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1 VOOPS — The Vienna Object-Oriented Programming System

1.1 Why Object-Oriented Programming?

The term object-oriented has been a catchword gaining more and more importance in recent years

[Betz89, Boni91, Budd91, Dani91, Elli90, Flor91, Rumb91, Tell89, Wens91, Wien88]. Rarely, however,

there has been a more misinterpreted term in computer science as well. This term has even gained a

foothold in areas where object-orientedness in its genuine meaning makes no sense at all.

Looking at the term object detached from its computer-science meaning, we see that it is a very common

word used in the real world for any-thing we can see and touch, be it a house, a table or a stone. Mapping

this meaning back to the abstract computer-science world, any-thing (i.e. any opaque data set seen as a

whole) could be termed an object. But this would be just another term for the programming paradigm of

data encapsulation, i.e. grouping data items which belong together into a single aggregate which we then

call object.

This is, however, not what object-oriented programming is supposed to be. The object-oriented program-

ming paradigm encompasses the following programming paradigms:

data encapsulation Like stated above, this is the grouping of semantically interdependent data items

(members) into an aggregate (class) seen as a single data item. This is termed class definition

in object-oriented languages. Although this feature is available in all procedural third-generation

programming languages (like a record in PASCAL or struct in C), an object-oriented

language has to extend this paradigm with a

taggedblock storage concept Each of the different aggregate data types (blocks) can be identified at

run-time through a unique identifier (tag) given to and stored in that aggregate type. This enables

the dynamic identification of encapsulated data at run-time, which is a big advantage over statically

typed languages like C or PASCAL. Although not object-oriented per se, Common LISP’s (see

[Wins89, Stee90, Fran88])DEFSTRUCT command implements this concept (there exists a separate

object system extension for Common LISP, [Bobr88]).

function encapsulation Every self-contained idea is consistently coded into a sequence of statements

grouped together forming a function (method). While this feature is available in any third gener-

ation language, traditional procedural languages do not intrinsically associate a function with an

encapsulated data aggregate. In object-oriented languages however, there must be a

data-function association This association of a method with a class together with the method code

makes up the method definition. We can say, the method is defined on or belongs to a specific

class.

The association of data sets (i.e. classes) with the corresponding functions working on a particular

data set (i.e. methods) is an intrinsic advantage of object-oriented programming languages over

traditional procedural languages.

inheritance The most distinct features of object-oriented programming languages are member inheri-

tance and method inheritance. Member inheritance means that a class inherits all members of

its parent class. This vaguely resembles the inclusion of an already declared structure in a

new structure declaration in C, although in this case the “inherited” members are not opaquely

accessible because they are hidden in the included structure declaration, whereas in an object-

oriented programming language inherited members are in general indistinguishable from intrinsic

class members. Method inheritance is implicitly achieved through declaring the parent of a class,
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since all (public) methods of the parent class become available to the inheriting class. Again,

inherited methods are indistinguishable from intrinsic methods defined on the class. This could be

emulated in C through macro-aliasing a new function name to an existing function and applying

the function to the included structure as mentioned above.

As we can see, all object-oriented programming paradigms can be implemented in principle with third

generation procedural programming languages. However, considerable expense has to be made to emulate

those OOP paradigms. Therefore it is a tedious and error-prone task to implement object-oriented features

directly in those languages without proper support.

1.2 Drawbacks

Due to the recent enthusiasm about object-orientation in general and object-oriented languages in partic-

ular, some non-obvious but intrinsic drawbacks are often overlooked. First of all, it has to be noted that

the problem to which object-oriented approaches should be applied, has itself to be object-oriented. Since

an object is an encapsulated entity that has precisely known relations to other entities, an object-oriented

approach to a problem which cannot be expressed as such an entity-relationship model will likely fail or

at least exhibit severe performance drawbacks.

Another drawback is that arithmetic expressions involving method invocations cannot be simplified by a

compiler, if the method to be invoked is not known at compile time. For example, an arithmetic expression

calculating the volume of a hollow sphere will typically involve a subtraction of the inner sphere volume

from the outer sphere volume. A FORTRAN compiler will simplify and optimize the resulting arithmetic

expression resulting in a significant speedup compared to a C++ compiler which will have to invoke the

method for computing a sphere volume two times and then perform the subtraction without having an

opportunity to optimize the resulting arithmetic expression. Keeping this instrinsic drawback in mind, an

object-oriented approach to solving numerical problems at least seems to be problematic and is definitely

a non-optimal solution for this class of problems.

Memory management is another issue of concern when object-oriented approaches are considered. Objects

are usually allocated separately, and when many (especially small) objects are allocated, the main memory

becomes cluttered with those small allocated structures. The drawback is, that on traversion of, e.g., a

tree of those small objects many different memory locations have to be addressed and accessed by the

program, and performance will probably suffer severly if memory pages then have to be swapped in and

out of main memory by the operating system. A traversion of, e.g., a FORTRAN array which is hold

in one contiguous block in main memory just requires incrementation of an index variable and does not

induce any operating system overhead at all.

Determining the function which has to be called at run time occurs frequently during execution of a

program written in an object-oriented language, when the appropriate method to be applied to a given

object has to be found by the run time inheritance mechanism. The performance of the resulting program

will heavily depend on the efficiency of the inheritance algorithm which has to search the class hierarchy for

the appropriate method, but will definitely be inferior compared to procedural languages like FORTRAN

or C, where the functions called are already known at compile time and therefore are invoked directly.

1.3 Comparison to Object-Oriented Languages

Although all object-oriented languages implement the basic programming paradigms stated in Section 1.1,

they differ in extensions of and the semantics implied by those paradigms. VOOPS does not implement

any extensions to the basic programming paradigms, since it was designed to be simple to use, easy to

comprehend and compact in its design.
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For example, it is not possible in VOOPS to declare some members of a class as private to this class, meaning

that they can not be inherited by other classes derived from this class. C++ provides theprivate keyword

to declare private members in class definitions, allowing control of the scope of member declarations.

Concerning method definitions, methods defined on a VOOPS class always override a parent method having

the same name, if such a method exists in the parent class. In C++ methods which can be overridden must

be explicitely prefixed with a virtual keyword which provides tight control of method overriding in

class definitions.

Multiple inheritance means that a class may have more than one parent. VOOPS does not provide this

feature, since it is complicated to implement within the simple concept employed by VOOPS. Mostly the

need for multiple inheritance does not arise, when the class hierarchy is designed carefully. However,

most modern object-oriented languages like Eiffel [Meye92] and recent C++ versions provide multiple

inheritance.

In contrast to Eiffel and Smalltalk [Gold83, Pins88], VOOPS does not define a single root class, from

which all other classes would automatically inherit. A single root class would allow the definition of

generic methods applicable to all other classes. VOOPS rather considers each class which does not include

a reference to a parent class as a root class.

1.4 Architecture of VOOPS

VOOPS’ main purpose is to relieve a programmer from the work of coding object-oriented features manually,

and to explicitly support them through specialized meta-language constructs in LISP via UNFUG, which

implement those features using native host language C constructs. This approach is also used by some

C++ compilers which behave like a sophisticated preprocessor and translate C++ code into C source

code [Hewl90]. Although the intermediate C code can be output optionally, it is discarded by default and

directly compiled to an object file with a native C compiler, thus effectively pretending the behavior of a

C++ compiler.

To reflect the concept of classes and methods in C, some preconsiderations have to be made concerning

the representation of classes, methods, and objects in C.

First of all, it has to be decided whether the class hierarchy should be static (i.e. defined and “cast in

concrete” at compile time), or dynamic (i.e. extensible through new class and method definitions at run

time). Since the PIF object model is defined in the PIF syntax and it is impossible that new PIF object

classes could be necessary at run time, there is no need to strive for a dynamic class model, although there

exist even public domain solutions for dynamic object-oriented programming extensions for C (e.g. the

COOL library by L. NORSKOG). As we will see below, the static class model has the advantage that it can

be implemented efficiently, thus allowing for a fast messaging concept.

When using a static class hierarchy, classes can be represented as C structures and methods as C functions

in C header or source files, respectively. VOOPS uses UNFUG to evaluate special LISP expressions and

insert the resulting string in place of the VOOPS statement into the C source code. Additionally, classes

(and methods defined on them) are kept track of internally and stored in a save file at the end of a VOOPS

run.

Classes and methods which belong together are grouped into a specific module which is referenced by a

short mnemonic. All data structure, method, and macro names generated by VOOPS are prefixed with this

module mnemonic to avoid possible naming conflicts within the VISTA system. This also enables the use

of multiple class hierarchies in parallel without the danger of conflicting class and method definitions.
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1.5 The VOOPS Class Model

VOOPS maps classes and member definitions onto C types, structures and unions. A class is translated into

a structure definition, with the class members being structure members. Accessor macros are defined for

each class member which allow access to class members through verbose names instead of complicated

and not obviously comprehensible C structure member access and pointer dereference operators. All

classes have a default object identifier member which is used to store a unique ID of the object, when it is

newly created with the default New method.

Inheritance is effected through defining the members of the specified parent class in the currently defined

class too. Since all these parent class members are also included as C structure members, one limitation

becomes obvious: No two members can have the same name, if they appear in the same inheritance branch

of the class tree, since this would produce a name conflict in the resulting C code.

On definition, a unique class name (a LISP symbol) has to be given to a class, which is used as an identifier

on subsequent accesses to the class. An optional documentation string given in the class definition is

translated into a documentation comment conforming to the VISTA documentation guidelines. Besides the

documentation string, members can also have alias names which are aliased via a C macro to the original

member accessor macro.

1.6 VOOPS Operation

VOOPS transforms template header files * h.tpl into C header files *.h, and template source files

* c.tpl into C source files *.c. Additionally, the definition of a master template header and source

file is necessary, where the class table declarations and definitions go into, which are explained in detail

below. The relation of the various template header and source files is shown in Figure 1.

Class definitions are made in template header files, and method definitions go into template source files.

The master header file additionally holds the C type declaration of the generated class table after running

VOOPS, and the actual definition of this class table is written into the master source file. At the end of the

master header file, the C union of all classes currently known to VOOPS is defined, which is the genuine

object for a particular module. A pointer to this union is the universal object pointer to objects of the

current module and is available in VOOPS statements through the SELF data type.

1.7 The Class Table

The C representation of the VOOPS save file is the class table which holds information about each class

known to VOOPS. Besides the class ID, the parent class ID, the class name and structure size, all methods

are stored as C function pointers in the class table. But since the number of methods is not known in

advance, this table grows with each new unique method. This has the implication that when a new method

is added in a * c.tpl file, the master header file of the module has to be rebuilt, and therefore all other

files depending on it.

A special feature is the implementation of class masks, which are used to check whether a specific method

can be applied to a given object, or, in object-oriented terminology, if a specific message can be sent to the

object in question. This is done through comparing the object’s class mask (accessed through the class ID

stored in the object) to the class mask of the class the method is defined on with a logical AND operation.

If there is a match, the method can be applied, otherwise the object is rejected. Since this feature should

be only necessary on debugging, the corresponding code is included in an #if CHECK – #endif pair.

The class table declaration is generated at the end of the master header file, whereas the class is actually

defined at the beginning of the master source file. Many class-independent access macros are defined to
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nnn_c.tpl nnn_h.tpl

Master

header

nnn.c nnn.h
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C Compiler
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Template
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Figure 1: Relation of VOOPS’ template header and source files
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aid retrieving information from the class table, to obtain and set the object ID of object instances, and to

test, set, and clear certain object flags.

Object flags are stored in the upper bits of the 32-bit object ID of an object, which are not used to encode

the object ID. Due to the 32-bit integer used to store the class mask in the class table, the maximum

number of supported classes is currently 32. This means, that at most ld(32) = 5 bits are actually used in

the object ID entry to encode the object ID. The remaining 27 bits can be used for binary flags which are

often useful for tagging objects during sweep- or scan-like algorithms.

1.8 Methods and the Messaging Concept

Method inheritance is directly implemented in the class table construction step, where the function pointers

of inherited methods, if not overridden through genuine methods defined on a certain class, are stored in

place of the genuine function pointer. If there is neither a genuine nor an inherited method in a certain

class for a certain method name, a NULL pointer is stored. On invocation of a method, the corresponding

method pointer of the class is checked if its non-NULL. In this case, the pointer is dereferenced, hence

the function is called, otherwise an appropriate error is issued stating that there exists no corresponding

method for this class. As we can see, there is only one NULL-pointer check and one pointer dereference

which is the main reason for the efficiency of the static class model implemented in VOOPS, whereas

an OOP system with a dynamic class model would have to search through its more or less complicated

run-time class and method structures to find the appropriate applicable method. The above behavior is

implemented in the VOOPS SEND and SENDID statements.

The above algorithm is only to be applied when the class of the object a specific message is to be sent to

is not known in advance (i.e. prior to compilation), since then the class has to be determined from the

object ID. In case the class is already known, meaning that the class of the object the message is to be

sent to is known to be equal to or above in the inheritance branch of the specific class, the method can be

applied directly using the VOOPS SENDCLASS statement which is just translated into a C function call.

However, all methods in an inheritance branch have to be aliased appropriately with C macro definitions.

This is done in the master header file following the respective class definition.
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2 GRS — The Grid Support Library

The GRS (Grid Support) library has been designed to provide read, write, and manipulation functions for

grids and attributes stored on PIF. As a basis for both, generic point list handling services are also provided

that deal with orthoProduct and unstructured point lists as well. Both unstructured grids and tensor

product grids can be read, written and manipulated, and interpolation of attributes defined on those grids

can be performed with this library. New element types for unstructured grids can be introduced easily and

are readily available in the generic interpolation routine.

TRI3Conn TRI6Conn

Sll

Dll

Cons

PifObj

ObjRef Fcl

Att

ValDec

Ptl

ValDef

UgsPtl

Base Classes

OrtPtl

Grid

OrtGrid
CloudGrid

UgsGrid

Arr

IntArr RealArr StringArr

Elem

TRI3 TRI6

Figure 2: The GRS class tree.

In the following, the architecture of GRS is described first, where the various classes which GRS imple-

ments to accomplish its tasks are discussed. The memory-resident structures of GRS objects and their

relationships are presented with the help of various figures. Two sections describing the two main pur-

poses GRS was designed for — namely element-wise unstructured grid reading and writing, and generic

interpolation of attributes — follow, where many issues of the class designs which looked obscure at the

first sight will become clear. Finally, the KIRKPATRICK point location method which is a cornerstone of

the unstructured grid interpolation is discussed in more detail.

2.1 Architecture

GRS is implemented with the help of VOOPS, where the various objects represented by GRS are modeled
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through VOOPS class definitions. The instances of those classes store the information read from PIF, and

the application uses an opaque object pointer to such an instance for all operations to perform.

The GRS library was designed bottom-up in that its classes are closely related to the general syntax

of the PIF objects they describe. Therefore GRS is not limited to the two main purposes mentioned

above, but rather provides an easily extensible and flexible object-oriented presentation of PIF objects to

TCAD applications. Although the methods implemented on those classes are currently limited to fulfill

the main design goals, they represent generic building blocks which can be used and extended to create

new functionality inside GRS. Due to the intrinsic property of object-oriented designs, that changes in

the implementation of a certain class do seldomly affect other classes1, extensions to GRS can easily be

effected. This property of object-oriented designs makes them well suited for academic environments,

when students need to accomplish a well-defined and self-contained goal inside a team effort.

The whole GRS library is comprised of 32 template files making up a total of more than 5000 lines of

VOOPS code, which get expanded to more than 15000 lines of C code after running VOOPS on them. The

library defines 229 methods on 24 classes.

The various class definitions result in a class tree which is shown in Figure 2. The solid lines denote an

inheritance branch, whereas the dashed lines denote a continuation by further similar classes on demand.

While the array and element classes seem to be unrelated to the other classes in this diagram since they

define their own inheritance trees, they are actually used in many places throughout GRS for point list and

attribute representations on the one hand, and unstructured grid element representation on the other hand.

2.2 Unstructured Grid Element Representation

Not all applications can get along with sequential access to the individual grid elements of an unstructured

grid. Therefore GRS maintains the grid elements in a dynamic array of object pointers, where each pointer

points to a grid element object. Applications can therefore address a grid element directly by obtaining

the element pointer from this array.

This direct access is needed by GRS itself also, when it traverses all elements containing a particular point

of the grid. A corresponding array holds for each point of the grid an index array containing the indices

of all elements adjacent to that point. The grid elements itself contain indices to the points (nodes) which

make up their shape. The number of those point indices depends on the grid type, and is defined in the

individual class of this grid element. Storing the element index has been preferred over storing a pointer to

the element, because PIF also deals with indices, and a pointer would have prohibited or at least impeded

the writing unstructured grids to PIF.

Each element is characterized by its name, topological dimension, number of nodes, and methods for

decomposition, interpolation, point-in-element-test and point restriction. The name is usually a short

mnemonic and used as the class name of this grid element, for example TRI3 (a triangle with three nodes)

or QA4 (a quadrangle with four nodes). The topological dimension is two for “flat” elements stored in a

faceList, and three for solid elements stored in a solidList.

Note that the topological dimension of a grid element may be different from its geometrical dimension,

for example when describing the triangulation of a surface of a three-dimensional geometric object. Let

N be the number of element nodes and D the topological dimension. Then a valid grid element has to

have N >= D+1 element nodes. The decomposition method decomposes a given element into primitive

elements of the respective topological dimension, which always have exactly N = D + 1 element nodes.

For example, a QA4 element may be decomposed into two TRI3 elements. This decomposition is used

1provided the class hierarchy is designed carefully!
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in various applications throughout VISTA, the most prominent of which is the xpif2d visualizer, which

always operates on two-dimensional primitives (i.e. triangles).

On interpolation, the requested point is located inside a particular element of the grid and the corresponding

interpolation method of the respective grid element class is invoked. For the point location, the point-

in-element-test method is needed, which returns a boolean value indicating if a given point lies inside or

outside the element. The interpolation method returns an interpolated value given a point lying inside the

element, the coordinates of its element nodes and the respective attribute values on the element nodes.

This is usually achieved through transforming the node and point coordinates to a unity element and

evaluating the form functions of this unity element.

The point restriction method is used in hierarchical grids to determine if a point location is possible on

the grid. This is the case if all children of an inner node inside a hierarchical element tree cover the area

of its parent totally. But if — for example after a grid adaption step — the points of the lowest level move

slightly and the grid hierarchy is not rebuilt, there may be elements whose children do not fully cover

the parent area. Then a point location on such an element may produce incorrect results, as would the

interpolation using this malformed hierarchical grid. Figure 3 shows the cases of a correct triangulation

allowing point location, and an incorrect triangulation where point location may produce wrong results.

P

M
P

Figure 3: Correct and incorrect grid element hierarchies for point location. The left triangulation

shows the result of a KIRKPATRICK grid hierarchy construction step by removing the center point M and

retriangulating the resulting polygon. The newly generated triangles are shaded, and locating point P will

successfully return the light shaded middle triangle. The right triangulation (as it may result from an

oxidation simulation using a hierarchical triangular grid) however fails to locate point P, because despite

the fact it is included in the thickly outlined parent triangle, its shaded children do not include point P.

2.3 Unstructured Grid Reading and Writing

Simple unstructured grid reading and writing is one of the two main purposes GRS is intended for. This

functionality is both used in GRS internally for the unstructured grid interpolation, where a grid must be

read into a memory-pertinent representation, as well as provided to other applications that need to read or

write unstructured grids. For example, the capacitance simulator VLSICAP uses this functionality to write

its output attributes onto triangular grids.

Full memory-pertinent structures are not necessarily during element-wise reading and writing of unstruc-

tured grids, therefore GRS does not store the point list and the list of grid elements internally. Rather it

allocates just the structures describing the current grid and the current status of grid reading and writing.

The actual data pointers in the face list structure and in the attribute structure are left unused, only the

index of the current grid element in the face list and in the attribute is remembered.
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Applications wanting to read or write an unstructured grid have to call an initialization function which

allocates and fills this structures appropriately. The point list of the grid can be written with the usual

PAL calls, since in this case GRS needs nothing more than just the point list handle for referencing it in

the face list defining the grid elements. After initialization, the application has to call the GRS element

read or write function, which read or write exactly one name list entry of the face list, and hence read or

write exactly one element from or to the grid. A cleanup function has to be called finally, that frees the

GRS-internal structures.

2.4 Generic Interpolation

As stated in [Hala94], interpolation of attributes between different grids is one of the most important tasks

inside a TCAD framework. This task has to be as accurate, reliable, and as fast as possible. Depending

on the grid the attribute is defined on, GRS makes provisions for three possible cases:

� tensor product interpolation,

� point cloud interpolation, and

� unstructured grid interpolation.

For tensor product grids, linear and higher-order (using the AKIMA method [Akim70, Hyma83]) interpo-

lation is implemented on the tensor product grid class. In the case of higher-order interpolation, the spatial

derivatives of the attribute under consideration have to be calculated prior to interpolation. This is done in

the corresponding grid preparation method of this class. Additionally, the grid axis ticks have to be sorted

into ascending order in order to allow an O(log(n)) time point location. The respective attribute values

have to be shuffled accordingly, which is also done in the grid preparation method.

Searching in point cloud grids is possible through using a search structure like an N-ary tree [Same90],

which allows an O(log(n)) point location on the point cloud. However, the interpolation function for

point cloud grids is currently not implemented in GRS, but rather exists as a stand-alone prototype using

a modified SHEPARD’s method [Agis91, Alfe89].

When interpolation on an unstructured grid is to be performed, a search structure has to be used also,

which enables locating the element in which a given point lies. Besides the N-ary tree, several other

geometric search structures can be applied which allow an O(log(n)) effort point location [Prep85], like

the slab method, the chain method, the triangulation refinement method and the trapezoid method.

Among those methods, the triangulation refinement method (in the following referred to as the KIRK-

PATRICK point location method [Kirk83]) was chosen for the point location in unstructured grids, since

it uses triangles (in two-dimensional space) and relations between them as data structures, and a triangle

represents already the primitive geometric grid element in two dimensions. Furthermore, this method uses

a hierarchical tree of those triangles, and this tree structure is equally well suited to represent hierarchical

unstructured grids too. Therefore two goals (point location and hierarchical grid representation) can be

met with a single data structure, which is an important conceptual advantage in the application of this

method to unstructured grids.

This tree structure is called a search-directed acyclic graph (SDAG), and has to be built prior to interpo-

lation on unstructured grids. With this search structure, the grid element in which a given point lies and

therefore is to be used for the interpolation can be located in O(log(n)) time.
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3 LISP-PED

A new version of the PIF Editor has been developed. It was designed as a highly flexible and user

extensible interactive tool. It consists - beside a couple of more general libraries - of an X11 interface,

a PIF interface, and the XLISP interpreter with some LISP programs. Most configurations and all user

interaction modes can be controlled with LISP files or commands.

3.1 Event Structure Principle

When designing the LISP interface for PED it was desired to create a programming-language like

extension for configuration and extension purposes.

A simple procedural language is not sufficient due to the callback philosophy that triggers for each X11

event a callback that has to perform the required actions. But the information about previous actions

is required for correct handling of events. This problem has been solved with an infinite state machine

(automaton).

This automaton has a stack that allows nesting of functionality. Its input alphabet is a subset of LISP

expressions. The rules may be defined at runtime.

3.2 PED Grammar Examples

The following is a small part of the grammar implemented in the PED. Keywords are in uppercase with

leading colon (an XLISP feature lets symbols starting with ’:’ evaluate to themselves). Non-terminals

are in lowercase, and non-keyword terminals in <...>.

There are two simple ways to parse a point:

point ::= :POINT coords

point ::= <cls-point>

The first is by giving the coordinates of the point; the second matches an already existing point.

To allow the user to enter many points sequentially we have a point-mode:

point-mode ::= :POINT-MODE {:REPEAT point}

The coordinates - with the simplification of 2 dimensional geometry - are matched by 2 real numbers or

by a list of 2 real numbers:

coords ::= <float> <float>

coords ::= <list of 2 numbers>

Three exemplary rules for a line are: creation of a line by two points, a handle of an existing line, and

snapping an existing line by coordinates.

line ::= :LINE point point

line ::= <cls-line>

line ::= :SNAP-LINE coords
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All simple geometric objects are packed in a non-terminal for objects:

object ::= point

object ::= line

object ::= face

This "object" non-terminal may be used in the "delete" rule:

delete ::= :DELETE object

3.3 Applying Event Data to the State Machine

Data is passed to the state machine by functions that take a LISPexpression, and pass it, eventually after

evaluation, as input token.

The binding of low level event data and the state machine is implemented in several stages. In principle it

always works via a callback function that passes client or callback data that may depend on event details

to the state machine.

� mouse: The mouse callbacks are subject to the mode configuration (see below). Button press and

release events with respect to modifier keys cause interpretation of strings. Motion events, that are

not supposed to work with the state machine, invoke user callback functions.

� keyboard: Key presses are caught with X11 translations and accelerators and are passed to the PED

command-line (text) widget as editing sequences. But pressing of Enter/Return key causes

processing of the command line contents.

� menus: Selection of menu items invokes generic callback functions that are in the PED typically

bound to a string processing state machine entry.

� dialog windows: In some situations a dialog shell is popped up that allows data input of some kind.

The confirm-callback is gets the new data and passed it to the automaton.

To get actual information, especially about the cursor position, into strings some formatting information

may be put in configuration strings that is replaced with the mouse coordinates in case of callback

invokation.

3.4 Configuring the Interactive Mode

The interactive mode of the PED is the special setting of informations for the user, of the current meaning

of the mouse buttons, of the mouse movement indications, and of popped up dialogs or panels.

It is controlled by actions built into the rules (in some cases the mode is saved by the state machine).

There are two different expert levels for pure users and for experienced programmers.

In detail the following elements may be configured:

� The title which is a string that tells the user what mode is currently valid. In the default

configuration it is displayed in the lower left corner of PED.
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� The three mouse buttons, each represented by a list of two strings, the first of which is a

short text telling the user the current meaning (configuration) of the button, and the second a string

to be processed with the function ped::logical-command after replacing some special text

sequences when the button is pressed.

� Two callback functions with some client data one of which is invoked when the PED enters the wait-

for-event loop and might draw something to the Canvas widget that should be related to the previous

user actions and the current cursor position, and the other to exactly undraw it. Typically the two

arguments are the same function and invert some part of the drawing area reversibly. The appropriate

client-data is in most cases data produced by previous actions, terminals, or non-terminals and might

e.g. be a coordinate pair or a point handle.

� A popup shell that is activated when waiting for user input.

Note: client-data for popup shell callbacks is usually specified on creation of the shell

An example for the rule creating a simple line looks like this:

((newrule

"line"

NIL

’(:LINE

(mode "Enter first point of line" ; title

("first point" "(point %G)") ; left mouse button

("first point" "(point %G)") ; middle

("" "")

#’ped::elastic-point ; draw soft cursor with respect to

; magnet

#’ped::elastic-point ; undraw by inverting

NIL ; no client-data

NIL) ; no popup shell

"point"

(mode "Enter second point of line" ; title

("second point" "(point %G)") ; left mouse button

("second point" "(point %G)") ; middle

("cancel" ":CANCEL") ; right - cancel current states

#’ped::elastic-line ; draw line from first point to cursor

#’ped::elastic-line ; undraw it

($ 3) ; first point is client-data for

; elastic functions

NIL)

"point"

(line ($ 3) ($ 5)) ; finally create line and return it

))

These new features make it possible to invoke extern executables like grid generators or volume modellers

from PED. Figure 4 shows the output of a TRIGEN run that has been performed after specifying the

device structure from scratch without leaving PED.
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Figure 4: PIF Editor after TRIGEN invokation
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4 Trajectory Split Method - a New Strategy for the Crystalline Mode of the

VISTA Monte Carlo Ion Implantation Module

4.1 Introduction

As a part of the VISTA process simulation tools a program for Monte Carlo simulation of ion implantation

has been developed. The program can handle arbitrary two-dimensionalgeometries (the three-dimensional

module is under development and it already exists as alpha version) containing regions of amorphous and

crystalline materials. A well-known disadvantage of the Monte Carlo approach is its considerable demand

for computer resources to obtain results with satisfying statistical accuracy.

4.2 The Conventional Strategy for the Crystalline Mode

The conventional Monte Carlo approach for crystalline targets [Hobl91] is based on the calculation of a

large number of distinct ion trajectories. Each trajectory is usually followed from the ion starting point at

the surface of the target up to the stopping point of the ion. Since the majority of ion trajectories end at

the most probable penetration depth inside the structure the statistical representation of this target region

is good. Peripheral areas of the dopant concentration are normally represented by a much smaller number

of ions (typically 104 times less than the maximum). This results in an insufficient number of events there

and leads to a statistical noise that cannot be tolerated.

4.3 The Trajectory Split Algorithm

Recently, a “rare event” approach for one-dimensional structures has been suggested to significantly

improve the calculation time performance of the UT-MARLOW code [Yang94]. Based on this algorithm

the new “trajectory split” method [Bohm95] results in a much better statistical accuracy at the periphery

of the dopant distribution, it is easy to implement into existing codes, and it requires considerably less

computation time to calculate implantation profiles with a given precision.

The fundamental idea of our simulation approach is the partioning of the simulation run into two stages

and the utilization of the information we can derive from the flight-path of the ion up to a certain depth

inside the target. First a portion of ion trajectories is calculated conventionally to obtain roughly the

shape of the ion distribution and to determine the maximum concentration of this primary implantation

(Cmax). For the further trajectories, the local dopant concentration Cloc is checked at certain points of the

flight-path. In case the ratio Cloc / Cmax is below given levels (we defined ten split levels at 0.3, 0.09, ...,

0:310), a trajectory split point is defined at this checkpoint. We store the position of the ion, its energy and

the vector of velocity and use this data for virtual branches of ion trajectories starting at this split point.

In our implementation of this method we have defined simple splits of one ion trajectory into two virtual

branches at each split point. To obtain the correct concentration a weight was assigned to each branch.

In this manner a binary tree of virtual trajectories is formed for each regular ion (Fig. 5). Such a virtual

trajectory branch is calculated with the same models and parameters as a regular trajectory, but it starts

at the split point with initial conditions obtained from the regular ion.

4.4 The Merits and the Applicability of the New Method

The trajectory split approach has been implemented in the two-dimensional Monte Carlo implantation

module of the VISTA framework. These modules use advanced physical models for calculation of ion

implantation into crystalline silicon, therefore they are capable of predicting the channeling effects and

the transient amorphization using the modified Kinchin-Pease model [Norg75].
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To demonstrate the merits and the applicability of the new method we performed several ion implantation

simulations into a trench derived from the Etching and Deposition Module using the amorphous mode

(Fig. 6), the conventional mode (Fig. 7), and the new trajectory split mode (Fig. 8). For the simulations

we used a boron implant of 1014cm�2 at 20keV. The beam tilt angle was 7� calculated from the [001] axis

for dechanneling.

4.5 Conclusion

Comparison of the two crystalline modes with respect to the CPU time (we used a HP 735/100 workstation)

needed for the same statistical significancy shows a clear advantage of the trajectory split method compared

to the conventional one. The CPU time reduction due to the new simulation strategy is more than five

times in this particular application. It depends on the statistical accuracy requirements, the dimensionality

of the device structure, and the ion energy.

w =1.0

w =0.5
1

w =0.25
2

0

Target Surface

...  Split Point

w...  Weight

Direction of the Regular Ion

Figure 5: Topological structure of the virtual trajectory branches and their weights
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Figure 6: Dopant Concentration into (100) silicon (amorphous mode, tCPU: 4’ 29”)
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Figure 7: Dopant Concentration into (100) silicon (conventional crystalline mode, tCPU: 1h 48’)
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Figure 8: Dopant Concentration into (100) silicon (trajectory split mode, tCPU: 21’ 00”)
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5 MINIMOS NT – Two-Dimensional Device Simulation

MINIMOS NT, version 0.91�, is a new two-dimensional device simulator entirely written in C. Basing

on the features of the standard MINIMOS program a fully modularized structure for MINIMOS NT

has been developed (see Fig. 9) providing maximum flexibility in modifying and extending the features

and capabilities of MINIMOS NT. Also, the concept tries to avoid essential limitations, i.e. special

device geometries or fixed number of contacts. In the following sections an overview is presented what

MINIMOS NT can do and what it cannot do, also a short introduction is given how the input and control

data in the PIF input file must be specified.

VISTA Module

Simulator Module

Main Program

Utilities

Grid Module

Equation Components

Builder

Equation
Assemblage

Solver

U
n
it

s

Geometry Support Attribute Support

Information and Error Handling

Main Program

Iterator

PAI

Equation Components

Variables

Figure 9: Structure of MINIMOS NT

5.1 Features of MINIMOS NT

� Arbitrary rectangular geometries, i.e. geometries built of horizontal and vertical lines, with no

limitations on the number and the location of contacts, insulators and semiconductor regions.

� The device region can be arbitrarily partitioned in segments. For each segment different materials and

physical properties (i.e. permittivity, effective density-of-states, band edge energies or mobilities)

can be specified. Also, a spatial variation of these parameters inside of segments is allowed.

� Abrupt segment interface modeling. As mentioned above, for each segment different properties can

be given. Thus, abrupt changes of properties across segment interfaces can occur and are handled

by appropriate interface modules (see section below).

� For submicron devices the standard drift-diffusion models have been extended by five-equation

physics which include the effects of energy balance, i.e. considering the carrier temperatures. The

command line option -hydro enables hydrodynamic simulation.

� The command line option -transient enables transient simulation.
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� Mobility function module which provides mobilities for Silicon as well as for Gallium-Arsenide.

For Silicon, the well known MINIMOS mobility functions are used.

� Several contact conditions such as voltage controlled, current controlled, charge controlled or a

generic condition which is a combination of all the previous ones.

� VISTA framework integration. Even though MINIMOS NT is a stand alone program it is fully

compatible with the VISTA framework in using the PIF data format for specifying the control and

input data. Furthermore, the calculated results as potentials, carrier densities, carrier temperatures

and related attributes as electric field, current density and so on are stored onto PIF. Information on

iteration progress and final integral results as contact voltages, currents and charges are written to

standard error.

� VISTA command line handling. Command line arguments are used for controlling the simulator’s

behavior. If the program is called with a help option a comprehensive list of command line arguments

with a short description is printed. It is also possible to specify a file from which the command line

arguments should be read.

5.2 Anti-Features of MINIMOS NT

The following list shows the features which are not yet implemented in the current version 0.91� of

MINIMOS NT:

� Other than rectangular grids. A triangular grid support module is under development and will be

implemented in a later release.

� Automatically generated initial grid. The initial grid must be specified by the user or elsewhere.

Only a simple grid which consists of a horizontal and a vertical grid line for each point of the

geometry is built which can be refined by a golden ratio criterion (see section below).

� Grid refinement. No grid refinement is done during simulation process. This means that the initial

grid or the refined initial grid must be suitable to obtain final results with the desired accuracy.

� No generation/recombination models are implemented. This includes also impact ionization.

� AC analysis.

� Even though transient analysis is implemented, there is no easy way for specifying transient input

data. With the actual version only step functions can be applied easily.

5.3 The Device Geometry

The devices geometry is defined as geometry object on the input PIF (see the PED manual and the

description of the PIF language syntax for further details). Since the actual version of MINIMOS NT

supports ortho product grids only, only Manhattan-geometries can be used, which are geometries built of

horizontal and vertical lines, because the grid and the geometry have to be conform, i.e. a geometry line

must also be part of a grid line. Apart from that the complexity of device geometries is only limited by

computer and time resources (see Fig. 10).
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Figure 10: Parasitic field-oxide MOS transistor as an example for a device geometry specification for

MINIMOS NT
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Figure 11: Modeling abrupt junctions at segment interfaces.

5.4 Abrupt Segment Interface Modeling

As a result of an idealization process, on segment interfaces an abrupt change of certain values can occur

(see Fig. 11). For example high electron mobility transistors where a narrow band gap InGaAs layer is

sandwiched between two wide band gap AlGaAs layers show an abrupt change in electron concentration

across the hetero junction interface. Mathematically, this behavior is described by an left limit value and

right limit value when approaching the interface from the left and from the right, respectively. Furthermore,

a third value directly at the interface can be specified (e.g. to consider segregation effects). If no interface

value is necessary, it can be thought identical to one of the left or right limits.

Since there are at least two values at the interface now, an additional formula is needed to connect the

segments across the interface. For the electron concentration this is the module considering the thermionic
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5.5 The Initial Grid

Since there is no initial grid generation included in MINIMOS NT a suitable grid must be specified onto

the PIF input file. Depending on the geometry for each geometry point a horizontal and a vertical grid line

is added to the initial grid if it does not already exist. A simple method to obtain an initial grid is to define

grid lines very close to geometry lines in critical regions, i.e. the channel region of a MOS transistor, and

then to automatically refine the grid using the “-sectioAurea <ratio>” command line option, where

<ratio> is the upper limit of the ratio of two successive grid line spacings. The ratio is built with the

larger spacing as numerator such that <ratio> >= 1:0. A value of -sectioAurea <= 1:618 means

1:618 (the so called golden ratio) is used producing the densest possible grid. The initial grid itself is

selected by the command line option “-inputGRID <name>”.

5.6 The Segment Description

The segment description defines all input data related to a certain segment:

(attribute ChannelSegmentDescription

(attributeType "SegmentDescription")

(nameList (ref segments_1 (valueList 8)))

(attribute ChannelSegmentMaterialType

(attributeType "MaterialType")

(valueType asciiString)

(valueList "InGaAs"))

(attribute ChannelSegmentPermittivity

(attributeType "Permittivity")

(valueType real)

(units "VacuumPermittivity")

(valueList +13.2300)))

The example above shows the segment description for the channel region of a high electron mobility

transistor. The channel region is specified by segment 8 of the device geometry ((nameList (ref

segments 1 (valueList 8)))) and the attributes meaning is:

ChannelSegmentMaterialType defines the material type of the segment ("InGaAs").

ChannelSegmentPermittivity defines a constant permittivity for the segment. If this attribute is

not defined the permittivity provided by the material server for the material "InGaAs" is used. If

the material server does not find the permittivity in the material database an error is issued.

5.7 The Carrier Description

The carrier description defines all input data related to a specific carrier type in a segment. The following
paragraph shows an example for carrier description on a PIF input file:
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(attribute ChannelElectronDescription

(attributeType "CarrierDescription")

(nameList (ref segments_1 (valueList 8)))

(attribute ChannelElectronType

(attributeType "CarrierType")

(valueType asciiString)

(valueList "Electron"))

(attribute ChannelMobilityElectronsHydro

(attributeType "HydroMobility")

(valueType asciiString)

(valueList "HaenschInGaAs"))

(attribute ChannelMobilityElectronsDrift

(attributeType "DriftDiffusionMobility")

(valueType asciiString)

(valueList "StandardInGaAs"))

(attribute ChannelElectronBandEdgeEnergy

(attributeType "BandEdgeEnergy")

(valueType real)

(units "eV")

(valueList +1.2480))

(attribute ChannelElectronEffectiveDensityOfStates

(attributeType "EffectiveDensityOfStates")

(valueType real)

(units "1/cmˆ3")

(valueList +3.5100e+17)))

This carrier description specifies the input data for electrons in the channel of a high electron mobility

transistor. The channel region is defined by segment 8 of the device geometry ((nameList (ref

segments 1 (valueList 8)))).

The meaning of the attributes shown above is as follows:

ChannelElectronType defines the carrier type which is "Electron" here.

ChannelMobilityElectronsDrift defines the name of the mobility function used for drift-

diffusion simulation. For a list of mobility names see the section below.

ChannelMobilityElectronsHydro defines the name of the mobility function used for hydrody-

namic simulation. For a list of mobility names see the section below.

ChannelElectronBandEdgeEnergy is the value of the related band edge energy in eV , i.e. the

conduction band edge energy for electrons and the valence band edge energy for holes where an

arbitrary reference energy can be chosen.

ChannelElectronEffectiveDensityOfStates is the effective density-of-states in cm�3.

5.8 The Mobility Functions

The mobility function module consists of a function table where the mobility names (also called Identifier)

are defined. Using the mobility function name and depending on the material type (actually only GaAs and

Si are supported), the carrier type (Electron or Hole) and the PDE-set (Drift-Diffusion or Hydrodynamic)

the appropriate mobility function is chosen (this implies that different mobility function names can

define the same mobility function). Furthermore, the mobility function name Default means the mobility

function used if no mobility function attribute in the carrier description of the PIF input file is given.
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The following table shows the actually implemented mobility functions (this list is also printed with the

-mobilityList command line option specified):

List of predefined mobility functions:

Identifier Description

Default Minimos 6 Si Electrons

Default Minimos 6 Si Holes

Minimos6 Minimos 6 Si Electrons

Minimos6 Minimos 6 Si Holes

Constant Constant Mobility Si Electrons

Constant Constant Mobility Si Holes

Default Standard GaAs Electrons

Default Standard GaAs Holes

Default Haensch Hydro GaAs Electrons

Default Haensch Hydro GaAs Electrons

StandardGaAs Standard GaAs Electrons

StandardInGaAs Standard InGaAs Electrons

OvershootGaAs Overshoot GaAs Electrons

OvershootInGaAs Overshoot InGaAs Electrons

StandardGaAs Standard GaAs Holes

2Valley 2-Valley Hydro GaAs Electrons

2ValleyFixed 2-Valley Fixed Hydro GaAs Electrons

Haensch Haensch Hydro GaAs Electrons

HaenschInGaAs Haensch Hydro InGaAs Electrons

The mobility function module is found in the files xexmobfn.c and xemobfn.h.

5.9 Contact Specification and Stepping

Contact conditions are also given by the PIF input file:

(attribute GateSegmentDescription ; GATE

(attributeType "SegmentDescription")

(nameList (ref segments_1 (valueList 3)))

(attribute GateMaterial

(attributeType "MaterialType")

(valueType asciiString)

(valueList "Al"))

(attribute GateContactType

(attributeType "ContactType")

(valueType asciiString)

(valueList "Schottky"))

(attribute GateWorkFunctionEnergy

(attributeType "WorkFunctionEnergy")

(units "eV")

(valueType real)

(valueList -0.678))

(attribute GateSchottkyBarrierHeight

(attributeType "BarrierHeight")

(units "eV")

(valueType real)

(valueList 0.9))
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(attribute GateSchottkyRecombinationVelocity

(attributeType "RecombinationVelocity")

(units "cm/s")

(valueType real)

(valueList 1.0e+4))

(attribute GateContactVoltage

(attributeType "ContactVoltage")

(units "V")

(valueType real)

(valueList -0.75 1.0 0.25)))

Segment 3 is used as gate contact (nameList (ref segments 1 (valueList 3))) with the

attributes:

GateMaterial defines the contact material (Aluminum "Al" here).

GateContactType must only be specified for Schottky contacts.

GateWorkFunctionEnergy is the negative Fermi energy level of the gate contact metal related to

the reference energy level (see the description of the band edge energies above). For ohmic contacts

the work function energy is always zero.

GateSchottkyBarrierHeight If the gate is a Schottky contact the barrier height must be also

specified which is nearly the difference of the conduction band edge energy of the successive

semiconductor and the metal Fermi energy level (note that this value does not depend on the

reference energy level).

GateSchottkyRecombinationVelocity If the gate is a Schottky contact the thermionic emission

velocity must be specified.

GateContactVoltage defines the contact as voltage controlled. If the attributeType

is "ContactCurrent" the contact is current controlled. If the attributeType is

"ContactVoltage" one value defines a fixed contact voltage, whereas three values mean to

step the contact voltage. The first value is the start voltage, the second value the final voltage and

the third value defines the voltage increment. The example shows a start voltage of �0:75V, a

finale voltage of 1:0V and an increment value of 0:25V. One contact can be specified for stepping

only.
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