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1 The VISTA Simulation Flow Control Module

1.1 Overview

The integration of an external optimizer lead to de�ning a collection of task-level framework

services that take care of all aspects of tool control and simulation data management and allow

for an easy implementation of a variety of task-level applications such as sensitivity analysis and

design of experiments, optimization, RSM extraction, and tool calibration.

The submission of process simulation tasks in the background or via telephone connections is

now possible as the 
ow control module has been made completely independent from the visual

user interface. This batch capability is used to perform automatic self tests of the TCAD shell

together with all simulators and auxiliary tools.

1.2 Framework Service Layer

The service layer provides access to a set of high-level framework services based on VISTA's

simulation 
ow representation [1]. It allows for the creation, modi�cation, and execution of

process 
ow instances, the submission of tasks for execution, the retrieval of responses, and the

persistent storage of results. Automatic split generation and scheduling minimize the number

of simulator runs required for iterative as well as parallel optimization techniques. Independent

split branches are executed simultaneously over the network to quickly obtain results.

The service layer is implemented in VISTA's extension language VLISP, a superset of XLISP. An

instance of a process 
ow together with its run-time data is called an experiment and is repre-

sented by a VLISP object. Table 1 gives examples of available services to create and manipulate

experiments.

Service Description

Define Experiment De�nes experiment attributes, e.g., process 
ow, initial wafer, etc.

New Experiment Creates new instance of existing experiment.

Edit Step Parameter Modi�es parameter values at step in process 
ow.

Submit Experiment Requests execution of process 
ow or retrieves previously com-

puted results.

Inquire Step Data Returns responses, current wafer data, etc.

Table 1: Examples of framework services to create and access experiments.

1.3 Framework { Optimizer Interface

When an optimization task is initiated by the framework, an agent is assigned to the optimizer

tool, which establishes a connection between the task-level services and the optimizer. The

agent is realized as a VLISP object. It takes care of passing messages between the optimizer

and the framework by means of a callback-based, asynchronous connection, allowing for the

execution of multiple optimization tasks at the same time. Figure 1 shows the interaction between

the optimizer agent and the service layer on the one hand, and between the agent and the

external optimizer on the other hand. The framework passes a description of the model to
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the optimizer, de�ning the model's type and its control and response variables. During the

course of the optimization, the optimizer requests the evaluation of the model for a certain set

of control values by sending a message to the framework. Messages between the optimizer and

the framework rely on VISTA's operating-system independent standard-input/standard-output

redirection capabilities. Depending on the internal operation of the optimizer, evaluation requests

may be sent synchronously, or a number of requests may be sent at a time. Upon termination of

the optimization, the result found and diagnostic information are passed back to the framework.
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Figure 1: Communication between the service layer, the optimizer agent,

and the external optimizer.

1.4 Self Tests

Any simulation 
ow can be executed in the background. The command vsfc is used to start the


ow controller without any visual user interface connections. The following VLISP commands

start the simulation of a 
ow cmos035.sfe:

(sfc::set-setting 'sfd-file #"cmos035.sfe")

(sfc::ui-start-task)

Callbacks can be registered at the termination of a simulation task and after every step of the

simulation. For the self test, the output of a process 
ow simulation, i.e., the resulting PIF

wafer model, is compared against a precomputed result, using vmake's test capabilities. As the

computation of a complete process 
ow involves complex interactions between a variety of tools,

the successful termination of the self test is a good indicator for the real-life behavior of the

TCAD framework.



2 POLYGONAL GEOMETRY RECONSTRUCTION 3

2 Polygonal Geometry Reconstruction after Cellular Etching

or Deposition Simulation

A new algorithm for the recalculation of a polygonal geometry representation after the com-

putation of etching and deposition simulations based on a cellular geometry representation was

developed. The purpose of that algorithm is to totally avoid any discretization errors in those

parts of the geometry which were not a�ected by the surface movements resulting from the

simulation.

2.1 Motivation

In two-dimensional process simulation, etching and deposition simulations are central steps. The

thereby required surface advancement algorithms are often performed on a cellular geometry

representation, e.g. [2]. During the simulation each of the cells contains one material type.

Etching and deposition is modeled by changing the material type of some cells, leaving their

geometric extensions unchanged.

Therefore it is necessary for each etching or deposition simulation step during the process simu-

lation, to discretize the original polygonal geometry (OPG), run the simulation and recalculate

a �nal polygonal geometry (FPG) representation. Former algorithms, e.g. [3], use only the �-

nal discrete geometry description to compute the FPG. Discretization errors occur all over the

geometry, which demand regriding of every geometry conformal grid de�ned on the original ge-

ometry. In addition discretization errors of subsequent etching or deposition simulation steps

might accumulate and under certain circumstances endanger the accuracy of the whole process

simulation.

To minimize these problems a cellular algorithm was developed which generates the FPG by

combining informations from the OPG, the original discrete geometry and the �nal discrete

geometry. Fig. 2 and Fig. 3 show the di�erences in the 
ow of data during an etching or deposition

simulation with the PROMIS { etch module between the new algorithm and the Marching

Squares Algorithm.

The new algorithm totally avoids any discretization errors in those parts of the geometry which

were not a�ected by the surface movements resulting from the simulation. Therefore the exten-

sions of the cells giving the accuracy of the discretization must only be adjusted to the minimum

extensions of the a�ected parts of the geometry. Structures much smaller than the resolution of

the discretization will keep their original shape when they were not a�ected by the etching or

deposition simulation.

2.2 The Algorithm

The computation of the FPG starts with a copy of the OPG: Firstly, in the main part of the

algorithm, a provisional polygonal geometry is assembled by the following three steps which are

performed on the cells of the discrete geometry:

1. Classi�cation: Every cell of the discrete geometry is classi�ed depending on the original and

�nal materials of the cell itself and all it's neighboring cells. These have to be taken into
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Figure 2: Flow of data in Marching Squares Algorithm
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Figure 3: Flow of data for an improved algorithm

account because the regions of the OPG usually do not correspond to the borders of the

cells. Five di�erent types of cells are distinguished:

Etched Cells: a cell is classi�ed as etched if the material changed to vacuum due to the

simulation, or if it is originally vacuum and one of its neighboring cells changed to

vacuum.

Partially Etched Cells: the original and �nal material of the cell is not vacuum and at

least one of the neighboring cells changed to vacuum in the �nal discrete geometry.

This category is necessary to describe accurately etching at etch stops.

Deposited Cells: the material changed from vacuum to the deposited material, or the

cell was originally containing some material and one of its neighboring cells changed

to the deposited material.

Original Vacuum Cells: the original and �nal material is vacuum and the cell is not

classi�ed as etched, partially etched or deposited before.

Original Material Cells: the original and �nal material is not vacuum and the cell is not

classi�ed as etched, partially etched or deposited before.

2. Geometry-Extraction: For etched, partially etched and deposited cells a polygonal descrip-

tion of the original geometry is computed. This description contains every part of the OPG

which is located inside of the cell, informations about the material types inside and outside

of the borders of the cell and the classi�cations of the cell and all its neighboring cells.

(Fig. 2.2 { Fig. 2.2 show examples for this geometry extraction using quadratic cells.)

3. Geometry-Correction: the FPG inside of the recent cell is computed by modifying the

polygonal description of the cell dependent on the classi�cation of the cell:

Fig. 4 shows a two-dimensional example for the construction of the FPG after an etching

and deposition simulation. In Fig. 4a the discretization of th OPG is demonstrated. In this

example the material of a cell is determined by the material type of the OPG at the center
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of the cell. The resulting discrete and polygonal geometries after removing some cells by

an etching simulation are presented in Fig. 4b. Fig. 4c shows the resulting discrete and

polygonal geometries after the redeposition of material 1 on top of the geometry of Fig. 4b.

material 2

material 3material 1

vacuum

1 1 1

2 2

2 2

3

3

(a)

2 2

2 2 3

(b)

2 2

2 2 3

1 1

1

1

(c)

Figure 4: Discrete and polygonal geometries: (a) original, (b) etched, (c) redeposited
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Etched Cells: Any region of the geometry which does not contain vacuum is removed

from the provisional polygonal geometry.

1,e

1,pe

1,e

0,e

0,ov

0,e

(a)

0,e

0,pe

0,e

0,e

0,ov

0,e

(b)

Extracted (a) and Corrected (b) Local Cell-Geometry for an etched cell

Partially Etched Cells: Every region of such a cell which is not containing the material

itself and is bordering to an etched cell is removed from the provisional polygonal

geometry. Remaining parts of the borders to neighboring cells which are classi�ed as

Original Material Cell or Etched Cell are added to the provisional polygonal geometry

to ensure a consistent description of the geometry.
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Extracted (a) and Corrected (b) Local Cell-Geometry for a partially etched cell

Deposited Cells: Regions of the geometry containing vacuum are replaced by regions

containing the deposited material and added to the provisional polygonal geometry

like newly created borders to cells which were classi�ed as Original Material Cell or

Original Vacuum Cell.
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The structure which is thereby created contains a high number of segments. Therefore in a second

step the face structure is simpli�ed and locally smoothed as far as it is not de�ned by parts of the

OPG. The extent of reduction can be controlled, and the number of segments is often drastically

reduced.

2.3 Examples

The performance of the new algorithm can be shown by comparing Fig. 5 to Fig. 7. Fig. 5

shows an example for an original polygonal geometry with some grid de�ned on a single segment.

Fig. 6 shows the �nal polygonal geometry resulting from the Marching Squares Algorithm after

an etching simulation. Due to discretization errors the extensions of the segment with the grid

de�ned on it changed and regriding would be necessary to ensure correct representation of the

grid in this segment. In Fig. 7 the �nal polygonal geometry obtained from the new algorithm

after the same etching simulation is shown. The validity of the grid was preserved because that

part of the geometry was not a�ected by the etching simulation.

Figure 5: The Original Polygonal Geometry

2.4 Conclusions

The algorithm is highly independent of the dimension and shape of the discretization cells. Pos-

sible restrictions arise only out of numerical and algorithmic problems during the computation

of the inner geometry of the cells. Therefore it is applicable to a large group of problems which

require temporary conversions from polygonal to discrete geometry representations.

The increased computational e�ort of this new algorithm can be justi�ed by considerable savings

of calculation time in following regriding algorithms, because these have only to be applied in

those parts of the geometry which actually changed during the etching or deposition simulation.
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Figure 6: The Final Polygonal Geometry generated with MSQ - algorithm

Figure 7: The Final Polygonal Geometry resulting from the new algorithm
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3 Analytical Ion Implantation Model using the Four-Parameter

Kappa Distribution Function

The already existing two-dimensional model for the analytical simulation of ion implantation

into arbitrary geometries has been extended by a new distribution function. The four-parameter

kappa distribution function was introduced the �rst time in semiconductor technology to describe

the vertical dopant pro�le of implanted ions. Owing to the low computational e�ort and the short

simulation time the given method is an alternative to modern Monte Carlo simulations for ion

implantation processes. To handle any ion - any target implantations new range statistic data

have been calculated from amorphous Monte Carlo simulations and stored in VISTA's material

server data base.

3.1 The Analytical Ion Implantation Method

To describe the ion implantation pro�les, a method based on distribution functions and their

spatial moments is applied. For multilayer, non-planar structures we obtain the two-dimensional

dopant pro�le by lateral convolution of a given vertical distribution function. Therefore the given

simulation geometry is cut into slices which are arranged in the direction of the incoming ions (see

Fig. 8). In each slice of the discretized geometry the vertical distribution function is initialized

using the numerical range scaling method according to the di�erent target materials [4]. To

get the �nal concentration C(x; y) at the spatial coordinates we add up the lateral and vertical

distribution functions by

C(x; y) = N

d

�

Z

+1

�1

f

vert

(x; �) � f

lat

(y � �; x)d�; (1)

where � is the lateral position and N

d

is the implantation dose. Due to our convolution method

we would loose dopants at the given geometry boundaries, so the simulation geometry is extended

to avoid this loss of dopants and to satisfy the Neumann boundary conditions at the geometry

boundaries. Arbitrary tilt angles for the incoming ions can be handled with this slab method for

the initialization of the vertical distribution function [5].

3.2 The Four-Parameter Kappa Distribution Function

There are several distribution functions to describe the vertical dopant pro�le. The Gaussian dis-

tribution or distributions using higher moments, such as the family of the Pearson distributions,

are used to give an accurate �t to the implantation pro�les. All these distributions are based

on conventional central moments. In our approach described here we introduce the so-called

"L-moments" the �rst time in semiconductor technology to specify statistical distributions.These

L-moments are analogous to conventional central moments but can be estimated by linear com-

binations of order statistics. L-moments are able to characterize a wider range of distribution

functions and are more robust to out-liners of the given data set than central moments. These

L-moments can be de�ned in terms of probability weighted moments �

r

by a linear combination.

The probability weighted moments of a given distribution are de�ned by

�

r

=

Z

1

0

x(F ) � F (x)

r

dF; (2)

where x(F ) is the quantile function and F (x) is the cumulative distribution function. We use

the four-parameter kappa distribution function as vertical distribution to �t the dopant pro�le,
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because analytical formulations exist for x(F ) and F (x) [6]. The four-parameter kappa distribu-

tion is a combination of the generalized logistic, generalized extreme-value and generalized Pareto

distribution and is given by

f(x) = � � (1� k � (x� �) =�)

(1=k)�1

� (F (x))

1�h

; (3)

where � is a location parameter, � is a scaling parameter and h; k are shape parameters. The

cumulative distribution function F (x) is given by

F (x) =

�

1� h � (1� k � (x� �) =�)

1=k

�

1=h

: (4)

The estimation of the parameters of the kappa distribution using L-moments requires a Newton-

Raphson iteration method, because no explicit solution of the probability weighted moments for

the kappa parameters is possible.

To demonstrate the accuracy of our analytical implantation model Fig. 9 shows the one-dimensional

comparison of a Boron ion implantation pro�le with several distribution functions and the dopant

pro�le computed by modern Monte Carlo simulation. Fig. 10 shows the two-dimensional result

of a Phosphorus implantation at 70keV and 30 degrees tilt. Comparing our analytical results

with Monte Carlo simulations (Fig. 11) we found good agreement. Due to the neglection of the

re
ected particles in the mask sidewall region, we obtain a lower concentration in the silicon

substrate. But we get a more realistic dopant pro�le over the whole distribution range, where

Monte Carlo simulation can only give accurate results within two or three orders of magnitude.

Also the computational e�ort is very low compared to Monte Carlo simulations; the simulation

time was reduced with the analytical method by a factor of 10 on a DEC-3000/400.
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4 VMAKE { A CASE-Oriented Con�guration Management

Utility

4.1 Introduction

The Viennese Make Utility (VMake) is based on a publicly available LISP interpreter writ-

ten in C[7]. The interpreter is entirely platform-independent and runs currently on a number

of UNIX systems and on VMS. VMake itself is written in LISP and supports, in addition to

common make features, a number of CASE tasks like automatic code generation, version man-

agement (using RCS and CVS from a common repository), and automated high-level source code

processing features, like language bindings between C, LISP and FORTRAN and extraction of refer-

ence manuals. VMake maintains automatically a private project �le which contains up-to-date

symbolic de�nitions of source code �les, modules, libraries, language binding mechanisms, appli-

cation executables, and all build targets. Dependencies between these objects are extracted from

local description �les or generated automatically from source code �les. This enforces compact

description �les and allows for e�cient management of large scale software projects.

Platform independence has been one of the major design requirements for VMake. Fig. 12

shows a list of currently supported computer architectures and operating systems. Only an ANSI

C compiler to compile the LISP interpreter is required for porting VMake to another platform.

computer operating system

DEC AXP 3000,7600 OpenVMS/AXP 6.1

DEC AXP 3000,7600 OSF 2.1, OSF 3.0

Apollo DN1000 Apollo DOMAIN 10.3

Decstation 3000,5000 Ultrix 4.2, Ultrix 4.3

HP/Apollo 9000/700 HP/UX 8.05, HP/UX 9.0

IBM RS6000 AIX 3.1, AIX 3.2

PC 386, PC 486 Interactive Unix 4.0

PC 386, PC 486 Linux 1.1.54 + AT&T f2c

Sparc Station SunOS 4.1

Sparc Station Solaris 2.3

Sony RISC Sony NEWS 4.2

VAX, VAXstation OpenVMS/VAX 6.1

Figure 12: Platforms currently supported by VMake

Similar to imake, VMake employs a small number of standardized higher{level rules to reduce

the complexity of local module description �les, but overcomes the aforementioned insu�ciencies

by maintaining all global project information automatically. In a VMake{internal global context

�le, the time of the last modi�cation of every local description �le is stored (in addition to the

timestamps of all managed source code �les) and updated automatically. Changes to the local

description �les are recognized and the (partial) regeneration of the dependency information is

started automatically. Fig. 13 shows a typical VMake description �le. Since VMake is based

on LISP, the syntax chosen is a subset of LISP so that the LISP reader can be used for parsing.
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; this defines a name for the directory

(Module-Directory My-dir)

;; compile main source file

(CC-Target My-C-main

:source "mymain.c")

;; compile library objects

(CC-Target My-C-objects

:source "my1.c" "my2.c" "my3.c")

;; build library

(Library-Target My-C-library

:libname "my"

:objects My-C-objects

:archive)

;; generate program

(Program-Target My-C-program

:progname "myprog"

:objects My-C-main

:libraries My-C-library

:language C)

Figure 13: Example of a VMake description �le

4.2 Software Installation, Release/Patch Generation and Version Management

To build a binary software release, all modules of a project must be installed under an installation

directory. As VMake knows all global include �les, public libraries, and executable programs it

can automatically put them into respective installation directories. Only for additional installable,

otherwise unmanaged �les (like README �les and LISP sources) a dedicated installation directory

must be speci�ed in the module description �le.

VMake supports source code level releases and patches between releases. The basic process is

similar to the software installation, but a full second instance of the managed source code is

created, which can then be packed for shipping.

VMake supports the Concurrent Version System[8], a public{domain version management sys-

tem based on RCS. VMake reads CVS' special �les and upon request, prints lists of all source

�les modi�ed with respect to the repository, of all �les not currently checked in, and of all �les

under control of CVS but not known to VMake. This automatism helps to detect and avoid

version/con�guration management inconsistencies in an early stage of the production process

(i.e. before the test phase). VMake also checks whether project modules make proper use of

the global error system which accesses the version management information to track down errors

occurring during module and project test and use.

4.3 CASE operations { The Tool Abstraction Concept

VMake uses a Tool Abstraction Concept (TAC) for generating language bindings of functional

modules and constants for di�erent programming languages than the implementation language of
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the functions. Currently, bindings can be generated from C to FORTRAN, from FORTRAN to C, and

from C to LISP. The automatic support of multi{language programming has proven valuable for

two reasons. First, writing the required stub code manually is a tedious and error{prone task and

secondly, multi{language interfaces between compiled languages are highly system{dependent.

The TACmodule ofVMake scans the source code �le and extracts information from the function

de�nitions and special formal comments, as depicted in Fig. 14. The comment /***TF starts the

de�nition of a TAC{able Function.

/***TF counts the number of occurences of a character

within a string. The start and end of the search range can

be specified to simplify substring operations. */

/***R myStrChar myStrReverseChar */

int /* [:not-ok 0] */

myStrCount( char *str, /* [IN] input string to search */

char ch, /* [I] character to search for */

int start, /* [I :opt :key :default 0]

start index for search */

int end) /* [I :opt :key :default strlen(str)]

end index for search */

/* implementation of function */

Figure 14: TAC documented function

The comments after the function arguments consist of a formal description of the argument char-

acteristics and a textual documentation part. (The comments are also used by the documentation

extraction facility.) In the example in Fig. 14, all parameters are used as input [I] and the string

may be given as NULL pointer [IN]. The rule Module-Directory de�nes the required module

pre�x for all functions of the current module. This module pre�x must be unique within the

project, it is used to identify the module a�liation of a given function. To bind the function

myStrCount to another language, the de�nition

(Module-Directory MyModule

:prefix "my")

(Define-TAC-Target TAC-module

:files "mysrc.c" ; source file of function

:source-domain C)

is used in the description �le of the module implementation for exporting the function. To generate

LISP bindings for the C function myStrCount (which is part of the module "my") somewhere else

in the project tree the rule

(Create-TAC-Interface TAC-LISP-Interface

:modules "my"

:target-domain LISP)

has to be used in the description �le where the language bindings shall be generated. All the

TAC information that has been extracted by VMake is tied to the symbolic name and pre�x of
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the module. Once de�ned, this information can be used for the generation of multiple language

binding interfaces.

LISP
binding (C)

interpreter

extended XLISP

XLISP
source code

TAC generated

C files

System Utilities (compiler, archiver, loader)

VMake/TAC

library

objects

objects

Figure 15: TAC used for LISP binding

The TAC is also used for the extraction of reference manuals from the source code. A function

documented with a /***F comment is parsed by VMake and a L

a

T

E

X reference manual entry

for that function is generated (shown in Fig. 16).

myStrCount C-Function

Usage:

int myStrCount(str, ch, start, end);

input char *str input string to search

input char ch character to search for

input int start start index for search

input int end end index for search

myStrCount counts the number of occurences of a character within a string. The start and end

of the search range can be speci�ed to simplify substring operations.

References:

myStrChar 6

myStrReverseChar 12

Figure 16: TAC extracted documentation
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