Three-Dimensional Topography Simulation Based on a Level Set Method
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Abstract

We present a general three-dimensional topog-
raphy simulator for the simulation of deposition and
etching processes. The simulator is called ELSA
(Enhanced Level Set Applications). ELSA is based
on a level set method including narrow banding and a
fast marching method. Modules for the transport of
species, for surface reaction, and for the level set
method are its basis.

Introduction

Three-dimensional topography simulation is still
faced with many challenges which limits its general
capability and usefulness. To date it is very CPU and
memory expensive.

Roughly speaking, there are three surface repre-
sentation methods for developing three-dimensional
topography simulators [1]. The first one is the seg-
ment-based method, the second one is the cell-based
method, and the third one is the level-set method.
The segment-based method induces significant com-
putational error into the simulation result, especially
in three dimensions, because duplication between the
neighboring surface facets occurs during advancing
the surface along its normal [2]. Using cell-based
method the determination of geometric quantities
such as normals and curvature can be inaccurate [3].

The Level set method provides an interesting al-
ternative method for solving the above mentioned
problems. The interface is extracted based on the
solution of a hyperbolic partial differential equation.
The interface is the zero level set of a higher dimen-
sional function which is the so called level set func-
tion [4],[5]-

The outline of this paper is as follows. First, an
optimized method for constructing the initial level set
function is presented. Second, we discuss the trans-
port model for species. Third, extending the speed
function is briefly described. Fourth, the features of
the simulator are sketched. Finally, simulation results
are shown.

Initializing

The basic idea of the level set method is viewing
the boundary in question at a certain time as the zero
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level set (with respect to the space variables) of a
certain function u(t,x) which is called level set func-
tion. Each point on the surface is moved with a cer-
tain speed perpendicular to the surface denoted by
F(tx). The surface at a later time ¢; shall also be
considered as the zero level set of the function
u(tx), namely { x | wu(t;,x)=0 }. This leads to the
level set equation

w, +F(t,x) ||V u(,x)||=0 (1)

In order to apply the level set method a suitable
initial function has to be determined. A good choice
is the distance function multiplied by minus or plus
one depending on which side of the boundary a point
lies. Since we later apply the level set algorithm only
in a narrow band, it is sufficient to calculate the
signed distance function only in this narrow band.
This method reduces the computational effort of ini-
tialization in three dimensions from O(n’) to o( nz),
where n is the grid resolution in each direction.

Transport Models

For modeling deposition it is assumed that the
distribution of the species coming from the source
obeys a cosine function around the normal vector of
the plane in which the source lies [6]. This implies
that the flux at a surface element is proportional to
the cosine of the angle between the connecting line
between the center of mass of a surface element and
the source and the normal vector of the source plane.

A function which has been used for ions in
plasma systems for etching processes is the normal
distribution f{0)=(2n0)"?exp(-0°/26°) where @ is the
angle around the normal vector of the source plane
and the angular width of the distribution is specified
by o. For the reflection of the particles diffuse and
specular reflection are assumed for deposition and
etching processes, respectively [6].

Visibility Test
Most of the computation time for simulating the

transport of the species above the wafer by the radi-
osity model is consumed in determining the visibility
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between the surface elements which is an O(m?) op-
eration, where m is the number of surface elements
growing approximately like O(n®). If the connecting
line between the center of mass of two surface ele-
ments does not intersect the surface, i.e., the zero
level set, those surface elements are visible from each
other. In order to keep the computational effort at a
minimum rate, we have assumed that two triangles
are visible from each other if the center point of the
grid cells in which the triangles are located, are visi-
ble from each other. Since there are at least two tri-
angles in each grid cell, considerable time is saved.

Radiosity Model

The radiosity model assumes that the total flux
depends on the flux directly from the source, as well
as an additional flux due to the particles which do not
stick and are re-emmited. After discretizing the
problem the flux vector whose elements are the total
flux at different surface elements can be expressed by
a matrix equation. There are two numerical ap-
proaches for solving this problem. The first one is
using a direct solver for the matrix equation. Whereas
this method is very practical in two dimensions, it
becomes impractical due to the computational effort
needed by calculating the inverse matrix for three-
dimensional problems. In three dimensions we solve
the equation iteratively.

Iterative Solver

The iterative solution consists of a series expan-
sion in the interaction matrix. Suitably interpreted, it
can be viewed as a multi-bounce model, in which the
number of terms in the series expansion corresponds
to the number of bounces that a particle can undergo
before its effects are negligible. This approach allows
to check the error remainder term to determine how
many terms must be kept. Since most of the particles
either stick or leave the simulation domain after a
reasonable number of bounces, this is an efficient
approach. By constructing the remainder term, we
can measure the convergence of the expansion and
keep enough terms to bound the error below a user-
specified tolerance.

Extending the speed function

Using the iterative solver we only obtain the
speed function on the surface element but not at the
grid points. In order to use the level set method the
speed function must be suitably extended from the
known values. This is carried out iteratively by start-
ing from the grid points nearest to the boundary.

Mathematical arguments show that the signed dis-
tance function can be maintained from one time step
to the next by choosing a suitable extension as fol-
lows

VF, . (t,x)-V ult,x) =0 (2)

The idea leading to the fast level set algorithm
stems from observing that the values of the level set
function near its zero level set are essential, and thus
only the values at the grid points in a narrow band
around the zero level set have to be calculated. Both
extending the speed function and narrow banding
require the construction of the distance function from
the zero level set in the order of increasing distance.
But calculating the exact distance from a boundary
consisting of a large number of small triangles is
computationally expensive and can be only justified
for the initialization. An approximation to the dis-
tance function can be computed by a special fast
marching method [5].

Stability and Complexity

For advancing the level set function we have
used a second order space convex finite difference
scheme [5]. In each time step the level set function is
advanced with this method. A necessary condition
for the stability of this scheme is the CFL (Courant-
Friedrichs-Levy) condition which guarantees the
boundary can cross no more than one grid cell during
each time step. However, the CFL condition limits
the simulator performance. If we increase the spatial
resolution by a factor A, the maximum time used in a
finite difference method has to be reduced by the
same factor leading to an increase of the number of
simulation steps by the same factor in order to reach
the same thickness. Furthermore, an increase in spa-
tial resolution by A increases approximately the num-
ber of extracted triangles by A> and then the computa-
tional effort of the visibility test by A*. In summary, an
increase in spatial resolution by A leads approximately
to an increase in simulation time by a factor .

Simulation results

_In this section some simulation results obtained
by ELSA (Enhanced Level Set Application) for
deposition and etching processes are shown.

First, we present the result for deposition of a
double-T-shape structure given in Figure 1. The spe-
cies are coming from the X-Y plane above the trench.
The point-shape sources of species are assumed to be
located symmetrically in this plane and contribute to
the direct flux at the surface elements. Figure 2

264 27" Int'l Spring Seminar on Electronics Technology



shows the simulation result including shading effects
due to limited visibility between the surface elements
and surface element and source points. The grid reso-
lution was 30.30.30 and th simulation time was about
10 minutes on a workstation. The simulator is capa-
ble to predict when the void forms. Figure 3 is a
cross section of Figure 2 in the X-Y plane.

Fig. 2: Final boundary after
deposition including
shading effects

Fig. 1: Initial boundary
for a T-shape structure

Figure 4 shows a rectangular trench from which
material is being isotropically etched as shown in
Figure 5. As expected, the sides of the trench are
cleanly etched away and are rounded. Finally, Figure
6 shows directional etching of the same trench which
tends to be etched more in vertical direction.

Fig. 4: Initial boundary
for a rectangular trench

Fig. 3: X-Y cross sectional
simulation result of the
final boundary

Fig. 5: Simulation result for isotropic etching.

Fig. 6: Simulation result for directional etching

Conclusion

State of the art algorithms for surface evolution
processes like deposition and etching processes in
three dimensions have been implemented. A general
simulator called ELSA was developed based on the
level set method combining narrow banding and a
fast marching method. The speed of the simulator in
several steps, e.g., in initialization, visibility test, and
solving the radiosity matrix equation has been im-
proved. Therefore, the efficiency of the simulator has
been increased compared to conventional level set
based simulators.
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