definition, one will have a non-uniform
distribution of particles moving about in the domain.

In principle the size of the subdomains can be non-

uniform, chosen such that the particles are more equally

distributed (on average over time) between processes,
but this would require some heuristics as the optimal

decomposition will differ greatly between different sim-

ulation problems. The issue of load-balancing will not
be treated further here; the remaining discussion and

presented results (Section 4) assume a uniform decom-

position of the spatial domain (and achieve reasonable
scaling nonetheless).

3.4 Algorithm

This subsection discusses the implementation of the do-
main decomposition approach using MPI.

3.4.1 MPI Topology

We consider n MPI processes – a master process (pro-

cess 0) with worker processes (process 1..(n−1)) – each

assigned to one CPU core. The spatial domain consid-
ered in the simulation, i.e. the dimensions of the struc-

ture/device, is divided into n uniformly sized subdo-

mains, one for each process, as illustrated in Fig. 2.
The subdomains are assigned to processes in a sequen-

tial order, thereby inherently allowing each process to

’locate’ the processes treating its spatially neighboring

subdomains, e.g. process 2 would be responsible for the
subdomain to the left of the subdomain handled by pro-

cess 3, etc. In multi-dimensional simulations, the spa-

tial decomposition may be restricted to less dimensions
to reduce communication (e.g. for the two-dimensional

case a slice-partitioning is used, instead of a block-

partitioning), but this depends on the computational
resources and memory requirements demands of the in-

vestigated problem.

Over the course of the simulation the MPI commu-

nication of each process is restricted to the processes
treating the spatially neighboring subdomains, apart

from some minimal communication (one character per

time step) to the master process for coordination of
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Fig. 2: Schematic of the domain decomposition ap-

proach of a two-dimensional simulation domain; three

adjacent subdomains with a region of overlap between
them, incrementally assigned to MPI processes

the annihilation step. Such a decentralized approach

avoids a constant querying of the master process, which

– due to increased latency and bandwidth limitations
– would impede scaling for increasing numbers of pro-

cesses. The transfer (communication) of particles be-

tween processes only occurs once at the end of each
time-step. This necessitates a small overlap between ad-

jacent subdomains, which serves as a so-called ’ghost

layer’ [2], to accommodate particles traveling towards a
neighboring subdomain until they get transferred to the

subdomain at the end of the time step. A larger over-

lap between subdomains simplifies the transfer of parti-

cles between processes, however, this introduces greater
data redundancy, which negatively affects the parallel

efficiency. The exact extent of the overlap should con-

sider the maximum distance a particle can travel within
the chosen time-step as well as its direction of travel.

3.4.2 Initialization

As illustrated in Fig. 3, the master process performs the

initialization of the simulation environment, which en-
tails receiving external input data (just like in the serial

case), performing the discussed domain decomposition

and finally communicating this data to the worker pro-
cesses.

The initial condition for the simulation is given by

an (arbitrary) ensemble of particles, which is distribu-

ted by the master process amongst the various worker

processes by assigning each particle to an appropriate
subdomain based on its position. The particles asso-

ciated to each subdomain are first collected and then

communicated to the associated worker process by the

Fig. 3: Flowchart illustrating the time sequence of the
steps in the parallel algorithm performed by the mas-

ter process and a worker process. The initialization and

one step of the time-loop are shown. The dashed arrows

indicate communication between the process (commu-
nication to other (possible) worker processes is not

shown)

master process. Furthermore, the master process broad-
casts the potential profile and global parameters,

needed for a localized simulation setup, to all worker

processes.

After receiving setup parameters and its initial par-

ticles ensemble (in case of worker processes), each pro-

cess initializes localized versions of the required data
structures, specific to its subdomain. Thereby, the

memory demands of each process scale down with the

number of processes/subdomains. Moreover, the local-

ization of the Wigner potential allows its computation
to be distributed amongst the processes, which is ben-

eficial when problems with time-dependent potentials

are considered.
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3.4.3 Time Loop

After the initialization phase, each process performs

the evolution of its ensemble of particles for a single

time-step – this is identical to the serial case. After
the time-step is completed, each process performs a

growth prediction for its sub-ensemble of particles, the

result of which is communicated to the master process
in the form of an annihilation flag (1-byte character).

This is done to facilitate a synchronized annihilation

amongst all processes. After the master process has re-
ceived the flags from all worker processes, it broadcasts

a global annihilation flag back to the worker processes.

The global annihilation flag is true if the annihilation

flag of at least one process is true, otherwise it is false.
The annihilation step ensues (or not) locally within

each subdomain, depending on the global annihilation

flag received. The communication step associated with
the annihilation flag implicitly serves as a synchroniza-

tion point between the processes, which is required any-

way due to the need to transfer the boundary particles
at the end of each time step. Therefore, communicating

the annihilation flag does not impede parallel efficiency.

After the (possible) annihilation step, each process
identifies the particles in its subdomain, which qualify

for transfer to its adjacent subdomains. These particles

are collected and sent to the appropriate process, which

is implicitly known due to the sequential ordering dis-
cussed above. Likewise, particles are also received from

the neighbor processes. This communication is non-

blocking, however, a synchronization barrier is used to
ensure all transfers are complete before the next time-

step commences. Since the processes already will have

been synchronized shortly before by the annihilation
communication, and the fact that the execution time of

the annihilation procedure does not vary significantly

between the processes, this second synchronization is

not as detrimental to the efficiency of the paralleliza-
tion as it initially appears. The reason for performing

the transfer after the annihilation, is that after an an-

nihilation step the size of the particle ensemble will be
significantly smaller, consequently the number of parti-

cles to be transferred will have been reduced.

This sequence of evolution, annihilation, and trans-
fer is repeated until the total simulation time has been

reached. The simulation results of each process are writ-

ten to disks locally by each process, which increases ef-

ficiency by avoiding a global reduction step issued by
the master process. Simulation results are merged in a

straightforward manner via a separate post-processing

step at the end of the simulation.

4 Results

This section presents results obtained by the parallel al-

gorithm introduced in the preceding section. After vali-
dating the algorithm, its performance is evaluated with

two different one-dimensional examples.

4.1 Validation

Firstly, we validate our spatial-decomposition approach

to ensure that it yields the correct results and does not
introduce some (obvious) systematic errors when the

domain is split up between an increasing number of

processes. For this purpose the results, simulated with
different number of processes, are compared to an ana-

lytical solution of the following problem. We consider a

minimum uncertainty wave packet moving from the left
of a 200 nm one-dimensional domain towards the right,

impinging on a 3 nm wide, square potential barrier at

the center of the domain.

The Wigner function representing a minimum un-

certainty wave packet is defined as

f (x, q, t0) =
1

π
e−

(x−x0)2

2σ2 e−(q∆k−k0)
22σ2

. (7)

The parameters of the initial condition (7) and other
simulation parameters are defined in Table 1. Further

specifics of this validation setup and the analytical so-

lution can be found in [28] and [29], respectively.

Fig. 4 shows the solutions of the validation example

for 16, 32, and 64 processes: the simulated results all

match each other (within the bounds of the stochas-

tic noise), and these solutions also show a reasonable
quantitative agreement to the analytical solution. The

difference between the analytical solution and the simu-

lated results is due to the rectangular barrier being ap-
proximated using a finite resolution for the spatial mesh

Table 1: Simulation parameters for validation example

Parameter Value Unit

Ldevice 200 nm
Lcoherence 100 nm
∆k π/Lcoh nm−1

∆t 0.1 fs
∆x 1.0 nm
x0 40.0 nm
σ 7.0 nm
k0 18∆k nm−1

Barrier width 3.0 nm
Barrier left edge 100 nm
Barrier height 0.1 eV
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Fig. 4: Simulated results of density, obtained with dif-

ferent number of processes, compared to an analytical
solution of the single potential barrier problem; results

shown after 85 fs and 125 fs of evolution

(1.0 nm) in the simulation. This leads to a wider effec-

tive barrier width, which explains the reflected wave be-

ing larger than for the analytic solution. Nonetheless,
this comparison shows that the implemented spatial-

decomposition works correctly.

4.2 Performance

The parallel efficiency of our approach is investigated

at the hand of two examples in the following. The sim-
ulations are first run with a single process, to acquire

a baseline, and then repeated using 16, 32 and 64 pro-

cesses. This procedure is repeated for different values
for the maximum allowed ensemble size (8, 16 and 32

million particles). The maximum number of particles

per process is scaled with the number of processes, e.g.

a set maximum of 32 million particles for a simulation
using 32 process, implies a maximum of 1 million par-

ticles per process. This scaling is necessary to allow a

fair comparison. The execution time is recorded from
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Fig. 5: Parallel speedup and efficiency of the single-

barrier problem for different maximum particle ensem-
ble sizes

the point where the master process starts the serial ini-

tialization and ends when all process have completed
the parallel time-loop. All output was disabled during

the benchmarking.

4.2.1 Single Barrier / One Wave Packet

We consider the same single, potential barrier, as used

for validation purposes above. The parallel scaling is
shown in Fig. 5. A parallel efficiency of at least 60% is

achieved for all cases. The only outlier is the case with

a global particle maximum 8 million particles, which
shows a big jump in efficiency from 16 to 32 processes.

We attribute this to the annihilation process, which

uses the maximum sub-ensemble size per process as a
criterion for performing an annihilation step, depending

on the outcome of the growth prediction. For 16 pro-

cesses each process is allowed a maximum of 500 000

particles, whereas for 32 processes it is only 250 000.
For this specific example, where we have an imbalanced

concentration of particles in the form of the initial wave

packet, the larger sub-ensemble maximum for 16 pro-
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Fig. 6: Distribution between 16 processes of the total

number of numerical particles in the simulation repre-
senting the distribution of the computational load at

85 fs and 125 fs; the dashed horizontal line indicates the

ideal load distribution

cesses, allows for more growth before annihilation takes

place and therefore can lead to a greater computational

load overall.

The absolute number of (numerical) particles within

a subdomain serves as an indicator of the computa-

tional load a process experiences (the true load is also

a function of the generation rate). Fig. 6 shows the
number of numerical particles at the same two time in-

stances as in Fig. 4. It is important to note that the dis-

tribution of the numerical particles does not correspond
to the physical density, which is obtained by taking into

account their sign. Fig. 7 illustrates the time evolution

of the number of particles on the processes. The evo-
lution of the wave packet traveling across the 200 nm

domain is clearly demonstrated by the initial imbal-

ance of the workload on the processes. Initially, when

the wave packet is still narrow, the particles are passed
on between the processes, but as the packet spreads the

load distribution becomes more uniform. After approx-

imately 150 fs the distribution remains almost constant
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Fig. 7: Time evolution of numerical particles on (se-

lected) processes representing the changing computa-

tional load. Particles are moving from left to right and
eventually spread out, making the load distribution bet-

ter (>150 fs); the dashed horizontal line indicates the

ideal load per process

with some oscillations, which is explained as follows:
After the reflected and transmitted parts of the initial

wave packet have left the domain through the absorbing

boundaries, the physical density in the domain dimin-

ishes. However, this is not true for the numerical parti-
cles – positive and negative particles are constantly gen-

erated across the domain and compensate each other to

a large extent. The oscillations are due to the particle
annihilation taking place at regular intervals. This in-

terpretation of Fig. 7 gives two important messages:

Firstly, the ideal load per process is approached when
the evolution approaches a stationary regime. Secondly,

this tendency is relatively independent on the physi-

cal density. Sharper initial densities give rise to larger

initial imbalance between the individual processes and
vice versa.

In light of these considerations, the next example

starts with an initial condition, which is already broadly

spread out.

4.2.2 Double Barrier / Two Wave-Packets

We consider two wave packets traveling towards each

other in a domain with two potential barriers. The
setup is the same as in the first example, apart from

location of the barriers and the initial position of the

wave packets, as stated in Table 2. A particle ensem-
ble obtained after 80 fs of evolution is used as an initial

condition for this simulation.

Fig. 8 shows the parallel efficiency curves for the

double barrier example, which is improved with respect

to the single barrier case. This can be attributed to the
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Fig. 8: Parallel speedup and efficiency of the double-

barrier problem for different maximum particle ensem-
ble sizes

improved load balancing amongst the processes from
the initial condition. The evolution of the numerical

particle distributions in Fig. 9 shows how the load

amongst the processes spreads out faster than for the
single barrier problem despite the presence of a physi-

cal density in the domain. These peculiarities make the

spatial decomposition method ideal candidate for sim-

ulations of the stationary state.

Table 2: Simulation parameters for double barrier

Parameter Value Unit

x1
0 40.0 nm

k10 18∆k nm−1

x2
0 150.0 nm

k20 −18∆k nm−1

Barrier 1 width 3.0 nm
Barrier 1 left edge 70 nm
Barrier 1 height 0.15 eV
Barrier 2 width 3.0 nm
Barrier 2 left edge 130 nm
Barrier 2 height 0.05 eV
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Fig. 9: Time evolution of numerical particles on (se-

lected) processes to represent changing computational

load. The simulation starts with a precomputed initial
condition, where particles are already spread out. A

reasonable load distribution is achieved at early evolu-

tion times: the dashed horizontal line indicates the ideal
load per process

It is important at this point to underline the ac-
tual real-life benefits of utilizing our parallelization ap-

proach: the single barrier example, running on 64 pro-

cesses with 60% efficiency, translates into a speedup of

around 40 times. In terms of execution time, a serial
runtime of around 47 minutes was reduced to just 70

seconds. In the same vein, a simulation problem (of suf-

ficient complexity), which would normally require two
days of computation can be completed in approximately

one hour and ten minutes. This aspect opens up a new

realm of simulation problems, which can be investigated
using the Wigner formalism.

5 Conclusion

The presented parallelization of the Wigner Monte

Carlo method, using a spatial decomposition, has been

shown to offer a dramatic reduction in computation
time. Excellent parallel efficiencies, using typical

distributed-memory hardware infrastructure, are

achievable despite the need for synchronization and
non-ideal load-balancing.

The load-balancing has been shown to improve with

the spread of the initial condition and when approach-
ing stationary regimes of evolution. These peculiarities

make the spatial decomposition method an ideal candi-

date for simulating stationary state conditions.

Furthermore, the use of localized data structures
leads to a down-scaling of the memory consumption,

which paves the way for investigating also larger devices

in higher dimensions and/or time-dependent phenom-
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ena, which would not be possible using the conventional

parallelization approach for Monte Carlo.
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