
VISTA Status Report

June 1993

F. Fasching, S. Halama, C. Pichler, H. Pimingstorfer,

G. Rieger, G. Schrom, S. Selberherr, M. Stiftinger

Institute for Microelectronics

A-1040 Vienna, Austria

Gusshausstrasse 27-29

Technical University Vienna

Contents

Summary 1

1 The VISTA User Interface 2

1.1 Structure : 2

1.2 New Components : 3

1.2.1 File Selection : 3

1.2.2 VUI Library : 4

2 The VISTA Material Server 5

3 Unstructured Grid Support 6

3.1 Overview : 6

3.2 Grid Representations : 6

3.3 Extension Mechanism : 6

3.4 Functional Interface : 6

4 The Tool Abstraction Concept 8

5 The VISTA Simulation Flow Control Module 9

5.1 Overview : 9

5.2 De�ning a Task|Process Flow Representation : 9

5.2.1 A Short Example : 9

5.3 The XLISP Tool Bindings : 10

6 An Example of VISTA User Interface and TCAD-Shell

Programming 12

6.1 Motivation : 12

6.2 Overview : 12

6.3 User Interface : 12

6.4 Panel : 12

6.4.1 Mode Section : 13

6.4.2 SUPREM Section : 13

6.4.3 Conversion Program Section : 13

6.4.4 MINIMOS Section : 13

6.4.5 Parameter Extraction Section : 13

6.5 Implementation : 14

6.6 Conclusion : 14

7 The PIF Editor 15

7.1 VISTA Front End : 15

7.2 PED Window : 15

7.3 Main Features : 15

7.4 User Interface : 15

7.5 Display Control : 16

7.6 PIF Conformance : 16

7.7 Other Editing Facilities : 17

7.8 Attributes : 17

8 Generic Device Characteristics 18

8.1 Overview : 18

8.2 User Interface : 18

8.3 Online Graphics : 19

8.4 Conclusion : 19

1

Summary

The work of the VISTA team was largly characterized by e�orts to stabilize the VISTA system.

This has been archieved by some of the following contributions as well as periodic automatic tests

of the complete software.

An important step towards user level consistency of the framework has been achieved by a new

user interface forcing homogeneous "feeling" for all parts of VISTA, not depending on programmer,

programming language, or tool.

A new material database may serve as a unique source for material properties for all adapted

tools.

A general grid support has been designed and implemented, theUnstructured Grid Support (UGS).

It de�nes a consistent way to handle grids that cannot be represented by tensor-products.

To avoid tedious and faulty manual language bindings an improved automatic XLISP language

binding, the �rst part of the Tool Abstraction Concept (TAC), has been introduced.

The Simulation Flow Control module (SFC) was added to the framework which provides a mecha-

nism for executing multi-step simulation tasks in a comfortable manner, supporting the de�nition

of long process
ows by means of referenced process modules.

An example of VISTA user interface and TCAD-shell utilization is presented that allows comfort-

able SUPREM3, SUPREM4, and MINIMOS coupling.

The PIF Editor (PED) is a useful PIF data front end for specifying and modifying 1-D and 2-D

device geometries.

Another VISTA example utilization shows a way to sample various device characteristics with

MINIMOS in a generic and comfortable way.

1 THE VISTA USER INTERFACE 2

1 The VISTA User Interface

1.1 Structure

Xlib

"main" LISP UI Macros

XLISP

VISTA Bindings

VUI-Library

Utility Clients

X Toolkit

VISTA Widgets

Athena Widgets

Intrinsics

Figure 1: The structure of the VISTA user interface. Shaded boxes represent extensions to the

public domain products XLISP and the MIT XWindow system. The arrows indicate the sequence

of function calls between di�erent parts of the user interface.

The structure of the VISTA user interface is shown in Figure 1. The bottom layer is the X

Toolkit[1], an object-oriented subroutine library, designed to simplify the development of X Win-

dow applications. The X Toolkit de�nes methods for creating and using widgets, which appear

to the user as pop-up windows, scrollbars, text-editing areas, labels, buttons, etc. Basic function-

ality is provided by the generic Athena widgets, which are part of the MIT X11 distribution. We

have decided to use this widget set rather than any other open standard, because a migration

from these generic widgets to another widget set (like OSF/Motif, or Open Look) is signi�cantly

easier than vice versa.

A widget-wrapping layer has been put on top of these widgets in order to achieve some widget-

set independence. All widgets are created and modi�ed via speci�c functions rather than via

the generic interface of the X Toolkit. This facilitates the potential migration of the entire user

interface onto another X Toolkit-based platform.

In addition specialized VISTA widgets have been developed on top of the widget-wrapping layer

for supporting TCAD-related information
ow. The VISTA widgets are also created and accessed

1 THE VISTA USER INTERFACE 3

via speci�c functions, so that they can more easily be replaced by other widgets, should the need

arise.

The top layer, the VUI (VISTA User Interface) library serves two purposes. It provides some

often needed higher-level operations and it simultaneously contains most of the policy which is

shared among VISTA applications. In other words, the VUI library takes care that di�erent parts

of VISTA look alike and behave similar. Interactive applications (like visualization clients or the

device editor) have their own VUI-based user interface, whereas applications requiring no user

interaction (like simulators or converters) are provided with a front-end user interface which is

executed by the XLISP interpreter.

1.2 New Components

Many parts of the user interface that have previously been implemented in LISP have been

redesigned and re-implemented in C to be accessible by C applications. The LISP environment,

however, has proven to be very well suited for prototyping. The LISP-bindings for this C-

coded parts are generated automatically, so that a homogeneous programming interface can be

guaranteed.

1.2.1 File Selection

As it is not provided with the Athena widget set, we have implemented an advanced �le selection

widget (see Figure 2), which allows operating system transparent speci�cation of �les (including a

GNU Emacs like �lename completion) using a string subwidget and operating system independent

traversal of the directory tree and selection of existing �les using list subwidgets.

Figure 2: The VISTA File Selection Widget

REFERENCES 4

1.2.2 VUI Library

The VUI library contains functions which create often-used combinations of several widgets in

one step, arrange them and set up all required connections and callback functions. These widget

bouquets behave as if they were single composite widgets and are indistinguishable from the user's

point of view. This approach is similar to the OSF/Motif \Convenience Function" concept[2],

and helps to maintain a uni�ed appearance for di�erent VISTA applications.

References

[1] P.J. Asente and R.R. Swick. X Window System Toolkit, The Complete Programmer's Guide

and Speci�cation. Digital Press, 1990.

[2] OSF/Motif Programmer's Guide, Release 1.1, 1991.

2 THE VISTA MATERIAL SERVER 5

2 The VISTA Material Server

As a part of VISTA, a material database system, the so-called VISTA material server has been

designed and implemented. It consists of one or more material databases and a set of functions

for accessing and maintaining the data.

A simulator usually needs to know the properties of the segments belonging to the simulation

domain. Such data are either stored directly in the PIF{�le or are \referenced" by a material, i. e.,

the PIF{�le contains just the name of the material. The simulator can then use the VISTA ma-

terial server to inquire the material's properties or just identify it to apply some built-in model.

The intention of the VISTA material server is to provide a semantic bu�er layer between the

di�erent tools which must deal with materials on di�erent levels of abstraction and to free the

tool programmers from the tedious task of case-checking and exception-handling. This eases the

development and maintenance of simulation tools and at the same time adds a lot of
exibility

and maintainability to the whole TCAD system.

For example, a process simulator can write speci�c material names such as \BPSG" or \Si3N4"

onto its output-�le and a device simulator can then use the VISTA material server to recognize the

material as an insulator and inquire its permittivity. Furthermore, combinations of two or more

materials can also be handled. This allows the characterization of the dopants in a semiconductor

as well as the storage of process-related material properties when several materials are involved

in a process step.

Figure 3: The Interactive Material Database Program

3 UNSTRUCTURED GRID SUPPORT 6

3 Unstructured Grid Support

3.1 Overview

The Unstructured Grid Support (UGS) module has been introduced into VISTA to cope with the

multitude of non-tensor-product grids used in today's TCAD tools. It is designed to provide

generic storage and retrieval functions for any unstructured grid in any geometric dimension

through a
exible extension mechanism.

3.2 Grid Representations

Figure 4 shows that an unstructured grid is stored in the PIF through a surrounding grid con-

struct, as is the case for tensor product orthoProduct grids. But in contrast to the latter, the

points the grid consists of are stored in a valueList construct inside a pointList. Then a

faceList construct is used to group single points together into a grid element. The number of

points per element depends on the element type, and need not be the same for each element, thus

grids consisting of multiple di�erent elements can be stored in the PIF.

To determine the element type of each face of the grid, an additional attribute construct inside

the grid is used. This attribute has the attributeType ElementType, and a valueType of

asciiString. If all elements of the grid are of the same type, then one string entry in the

attribute specifying the element type is su�cient. However, if there are more than one element

type in the grid, a string for each element describing its type has to be speci�ed.

3.3 Extension Mechanism

Element type strings conform to their names which are listed in a con�guration �le, where new

element types can be made easily available to the framework, by just specifying a decomposition

and an interpolation function. The decomposition function receives the element and a callback

function as arguments, and has to use this callback function in decomposing the speci�c element

into simplex elements of their respective dimension, i. e. triangles in two and tetrahedrons in

three geometric dimensions. The interpolation function receives the element nodes, attribute

values de�ned on them, and a point lying inside the element as arguments, and has to return the

interpolated attribute value on this point.

By providing these two functions, adding the new element type to the con�guration �le and

recompiling VISTA, support for this new element type is immediately available to the framework

and all applications.

3.4 Functional Interface

The UGS functional interface provides initialization, reading and writing operations on unstruc-

tured grids. Interfaces exist for C applications and | through automatically generated bindings

| to FORTRAN applications.

3 UNSTRUCTURED GRID SUPPORT 7

To write an unstructured grid, the initialization routine has to be called. After that, a UGS-

speci�c routine to write the grid pointList has to be called. Then for each grid element a write

function has to be applied, to write the element node indices to the faceList.

Reading an unstructured grid is also straightforward: After calling the initialization routine, the

standard PAI function to read the pointList can be used. In a loop the element read function

can be used to read the element type and its nodes from the grid's faceList. After the last

element has been read, a cleanup function has to be called, to free internal data structures.

(grid grd_1
(pointList pgrd
(valueList)
)
(faceList fgrd
(nameList

(attributeType
"elementType")

(valueList

...
)
)

)

asciiString)
(valueType

interpolTRI3()
decomposeTRI3()

interpolTRI6()
decomposeTRI6()

"TRI3"
"TRI6" interpolTET10()

decomposeTET10()

interpolPRISM6()
decomposePRISM6()

(ref pgrd 1 2 3)))
(attribute elemgrd
(nameList
(ref fgrd))

...

Figure 4: Unstructured Grid Representations

4 THE TOOL ABSTRACTION CONCEPT 8

4 The Tool Abstraction Concept

The aim of the Tool Abstraction Concept (TAC) is to provide a uni�ed and homogeneous method

for the formal description of tools (which are right now mostly functions written in an imple-

mentation language). From this uni�ed tool description, several utilities are generating helpful

things like documentation, language bindings (which would otherwise require a lot of tedious

programming work) and parts of the user interface.

The previously existing prototype implementation of the TAC has been redesigned and joined

with the LISP-based vmake utility. During the build process of the VISTA distribution special

comments in the source code are read and from these formal descriptions, bindings to the LISP

interpreter are generated automatically. This code would otherwise have to be written manually,

which is tedious work and prone to errors.

Module description N

f

N

c

binding code size

xvw Extended Widget Set 105 19 115 kB 531 kB

vui User Interface Library 83 3 96 kB 254 kB

ve Global Error System 14 37 20 kB 165 kB

svg Graphics Library 22 10 21 kB 73 kB

ptb PIF Toolbox 8 29 26 kB 190 kB

ver Version Control 0 7 1 kB 0 kB

vos OS Interface (63) 12 (2) kB 214 kB

pai PIF Application Interface (20) (117) (54) kB 2256 kB

total 315 234 335 kB 3683 kB

Table 1: Number of functions (N

f

), number of constants (N

c

), size of code for the XLISP inter-

face, and module size of every module that is linked with the XLISP interpreter. Numbers in

parentheses indicate manual binding, all other code is generated automatically.

Table 1 gives an overview about the modules which are currently bound to the XLISP interpreter

using the TAC. It is planned to extend the TAC in the future to handle the FORTRAN binding

generation as well.

5 THE VISTA SIMULATION FLOW CONTROL MODULE 9

5 The VISTA Simulation Flow Control Module

5.1 Overview

The VISTA Simulation Flow Control module (SFC) provides a mechanism for de�ning, editing,

and executing simulation tasks consisting of an arbitrary number of simulation steps carried out

on an initial wafer model. Process
ows can be de�ned by using symbolic names for simulation

tools, and long sequences can be build up from smaller, prede�ned ones.

5.2 De�ning a Task|Process Flow Representation

A task is de�ned by writing a simulation
ow description in LISP syntax. Each line consists of a

leading symbolic name, followed by a list of arguments. If a line de�nes a tool call, the symbolic

name references the XLISP binding function for the respective tool. In this case, the user-set

parameters are passed as arguments.

In addition to tool calls, a couple of control commands and keywords (ref. table 2) may appear

in the simulation
ow description.

Keyword Description

start-with Loads a PIF �le to start subsequent calculations

save-state Enables saving of intermediate results

dont-save-state Disables saving of intermediate results

copy-file Writes current wafer state to a �le

PROCESS References a prede�ned process sequence

PROCESS-DIR Sets the directory with prede�ned process sequences

DEFAULT Sets the directory with default values �les

Table 2: SFC Control Commands and Keywords

If the user wants to call a prede�ned process sequence, the process reference keyword PROCESS

followed by the name of the �le containing the process sequence is used. An optional override

mechanism allows any parameter in any subprocess to be modi�ed. The process reference and

parameter override mechanisms work recursively.

As simulation tools are executed in the background, several tasks can be performed simultane-

ously. The simulation
ow control module keeps track of started system processes and switches

to the task the process did originate from to continue with the next command of this task when a

system process returns. To avoid con
icts due to �xed �le names used by certain tools, a locking

mechanism prevents the user from starting more than one task at a time in a given directory.

5.2.1 A Short Example

The following example shows a small part of a wafer fab run traveller as it appears in the

simulation
ow description.

5 THE VISTA SIMULATION FLOW CONTROL MODULE 10

(

(start-with :phys-pif-infile "InitGeom.pbf")

(monte-carlo-implant :elem "BORON"

:dose 1e13 :energy 30.)

(anneal :temp 900 :time (35 "min"))

(isotropic-deposition :time 225.

:material ("SiO2" 0.0015))

(anisotropic-etch :time 68.

:material-default (0. 0.0001)

:material ("SiO2" 0 0.005))

(monte-carlo-implant :elem "BORON"

:dose 1e15 :energy 45.)

(anneal :temp 900 :time (20 "min"))

)

The sequence shown above de�nes the process steps necessary to simulate the fabrication of an

LDD (lightly-doped drain) structure of a p-channel MOS transistor. The PIF �le InitGeom.pbf

contains a PIF model of the wafer to be processed, basically a chunk of silicon partially covered

by a nitride layer de�ning the gate location. If this sequence resides in a process module �le

spacer, it can be referenced by using the PROCESS keyword. The following example shows how

the user can de�ne an override value for any parameter value of a referenced process module. In

the following case, the temperature for both annealing steps is set to 875.

(

(start-with :phys-pif-infile "InitGeom.pbf")

(PROCESS spacer :setvalue (anneal (temp 875)))

)

The mechanism shown above is used to automatically iterate over any number of values for a

parameter in a process sequence. It can be applied, e. g., to the optimization of the behaviour at

high drain-to-source voltages to minimize hot-carrier e�ects.

The executing of a process sequence produces a PIF �le which contains a complete description of

all wafer state transitions in terms of the resulting logical PIF �les after each simulation step. If the

save-state mode is selected, the PIF �le resulting from the spacer process sequence contains

seven wafer states re
ecting the e�ects of the respective treatments. If the dont-save-state

mode is active, only the �nal result is kept.

5.3 The XLISP Tool Bindings

In order to make arbitrary executable modules available to the calling context (TCAD shell),

these modules or programs have to be wrapped in XLISP functions representing the control level

5 THE VISTA SIMULATION FLOW CONTROL MODULE 11

interface between tools and framework. Therefore, a LISP function is de�ned for each simulator

to be integrated, so the user can call the tool like any other XLISP function. All parameter values

and �le names are passed as key parameters to avoid errors due to a wrong argument order. The

main action performed by such a function is to start the respective simulator as a background

job and to notify the calling shell upon completion. For this purpose a callback concept is used,

i. e. a LISP function is called upon return from a system job to resume execution of LISP code .

Furthermore, it is taken care for providing the simulator with all required input �les and command

line arguments. In our case, simulators are assumed to read initial wafer data from a PIF �le

generated by the preceding tool and to write their results to a PIF �le. Accepting PIF input and

writing PIF output is considered prerequisite for an integration into VISTA, thus tools which don't

adhere to this regulations should get a wrapping function establishing a PIF interface .

In order to establish a standard interface for plugging in simulation tools, the XLISP binding

combines wafer data from before and after a simulation run to generate the current wafer state,

i. e. a complete description of wafer geometry and impurity concentration data re
ecting the

current state of the wafer after each simulation step.

6 AN EXAMPLE OF VISTA USER INTERFACE AND TCAD-SHELL PROGRAMMING 12

6 An Example of VISTA User Interface and TCAD-Shell

Programming

6.1 Motivation

It is an often done design task to run the sequence of a process simulation, device simulation

and parameter extraction in order to see the changes in the device parameters due to a change

or variations in one or more process parameters. In this application SUPREM3 and SUPREM4

are used as (1-D and 2-D) process simulators. The results are combined to a MOS doping pro�le

and fed into MINIMOS which performs the device simulations. The result in the form of a I-V

characteristic is the input for a parameter extraction program which automatically determines

the parameters of the MOS device.

6.2 Overview

Formerly this task was performed step by step with the help of various shell scripts. Therefore the

device engineer had to wait until the previous task had �nished. The input necessary was partially

redundant and the engineer had to care for consistency of all input of the various tasks. The

program which puts the 1-D or 2-D process output together to a doping pro�le in the MINIMOS

format requires a small input deck which had to be manually written and consistent with the

process simulations. A 1-D MOS doping pro�le can be put together from two or three SUPREM3

simulations. It can be symmetric, asymmetric or have a lightly doped drain (LDD). A 2-D pro�le

can be generated only from a SUPREM4 simulation or from one or two SUPREM4 simulations

and one SUPREM3 simulation. The doping pro�le conversion program is able to handle six

di�erent cases.

Another aspect is the utilization of a distributed computing environment. If more than one

SUPREM task has to be performed they can be run in parallel. Also the MINIMOS runs for all

bias points are independent from each other. VISTA allows distributing parallel tasks in a highly

con�gurable manner. Also synchronizing jobs (e. g. the parameter extraction can be started only

after all MINIMOS runs have �nished) is automatically provided.

6.3 User Interface

The user interface functions are easily callable from XLISP, the TCAD-shell programming lan-

guage. The user interface provides special �elds for each type of required input (booleans, integers,

reals, strings, choices, �les). Therefore very user-friendly and self explanatory interfaces can easily

be generated which help minimize possible input errors.

6.4 Panel

The user interface panel (window) is divided into �ve small sections. Their order equals the

sequence of the simulation steps. The �rst section determines the way in which the MOS doping

6 AN EXAMPLE OF VISTA USER INTERFACE AND TCAD-SHELL PROGRAMMING 13

pro�le is put together (mode). The second section contains the input-�elds for SUPREM, the

third those for the pro�le conversion program, the fourth those for MINIMOS and the �fth those

for the parameter extraction program.

6.4.1 Mode Section

This section selects one of the above six cases in which the SUPREM doping �les are put together

to a 1-D or 2-D MINIMOS doping pro�le. The choice made in this section determines how many

and which SUPREM runs have to be performed.

6.4.2 SUPREM Section

This section consists of only one button for a pop-up menu. This pop-up menu contains �elds for

the SUPREM �les. The layout of this SUPREM panel is adapted according to the choice made in

the mode section. So the number of �les to be entered and the description of the required input

are always consistent. There is the possibility to choose both SUPREM input decks and result

�les. If a result �le is chosen (the criterion is the �le extension) no SUPREM run is done for this

�le. File selection can also be done very easy using the VISTA �le selection widget. Therefore

also if the choice made is con�rmed this panel is popped down again.

6.4.3 Conversion Program Section

In this section some input concerning things like o�sets for LDD inplants are determined. From

these values and the choice made in the mode section the small input deck for the conversion

program is written automatically by the TCAD-shell.

6.4.4 MINIMOS Section

Only the input keys for MINIMOS which are most likely to be changed in the application like

device type, gate length, and some more can directly be changed from this section. There is

nevertheless a button which allows the user to pop up the interactive MINIMOS input deck editor

to have the possibility to change the other input keys. Di�erent default values for n-channel and

p-channel devices are automatically provided.

6.4.5 Parameter Extraction Section

In this section the model used for the parameter extraction is chosen. Because of the very speci�c

problem for �tting standard MOS devices the parameters which are to be optimized are prede�ned

and cannot be changed. The same is true for the start values.

6 AN EXAMPLE OF VISTA USER INTERFACE AND TCAD-SHELL PROGRAMMING 14

6.5 Implementation

If the OK-button in the main panel has been pressed, the SUPREM runs are performed in parallel

(if at least one input �le in the SUPREM panel has been chosen). After the last SUPREM task

has �nished, the doping pro�le conversion program is called with the automatically generated

input deck. Thereafter MINIMOS is invoked. The MINIMOS result �les are appended in the

proper order after the last MINIMOS run has �nished. As last task the parameter extraction is

done.

6.6 Conclusion

This example implementation of an often done design task in VISTA provides a user friendly

interface. After all input has been provided the tasks are run without further user interaction,

and a distributed computer environment allows much shorter computation times. The fact that

all input is provided from one panel at the very beginning of the whole task allows also consistency

checking for all input.

7 THE PIF EDITOR 15

7 The PIF Editor

7.1 VISTA Front End

An important part of a TCAD system is a comfortable to use and comprehensive data front end.

If the visualization is the users eye, this part might be called his hand. In the VISTA system this

tool is the PIF Editor (PED). It allows the user to directly access the PIF data.

The PED is the ersatz for former typing long lists of numbers with a text editor. It helps to input

geometrical and physical data in a user friendly manner. Due to the graphical input and view

many errors can be detected immediately or totally be avoided.

The PED has been designed for use in the PIF VISTA-environment thus �tting well and consistently

into the framework.

The user interface of the PED has been developed with intense contact with and reaction to users

of VISTA, therefore being both simple to use and powerful.

7.2 PED Window

The PIF editor window as it is presented to the user consists of the following main parts:

� A row of menu buttons.

� The graphical (drawing) area.

� The text command line.

� A row of status displays.

Temporary pop-up-windows for con�rmation or typing in numbers or names complement the

image.

7.3 Main Features

The PED can be used to create, view, modify, or delete one- and two-dimensional device geometries

together with their most important physical properties.

It can read data from PIF �les and store data to PIF �les. It supports the hierarchic structure of

PIF geometries by automatically merging identical points, lines etc. during input.

7.4 User Interface

The user interface of the PED is largely built on the VISTA user interface. Only the PED-speci�c

parts that have no equivalent in other VISTA parts are designed especially for PED, particularly

the drawing area with the rulers due to its very extensive interactive requirements.

7 THE PIF EDITOR 16

Figure 5: PIF Editor Window

7.5 Display Control

A set of functions allows the user to setup the display: The size of the image can be made

smaller or larger with the zoom function or automatically be scaled to the window size by auto

scaling. The position of the image may be shifted with the pan function or by auto centering.

The horizontal and vertical axes can be assigned to x and y of the PIF data in any order and

orientation. Many minor properties like tick distance and length of the scales can be con�gured

by X resources.

Viewing and constructing data can be supported by a background grid and a "magnet"-function

that rounds the mouse coordinates to even numbers.

7.6 PIF Conformance

The modes for entering device structures are tightly coupled to the PIF data structure: Modes

for point, polyline, face, boundary, and segment input are provided. Polyline and face mode

automatically create all required points and/or lines. The other modes build on selecting under-

lying objects corresponding to the hierarchic PIF de�nition. Polylines are broken automatically

to simple lines limited by two points each.

7 THE PIF EDITOR 17

7.7 Other Editing Facilities

In addition to the constructing modes as mentioned above there is a mode to move points to

other positions, and to delete any objects.

7.8 Attributes

Only the most important PIF attributes are supported up to now. These are the MaterialType

and the BoundaryConditionType attributes. Both have text string as values and are related to

segment and boundary resp.

8 GENERIC DEVICE CHARACTERISTICS 18

8 Generic Device Characteristics

8.1 Overview

The VISTA TCAD shell user interface now supports generic device characteristics which are

MINIMOS scalar output values as a function of an input deck key with another input deck key

as parameter. Any input deck key of data type REAL (this limitation is caused by the graphical

user interface and the plot procedures) of any input deck directive can be selected as abscissa or

parameter. This is the generalization of the input deck directive STEP, which is applicable for

bias conditions only.

8.2 User Interface

The panel to compute and display online general device characteristics is shown in Figure 6.

The �rst line shows the input deck name. The remainder of the panel is made up of three main

parts: the ordinate, which sets the function to compute, the abscissa, and the parameter of the

characteristic. The functions to choose are run-time con�gurable. Currently available are:

Function Symbol Unit

Threshold Voltage Vth V

Drain Current Id A

Bulk Current Ib A

Bulk Current Maximum Ib max A

Transconductance gm A/V

Gate Swing S V/decade

Saturated Vth VTF V

Maximum Drain Current IDS A

Ib max for Ud=Udd, Ub=0 ISUB A

Breakdown Drain Voltage BVDS V

In the abscissa section �rst the directive can be selected in form of a pull-down menu and then

a key of the selected directive is chosen. The information about available MINIMOS directives

and corresponding keys is taken from a LISP list at run-time, so modi�cations (e. g. new keys)

are taken into account here automatically. Minimum and maximum value for the abscissa are

entered next. For the computation of the abscissa data points, one can toggle the sweep mode

between linear and logarithmic.

The parameter section is composed identically to the abscissa part. In this context, the term

parameter refers to the parameter in an x{y plot, for which a separate curve or line is drawn and

the value is shown in the legend of the plot.

In the bottom section of the panel one can select whether to show the device characteristic as x-y

plot graphically and one can enter a �le name to store the result formatted as x-y value pairs.

8 GENERIC DEVICE CHARACTERISTICS 19

Figure 6: Device Characteristics Panel

As the computations of data points are independent of each other and can be run concurrently, a

separate MINIMOS run is scheduled for each point. This allows maximum utilization of a local

workstation cluster or of multiprocessor machines.

8.3 Online Graphics

If the entry \show characteristic online" is set to \yes", the characteristic will pop up after the

�rst two successfully computed data points. After each additional termination of MINIMOS, the

resulting data point is added to the graph and the total graph is rescaled and redrawn.

The resulting graph for the default panel settings is shown in Figure 7. This diagram, the

threshold voltage versus the channel length for two bulk bias conditions depicts clearly one of the

short channel e�ects, the threshold voltage lowering for smaller devices. This e�ect is somewhat

also called short channel roll-o�.

8.4 Conclusion

For a device characteristic MINIMOS is run typically 10 to 50 times. The tasks performed

automatically without further user interaction once the OK{button is pressed include input deck

generation, simulator run scheduling on a workstation cluster, extraction of the desired output

values, and plot generation.

8 GENERIC DEVICE CHARACTERISTICS 20

Figure 7: Device Characteristic: Threshold Voltage vs. Channel Length

