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1 JOB FARMING 1

1 Job Farming

VISTA is able to make use of any host in your LAN for your computations, provided that it is

reachable via remote shell (rsh) and that the path to your working directory is the same on all

machines. In order to register a computer with the VISTA shell you have to open the Compute

Servers panel in the Job-Control menu as depicted in Fig. 1.

Figure 1: The Compute Server Panel is used to enable/disable hosts, to con�gure speci�c tools

for a host, and to specify parameters for load balancing.

1.1 Host Registration

The Enabled Hosts area of Fig. 1 displays a list of all hosts known to the framework so far. To

enable additional hosts, enter their name into the Host �eld and press the Enable button.

1.2 Host Con�guration

1.2.1 Workload Parameters and Status Information

To con�gure a host you have to select its entry in the list of enabled hosts. The right hand part

of the panel displays information about the con�guration of the current selected host. The Load

Information area displays the current status of a host and enables you to specify how many jobs
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should be run on that host. Additionally it displays the current load, the allowed (or desired) load

on that host and whether that host is considered idle or busy by the framework. For information

about load balancing refer to Section 1.3.

1.2.2 Host Usage Restrictions

If you do not want a host to be included for job farming, but you need to run a speci�c tool on

that host, you can make it a restricted host. This will cause the framework to use this host, if a

tool is only available on that host. Typically tools that demand a license require this feature.

1.2.3 Tool Information

In order to let the framework decide on which host it should run a job, you have to specify which

tools are available on each host. This is done in the Tools area. It displays a list of tools that

are available on the current selected host. You can interactively add and remove tools. Once

de�ned, VISTA knows on which host a speci�c tool can be invoked. If a tool is not registered on

any host, it is assumed to be available everywhere.

1.3 Load Balancing

In a large cluster of workstations it is important to balance the load between all available nodes.

Typically large simulations experiments require a lot of system jobs, which should make use of all

CPUs available in the environment. At the same time computations on computers with a high

workload should be avoided, as it might cause your simulation to get stuck.

Therefore VISTA enables you to make optimal use of your computer resources. VISTA allows

to specify a global load limit (Baseload which applies to any known host) and host speci�c load

limits (Number of Jobs). The allowed workload (which is displayed in Allowed Load) is

w

limit

= baseload+ njobs.

VISTA queues jobs to a host as long as the allowed load will not be exceeded after the job is

submitted (Typically one computing process causes a load increase of one). The idle/busy limit

of a host is

w

idle=busy

= w

allowed

� 1.

If the current load is above this limit no jobs will be queued to this host. The status is displayed

in the panel (Busy/Idle).

Basically hosts are sorted by their remaining load for queuing, which is the di�erence between

their allowed load and their current load. That means that you can favor hosts over others by

specifying a higher number of jobs for them.

The global load limit makes sense in situations where workload is high and you want to raise all

limits at the same time. Usually the baseload parameter should be between one and two, which

avoids computations on machines with running jobs.
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1.4 Workload Feedback

VISTA collects load information periodically using the rup command. Polling intervals are con-

�gurable, good results have been achieved with a maximum interval of 60 seconds and a minimum

interval of 10 seconds. rup utilizes the rstatd which should be con�gured on every host you use.

If VISTA is unable to determine the load this way, it assumes your host to be idle.
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2 High-Level Optimization Capabilities of the VISTA

Framework

Submicron semiconductor development relies on TCAD essentially in the process optimization

stages. For these highly complex tasks, there are special facilities available in the VISTA TCAD

framework.

Optimization problems can be devided into two groups:

� The �rst one contains the optimization of extracted physical parameters in a given set

of input parameter space. Direct optimization methods are not very well suited for this

problem because in order to calculate one set of input and output values a whole proces


ow and usually several device tests must be simulated. To save CPU-time, methods like

Design of Experiments (DoE) and Response Surface Methodology (RSM) have to be used

[1][2].

� The second class of problems are concerned with the calibration of simulator modules.

However, in this case only a single simulator { eventually with pre- and postprocessing {

needs to be executed. Direct optimization methods work very well for this task.

This article will concentrate on the �rst type of problem.

2.1 Design of Experiments

For automatic generation of experiments a DoE module can be used. The type of the experimental

design can be chosen out of a large number of available types (Table 1). The result of the DoE is

the design matrix. To probe the parameter space in the most e�cient way, transformations for

the parameters can be de�ned; see Section 2.3 for details. After simulating these runs the control

and the response values are written to the experiment table and can be processed by other tools.

NOM Nominal Design

SA Sensitivity Analysis

FUL Full Factorial Design

CCF Central Composite Facecentered Design

CCC Central Composite Circumscribed Design

CCI Central Composite Inscribed Design

RAN Random Design

DIA Diagonal Design

GRI 2D - Grid Design

LAT Latin Hypercube Design

FRA Fractional Factorial Design

PLA Plackett-Burman Design

OME Orthogonal Main E�ect Design

SUP Supplementary Design

Table 1: Available experimental designs
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2.2 Response Surface Methodology

The RSM module �ts polynomial functions to the data in the experiment table. As in the DoE

module, additional transformations for the controls and the responses can be added; see Section

2.3 for details. With the RSM-viewer the �tted surface can be visualized as 2D or 3D graphics

(Figure 4). Sliders enable the user to understand the in
uence of the controls.

2.3 Transformations

To accurately model the system behavior, both the DoE and RSM modules make use of trans-

formations of the parameter space to linearize the dependence of the output variables on the

transformed input parameters. Subdivision of the parameter space as well as �tting of the re-

sponse surfaces takes place in transformed space.

For each input parameter, a transformation function can be selected from a set of well-known

transformations. If the transformation function needs parameters (transformation parameters),

these parameters may either be speci�ed explicitely, e.g., in the case when a physical formula

has been established, or they may be determined automatically from a set of sample points.

Additionally, it is also possible to select the best one of a given set of transformation functions

for a given set of sample points. Thus, the user does not need to specify the transformation to

use.

It is important to note that all transformation functions have to be de�ned by specifying code

for both the forward and reverse directions and assigning a reference name to the transformation

before they can be used. All information on transformations is stored centraly and accessed

exclusively by the reference name. E.g., for a given technology, a transformation called vth-lg

can be de�ned, which analytically re
ects the short-channel e�ect and is used to linearize the

dependence of the threshold voltage on the gate length for DoE and RSM.

2.4 Optimizer

For optimizing device performance parameters over a given input variable space, a constrained

optimizer with sequential quadratic approximations has been integrated. It minimizes the target

function, wich can be assembled out of the input and output values. The gradient is calculated

by evaluating �nite di�erences, and the Hessian is built by an BFGS update. For the calibration

problems an optimizer based on the Levenberg Marquardt algorithm [3] is available.

2.5 Architecture

The DoE module, the RSM module and the optimizer are external tools. The optimizer and the

RSM module are interactive programs, so spezial interface agents handle communication between

the framework and the tool. These agents are implemented as object classes and can easily

subclassed to integrate additional tools.
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2.6 Application

The following example shows how all these functions work together. The goal of the example

is to make the n-well as deep as possible, but hold the threshold voltage at a �xed value. The

control variables are the implant dose and energy and the drive time (Table 2).

Implant dose 4e12 12e12 cm

�2

Implant energy 110 270 keV

Drive time 10 270 min

Table 2: Range of the control variables.

For simulating the process TSUPREM4 and for the threshold voltage extraction MEDICI were

used. The listing (Figure 2) shows the de�nition of the problem. Both { controls and responses

{ have nicknames so they can be referenced in the script, e.g., for building the target function.

After the generation of a Central Composite Inscribed design and calculation of 15 runs (Fig. 3),

a response surface model is generated and the optimization is started. The optimizer solves the

constrained problems by querying the RSM-tool for results of the �tted surface. So the optimal

process parameters (nw_energy = 220:5, fox_drive_time = 203:8, nw_dose = 8:4E + 12) for a

deep well can be found. The surface plot (Figure 4) shows the characteristic near the optimal

point.
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;; load additional modules

(vos::load #"sf-vui")

(vos::load #"sfev-vui")

(vos::load #"optagent-2")

(vos::load #"sfvdoe")

(vos::load #"sfvrsm")

(vos::load #"optcalc")

;; set the flow and the design file

(Flow-Eve #"~/nwell/nw_doe.sfe" :file #"~/flows/nwell.des")

;; list of control variables

;; nickname stepname name in step

(setq control-defs

'(("nw_energy" "n-well implant" "energy")

("fox_drive_time" "stabilize-special" "time")

("nw_dose" "n-well implant" "dose")))

;; define these control variables

(dolist (cd control-defs)

(Eve-Define-Control (car cd) (cadr cd) (caddr cd))

(Eve-Set-Control (car cd) (fourth cd)))

;; set the range of the controls

(Eve-Set-Control "nw_energy" 190 :min 110 :max 270)

(Eve-Set-Control "fox_drive_time" 190 :min 10 :max 270)

(Eve-Set-Control "nw_dose" 8e12 :min 4e12 :max 12e12)

;; define responses

;; nickname stepname name in step

(Eve-Define-Response "long_Vt" "Vt" "Vt")

(Eve-Define-Response "ph_surf_conc" "Xj's etc." "ph_surf_conc")

(Eve-Define-Response "silicon_top" "Xj's etc." "silicon_top")

(Eve-Define-Response "abs_nwell_xj+0.5" "Xj's etc." "abs_nwell_xj+0.5")

(Eve-Define-Response "nwell_xj" "" "" :eval-expr

'(and abs_nwell_xj+0.5 silicon_top

(+ (- abs_nwell_xj+0.5 silicon_top) 0.5)))

(Eve-Define-Response "target" "" "" :eval-expr

'(and abs_nwell_xj+0.5 silicon_top

(+ (* 100 (abs (- long_Vt -0.8)))

(- 2 (+ (- abs_nwell_xj+0.5 silicon_top) 0.5)))))

;; schow the run table

(sfc::vui-eve)

;; generate a CCI design

(Opt-Doe :design 'CCI)

;; start the optimizer when all runs are calculated

(flet ((runs-return (x cl ca)

(sfc::optimize-rsm :target "target")))

(sfc::set-idle-callback #'runs-return nil))

Figure 2: Listing for solving this optimization problem.
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Figure 3: Running the computation of the 15 CCI experiments

Figure 4: Response Surface Model plot of the target function versus the energy in the optimal

point.
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3 Three-Dimensional Lithography Simulation

3.1 Introduction

Among all technologies photolithography holds the leading position in pattern transfer in today's

semiconductor industry. The reduction of the lithographic feature sizes towards or even beyond

the used wavelength and the increasing nonplanarity of the devices requires high standards of

the lithography process. The large cost and time necessary for experiments make simulation

an important and especially cost-e�ective tool for further improvements. However, a rigorous

description of the fundamental physical e�ects governing sub-micrometer-photolithography poses

considerable demands on the modeling, as three-dimensional simulation becomes necessary. As

a consequence the needed computational resources are extremely high. In three dimensions

some approaches (e.g. [4]) are suited only for supercomputers, others are already proposed for

workstation based simulation (e.g. [5]).

We developed an overall three-dimensional photolithography simulator running on modern engi-

neering workstations. The simulator consist of three di�erent modules as shown in Fig. 5.

Mask
Illumination Exposure

Photoresist Photoresist

Development

Figure 5: The three basic modules of the photolithography simulator

Each module accounts for one of the fundamental processes of photolithography, namely imaging,

exposure/bleaching, and development. Each of the three processes requires its speci�c simulation

approach and can be treated independently. The individual modules are brie
y characterized as

follows:

� The imaging module describes the illumination of the photo-mask. The light propagation

through the optical system and the light transmission through the photo-mask has to be

simulated. The output of the imaging module is the aerial image, which is the light intensity

incidenting on top of the wafer.

� The exposure/bleaching module simulates the chemical reaction of the photosensitive

resist. Thereby the light propagation within the optically nonlinear resist as well as electro-

magnetic scattering e�ects due to a nonplanar topography have to be modeled. The result

of the exposure/bleaching module is the latent bulk image.

� The development module describes an isotropic etching process, whereby the etch rate

is determined by the previously calculated bulk image. The �nal developed resist pro�le is

the result of the overall photolithography simulator.

In the following sections we describe the di�erent modules in greater detail and present simulation

results for contact hole printing over planar and nonplanar substrate to demonstrate the capability

of the simulator.
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3.2 Imaging Simulation

Our aerial image simulator is based on a vector-valued extension [6] of the scalar theory of Fourier

optics [7]. To apply this theory we �rst reduce the projection printing system to its essential parts

as shown in Fig. 6.

Light source (UV, DUV)

Projection Lens (M:1 reduction)

Photo-Mask (binary, phase-shift)

Wafer (photoresist spinned on)

Condensor Lens

Aperture (annular, quadrupole,...)

Figure 6: The projection printing system is reduced to its essential parts.

The mask-pattern is thereby assumed to be laterally periodic with periods a and b. The photo-

mask is in�nitesimally thin with ideal transitions of the transmission characteristic. The piecewise

constant transmission function is real-valued (0 or 1) for binary masks, in case of phase-shift masks

it is complex-valued with module less than one.

For the simulation of arbitrary illumination forms the distributed light source is discretized into

mutually independent coherent point sources Q

pq

. In Fig. 7 we show the discretization for an

annular and a quadrupole aperture.
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x

Quadrupole Illumination

k

k

σ

ykyk

0NA

σ2k0

Annular Illumination

Figure 7: To account for arbitrary illumination forms the light source is discretized

into mutually independent coherent point sources located inside the illumination aper-

ture.

A numerically e�cient exposure/bleaching simulation requires, that all the individual point source

contributions are periodic. Therefore the spacing between the point sources Q

pq

has to be chosen

in a way, that the lateral wavevector components k

pq

x

and k

pq

y

of the waves incident onto the

photo-mask equal an integer multiple of the sampling frequencies 2�=a and 2�=b in the Fourier

domain, i.e.,

k

pq

x

= p

2�

a

; k

pq

y

= q

2�

b

:
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This requirement is illustrated in the wavevector diagram of Fig. 8.
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Figure 8: The spacing between the individual point sources is chosen to yield a

periodic EM �eld incident onto the photo-mask.

The resulting image on top of the wafer due to one coherent point source can now be expressed

by a superposition of discrete di�raction orders. Because of the periodicity of the EM �eld this

superposition corresponds to a Fourier expansion and writes to

E

pq

(x; y; 0) =

X

n

X

m

E

pq

nm

e

j2�(nx=a+my=b)

; H

pq

(x; y; 0) =

X

n

X

m

H

pq

nm

e

j2�(nx=a+my=b)

: (1)

The di�raction orders are homogeneous plane waves with wavevectors

k

nm

= 2�

�

n=a; m=b;

q

(1=�

0

)

2

� (n=a)

2

� (m=b)

2

�

T

;

and their amplitudes follow from the vector-valued di�raction theory [6],

E

pq

nm

= T

n�p;m�q

P(n;m; p; q); H

pq

nm

=

�

0

2�

r

"

0

�

0

k

nm

�E

pq

nm

: (2)

�

0

is the actinic wavelength and the time dependence of the EM �eld is a time-harmonic one,

i.e., E(x; t) = Re

�

E(x)e

�j!

0

t

	

and H(x; t) = Re

�

H(x)e

�j!

0

t

	

with an angular frequency of

!

0

= 2�=

p

"

0

�

0

�

0

.

In (2) T

nm

stands for the Fourier coe�cients of the mask transmission function. As illustrated in

Fig. 9 they are computed by �rst triangulating the piecewise constant transmission function and

then superposing weighted analytical Fourier transforms of the triangular patterns.

The second term P(n;m; p; q) of (2) is the vector-valued counterpart to the pupil-function of the

scalar di�raction theory [7] and follows from ray-tracing [6] trough the optical system (cf. Fig. 6).

P(n;m; p; q) is essentially a low-pass �lter (no evanescent waves can travel towards the wafer)

and accounts for the polarization state, defocus, and higher order aberrations terms.

The aerial image itself is the light intensity I(x; y) incident on top of the wafer and therefore

equals the real part of the vertical component of the Poynting vector of the EM �eld. It is
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b

Analytical Fourier transform of

k-th triangle TRI

k

with transmission t

k

:

T

k

nm

=

Z

(x;y)2TRI

k

Z

e

j2�(nx=a+my=b)

dxdy

Superposition of triangle contributions T

k

nm

:

T

nm

=

X

k

t

k

T

k

nm

a

Figure 9: The Fourier coe�cients T

nm

of the mask transmission function are com-

puted analytically.

calculated by a weighted incoherent superposition of the mutually independent terms and writes

to

I(x; y) =

X

p

X

q

w

pq

Re

h

E

pq

(x; y; 0) �H

pq�

(x; y; 0)

i

z

;

whereby the asterisk denotes complex conjugation. For a uniform bright source the weights w

pq

are determined by the portion of the discretization area 2�=a�2�=b within the illumination cone

(cf. Fig. 8). A simulation result of the aerial image module is given in Fig. 10.

Figure 10: Aerial image of the mask pattern shown in Fig. 9

3.3 Exposure/Bleaching Simulation

From a simulation point of view the exposure/bleaching reaction is by far the most demanding

problem within photolithography simulation. Hence, we discuss this module in greater detail.

First we present the underlying physical simulation model and then come to the key point of any

rigorous photolithography simulator, namely the numerical solution of the Maxwell equations.

3.3.1 Simulation Model

The exposure state of the photoresist is described by the concentration of the photoactive com-

pound (PAC) M(x; t), which constitutes the latent bulk image. The bulk image is transferred

into the photoresist by light absorption. Thereby the PAC is dissolved and the optical properties,

e.g., the refractive index n(x; t), are changed. As usually this exposure/bleaching reaction is

modeled by Dill's `ABC'-model [8]

@M(x; t)

@ t

= �C I(x; t)M(x; t); n(x; t) = n

0

+ j

�

4�

�

AM(x; t) +B

�

;
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where I(x; t) is the exposing light intensity. Consequently, the EM �eld inside the nonlinear

photoresist has to be determined. Because the bleaching rate is small as compared to the frequency

of the EM �eld, we apply a quasi-static approximation, i.e.,

M(x; t

k+1

) =M(x; t

k

)e

�C I(x;t

k

) (t

k+1

�t

k

)

; (3)

where the initial PAC distribution is homogeneous M(x; t

0

) � 1. Furthermore, we assume a

steady-state �eld distribution within a time step t

k

� t < t

k+1

. Therefore, the EM �eld is

time-harmonic and obeys the Maxwell equations in the form of

curlH

k

(x) = �j!

0

"

0

"

k

(x)E

k

(x); curlE

k

(x) = j!

0

�

0

H

k

(x): (4)

The complex permittivity "

k

(x) is related to the refractive index n by Maxwell's law,

"

k

(x) = n

2

(x; t

k

), and the exposing light intensity is given by

I(x; t

k

) =

1

2

r

"

0

�

0

n

0

kE

k

(x)k

2

: (5)

The equation set (3) to (5) represents the simulation model for the exposure/bleaching reaction,

whereby an e�cient solution of the inhomogeneous but linear Maxwell equations (4) is the crucial

point for the applicability of the model. The principal simulation 
ow of the exposure/bleaching

module is illustrated in Fig. 11.

"(x; t

k

) I(x; t

k

)M(x; t

k

)

k                k+1

E

k

(x)

Figure 11: Simulation 
ow for the exposure/bleaching module

3.3.2 Numerical Solution of the Maxwell Equations

Our solution of the Maxwell equations [9] [10] corresponds to the three-dimensional formulation of

the di�erential method such as an algorithm which was originally developed for the simulation of

di�raction gratings [11] and was later adapted for two-dimensional photolithography simulation

in [6]. The di�erential method itself requires a rectangular shaped simulation domain (a� b� h)

with periodic boundary conditions in lateral direction. Inside the simulation domain arbitrary

inhomogeneous and nonplanar regions can be simulated. Above (z < 0) and below (z > h)

multiple planar homogeneous layers form a strati�ed medium, that can be treated analytically

and are considered by the vertical boundary conditions. A typical formation is shown in Fig. 12.

The strategy behind the di�erential method is brie
y described as follows: First, the dependence

of the EM �eld on the lateral x- and y-coordinates is expressed by Fourier series. Inserting

these expansions into the Maxwell equations transforms the partial di�erential equations (PDEs)

into a system of ordinary di�erential equations (ODEs). Once the boundary conditions (BCs)

are determined and the ODEs system is solved, the obtained �eld coe�cients are transformed

back to the spatial domain. A schematic overview of the various steps involved in the numerical

algorithm is illustrated in Fig. 13.

A more detailed discussion of the lateral discretization, the boundary conditions and the vertical

discretization is presented in the following three items:
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Nitride

Eo

Ei Er

x

b

y

z

h

a

Photoresist

Oxide

Silicon

Figure 12: In the given example the simulation domain consists of the inhomogeneous

photoresist, the nonplanar oxide and the nonplanar part of the nitride. Above (z < 0)

and below (z > h) multiple planar homogeneous layers form a strati�ed medium.

curlH

k

(x) = �j!

0

"

0

"

k

(x)E

k

(x)

curlE

k

(x) = j!

0

�

0

H

k

(x)

u

0

(z) = H(z) � u(z)

B

0

� u(0) = a

pq

; B

h

� u(h) = 0

u

pq

(h) = S � u

pq

(0)

"

B

0

B

h

S

#

� u

pq

(0) =

"

a

pq

0

#

Problem

u

0

(z) = H(z) � u(z)

u

pq

(0) =

"

B

0

B

h

S

#

�1

�

"

a

pq

0

#

PDE - Maxwell Equations

Algebraic System

ODE - Boundary Value

ODE - Initial Value

V
ertical D

iscretization
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oundary C
onditions

L
ateral D

iscretizationProblem

Figure 13: Overview of the numerical algorithm

� Lateral Discretization: Due to the periodic nature of the incident light (1) and the

assumed lateral periodicity of the simulation domain the EM �eld as well as the permittivity

inside the simulation domain can be expressed by Fourier series,

"(x) =

X

n;m

"

nm

(z)e

j2�(nx=a+my=b)

; U(x) =

X

n;m

U

nm

(z)e

j2�(nx=a+my=b)

; (6)

whereby U stands in for the two EM �eld vectors E and H respectively. Here, it is most

important to emphasize that the above expansions are valid for all point sources Q

pq

and

time steps t

k

.

Insertion of (6) into (4) transforms the PDEs into an in�nite dimensional set of coupled

ODEs for the Fourier coe�cients of the lateral �eld components, as the vertical �eld com-

ponents can be expressed analytically by the lateral ones. Next, the Fourier expansions of
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(6) are truncated. Thus, only coe�cients fE

x;nm

; E

y;nm

;H

x;nm

;H

y;nm

g

jnj�N

x

;jmj�N

y

sym-

metrically centered around the vertical incident ray n = m = 0 are related by the �nal

ODE-system,

d

dz

u(z) = H(z) � u(z) with H(z) =

"

0 R(z)

G(z) 0

#

: (7)

In the above matrix-vector notation the complex-valued vector u(z) =

h

e

x

(z); e

y

(z);h

x

(z);

h

y

(z)

i

T

comprises the Fourier coe�cients of the lateral �eld components, e.g., (e

x

(z))

k

=

E

x;n(k)m(k)

(z), and the elements R(z) and G(z) of the system matrix H(z) contain the

Fourier coe�cients of the permittivity "(x). Each of the e and h vectors has dimension

(2N

x

+ 1)� (2N

y

+ 1) due to the symmetric truncation. Therefore the entire ODE system

is of dimension

N

ODE

= 4� (2N

x

+ 1)� (2N

y

+ 1) � 16�N

x

�N

y

: (8)

� Boundary Conditions: Above and below the simulation domain we have homogeneous

planar layers (cf. Fig. 12). Inside one layer the EM �eld can be expressed by a plane wave

or Rayleigh expansion [12]. The mathematical formulation is that of a Fourier expansion

with vertically known dependence of the coe�cients. Above the simulation domain (z < 0)

we have to consider incident and re
ected waves,

U(x) =

X

jnj�N

x

X

jmj�N

y

h

U

i

nm

e

jk

0

z;nm

z

+U

r

nm

e

�jk

0

z;nm

z

i

e

j2�(nx=a+my=b)

; (9)

below (z > h) only outgoing waves occur disregarding multiple planar layers,

U(x) =

X

jnj�N

x

X

jmj�N

y

U

o

nm

e

jk

s

z;nm

(z�h)

e

j2�(nx=a+my=b)

: (10)

Matching the two Rayleigh expansions (9) and (10) with the �eld representation (6), valid

inside the simulation domain, and eliminating the unknown re
ected and outgoing wave

amplitudes, U

r

nm

and U

o

nm

, respectively, yields exactly half of the BCs at the top (z = 0)

and at the bottom (z = h) of the simulation domain. The incident amplitudes U

i

nm

are

of course involved in the BCs and excite the EM �eld inside the simulation domain. They

are the output of the illumination simulation and given by (2). This means that we have

di�erent BCs for each coherent point sourceQ

pq

. Using the above introduced vector notation

we �nd

B

0

� u(0) = a

pq

; B

h

� u(h) = 0: (11)

The two rectangular matrices B

0

and B

h

are independent of the speci�c Q

pq

, whereas the

matrix-vector a

pq

comprises the incoming wave amplitudes E

pq

nm

and H

pq

nm

of one coherent

point source contribution. This means, that we have transformed the Maxwell equations (4)

into a linear complex-valued two-point boundary value problem (7) and (11) with multiple

BCs.

� Vertical Discretization: We adapted the memory saving \shooting method" [13] as it

allows a very e�cient treatment of the multiple right hand sides of the �rst BC in (11).

The algorithm is based on the observation, that the system matrix H(z) in (7) as well as

the two boundary matrices B

0

and B

h

of (11) are independent of the chosen point source.

Exploiting this situation, we �rst establish a relation between the two boundary points

z = 0 and z = h. This is accomplished by applying an explicit discretization scheme to (7).
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The obtained recursion formula u(z

j+1

) = S

j

� u(z

j

) between two adjacent mesh points z

j

and z

j+1

= z

j

+ h

j

is then successively evaluated,

u(h) =

2

4

N

z

�1

Y

j=0

S

j

3

5

� u(0) = S � u(0); (12)

whereby N

z

is the number of vertical discretization points. Combining this equation with

the second BC of (11) yields B

h

� u(h) = B

h

S � u(0) = 0, which forms together with the

�rst BC of (11) a linear algebraic system for the initial values u

pq

(0) due to one excitation

vector a

pq

,

"

B

0

B

h

S

#

� u

pq

(0) =

"

a

pq

0

#

: (13)

This linear system is solved by performing a LU decomposition, which is an extremely

e�cient solution method for linear systems with multiple right hand sides [14]. Once the

initial values u

pq

(0) are found, the solution vector u

pq

(z

j

) inside the simulation domain is

calculated by integrating the ODE system (7). As the elements of u

pq

(z

j

) correspond to

the Fourier coe�cients of the EM �eld, they have to be transformed back to the spatial

domain. Finally, the point source contributions are incoherently superposed to build up

the absorbed light intensity within the photoresist needed in (5) for the exposure/bleaching

model.

The proposed algorithm has the big advantage, that the vertical mesh size N

z

does not in
uence

the storage consumption as the recursion matrices S

j

in (12) do not have to be stored individually.

The memory usage is therefore only determined by the rank N

ODE

of the ODE system (8) and

is of order O(N

2

ODE

) � 256 �O(N

2

x

�N

2

y

). Typically 30 Fourier coe�cients are needed for each

lateral direction. In this case N

x

= N

y

= 15 and the ODE system is of rank N

ODE

= 3844.

Assuming 16Bytes for a double precision complex number, approximately 250MB memory are

required to store the system matrix. For three-dimensional rigorous photolithography simulation

this storage consumption is in accordance with other frequency-domain methods (e.g., [5]), and

lies dramatically below time-domain methods (e.g., [4]).

For the investigation of the numerical costs we have to bear in mind, that the Maxwell equations

(4) have to be solved for multiple time steps (cf. Fig. 11). The numerical costs for one time

step are mainly determined by the evaluation of the recursion (12) and by the solution of (13).

Both operations are of order O(N

3

ODE

). Hence, the total run time grows for N

t

time steps and

N

z

vertical discretization points with O(N

t

�N

z

�N

3

ODE

) and is typically a few hours on DEC-

6000/400 workstation.

3.4 Development Simulation

The development of the photoresist is modeled as a surface-controlled etching reaction [8]. We

use Kim's `R'-model to relate the bulk image to a spatially inhomogeneous etch or develop-

ment rate [15]. This development rate is stored on a tensorproduct grid, because the above

discussed di�erential method requires a laterally uniform spaced grid to apply the numerically

highly e�cient two-dimensional Fast Fourier Transform (FFT) algorithm. For the simulation of

the time-evolution of the development front we have adapted the cellular-based topography simu-

lator [16] of the VISTA framework to read the development rate from the tensorproduct grid. The

basic idea behind this surface advancement algorithm is to apply a structuring element along the
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exposed surface which removes successively photoresist cells of the underlying cellular geometry

representation. Within the scope of lithography simulation the shape of the structuring element

depends on the precalculated development rate multiplied by the chosen time step.

As the development rate exhibits a strong dependence on the spatial coordinates, e.g., due to

standing waves or notching e�ects during photoresist exposure, a su�ciently high number of cells

has to be chosen to resolve these variations. For example, in case of standing waves we know that

the distance between the maxima and minima of the absorbed light intensity and therefore also

of the development rate is �=4 yielding approximately 50nm for I-line illumination (� = 365nm)

and a refractive index of 1.8 for the photoresist. For an accurate movement of the development

front this signi�cant distance should be resolved by 15 cells [16]. Hence a cell density of 300

cells/�m is needed. The applicability of the advancement algorithm for this cellular geometry

resolution has been demonstrated in [16].

3.5 Simulation of Contact Hole Printing

To demonstrate the capability of our approach we simulated contact hole printing over a planar

and a stepped topography (cf. Fig. 14 and Fig. 15).

In both cases the simulation domain was 1:5�m � 1:5�m � 1:0�m large. For the imaging and

exposure/bleaching simulation 31 Fourier modes or N

x

= N

y

= 15 were used to represent the

EM �eld consuming 250MB memory. The number N

z

of vertical discretization points was 100

and 5 time steps were used for the bleaching reaction. The run time was about 6 hours on a

DEC-6000/400 workstation.

The development simulation was performed with a cell density of 300 cells/�m. The memory

usage was 60MB assuming 1Byte per cell and the run time was 30minutes on a DEC-6000/400

workstation.

In Fig. 14 we show the aerial image obtained by the vector-valued approach discussed in Section

3.2. Conventional I-line illumination with a numerical aperture of NA = 0:5 and a partial

coherence factor of � = 0:7 was used. 9 mutually incoherent point sources were needed to

account for the partial coherence. The point source location is shown in the wavevector diagram

of Fig. 8.

In Fig. 15 a contour plot of the PAC is shown in the upper picture and the developed photoresist

pro�le in the lower picture. The contours are given for PAC = 0:2; 0:3; : : : ; 1:0. The exposure-

dose was 120mJ=cm

2

and the development time was 50 sec. The simulation parameters were

for the Dill-model n

0

= 1:65, A = 0:55�m

�1

, B = 0:045�m

�1

, C = 0:013 cm

2

=mJ and for the

Kim-model R

1

= 0:25�m=sec, R

2

= 0:0005�m=sec, R

3

= 7:4 (cf. Table IV in [15]).

A comparison of the simulations exhibits a wider opening in the developed photoresist for the

stepped topography than for the planar substrate. Hence, the e�ective diameter of the contact

hole depends on the nonplanarity of the wafer topography.

3.6 Summary

An overall three-dimensional workstation based photolithography simulator has been developed,

that accounts for all three fundamental subprocesses of mask imaging, resist exposure/bleaching
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Figure 14: Aerial image of a 0:75�m � 0:75�m wide contact hole centered in the

middle of the the 1:5�m� 1:5�m large simulation domain.

and resist development. The imaging simulation relies on a vector-valued reformulation of the

classical scalar theory of Fourier optics. The exposure/bleaching simulation extends the two-

dimensional di�erential method to the third dimension. This approach has been shown to be

extremely e�cient for the simulation of nonplanar scattering e�ects in combination with partial

coherent illumination. For the development/etching step the cellular based topography simulator

of the VISTA framework has been adapted to account for lithography speci�c requirements such as

rapid varying inhomogeneous etch rates. The capability of the overall simulator was demonstrated

by showing simulation results of contact hole printing over a planar and nonplanar substrate.
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Figure 15: Bulk image and developed photoresist pro�le over a planar and a non-

planar substrate.
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4 Analytical PDE Modeling in VISTA

4.1 Motivation

During the last years it has become increasingly di�cult to meet all requirements in semiconductor

simulation since a lot of new and more complex physical models were developed. However, the

transfer of this evolution to computer science turned out to be very time consuming and resulted

in a profusion of di�erent simulators which can handle more or less a special but very restricted

�eld of physical behavior, especially, in three dimensions.

Instead of developing a new specialized module for semiconductor simulation, our aim was to ful�ll

all requirements on a general simulation process which can handle any partial di�erential equation

system in time and space. Based on the knowledge of the recent years a complete set of common

features of all simulators have been worked out with the special considerations to not restrict the

numerical solution methods. As a result of these e�orts have developed the Analytical Modeling

Interface and Object-oriented Solver (AMIGOS), which transforms any analytical spatial and

time dependent di�erential equation system into a discretized one.

4.2 What is AMIGOS

AMIGOS is a tool for developing any kind of physical model which can be locally discretized.

It contains a mathematical interpreter in the manner of programs like Mathematica, Mathcad,

Matlab, etc., but it is tailormade for optimized matrix operations as well as for other mathematical

expressions (e.g., +, -, *, /, sin, sqrt, etc.) and for operations which are necessary to solve

numerical problems. Furthermore, it is provided with a special analytical optimizer to reduce

the number of mathematical operations within the numerical model to minimize evaluation time

during simulation.

AMIGOS can be used in two ways:

1. In a single-pass mode especially to develop new physical models (developer mode):

The analytical user input will be interpreted, optimized, transformed and solved on any

complex simulation domain at once without necessity of time consuming recompilations.

2. In a two-pass mode for optimized use to solve large problems (user mode):

After having found a well �tting model for a physical problem using the developer mode C-

Code can be generated automatically from the analytical user input, which is then compiled

and linked to a model library and is now available for future use in a highly optimized

manner.

The advantages of AMIGOS as against conventional simulation modules are: -10pt

� high 
exibility

� problem independent

� support all standard discretization methods (e.g., �nite elements [17][18], �nite boxes and

�nite di�erences [19] )
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� no low-level programming

� short break-in period

� short model developing time

� simple interfacing to model library

AMIGOS is composed of two major parts (cf. Fig. 16):

1. The Analytical Modeling Interface (AMI) transforms the necessary mathematical expres-

sions from a general analytical form into an internal optimized numerical model.

2. The General Object-oriented Solver (GOS) includes all necessary functions to solve a nu-

merical problem on a given simulation domain (e.g., Newton iterator, time-step control,

etc.) as well as complete grid management in one, two and three dimensions.

4.3 The Analytical Modeling Interface (AMI)

4.3.1 The Analytical Model Input Language

To simplify the way of model development AMIGOS is equipped with a mathematical interpreter.

Using a simple syntax virtually any model can be developed. The Following example shows how

a model can be de�ned using the Analytical Model Input Language:
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General Object-oriented Solver (GOS)


Input & Control Interface


Geometry


& Grid


Definition


Boundary


Definition


Model
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Material
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Analytical


Model-Input
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Analytical


Model-Evaluation


Numerical
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Numerical
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Numerical


Model-Evaluation


Equation System
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Coupling Detection


Equation-Systems


Generator
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Iterative
Direct


Equation System


Assembler


Grid & Element-Support
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3D-Elements


TET4
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 OCT25


HEX8


HEX20


2D-Elements


TRI3


TRI6


QU4


QU8


Figure 16: Block structure of AMIGOS
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MODEL ModelName = [x1,x2,...,xn];

# MODEL is a predefined keyword

# ModelName: the name your model should get

# X = [x1,x2,x3,...] the solution-vector

f

# Begin Model Description

var1 = x1+5*x2; # any user defined mathematical

var2 = var1+2*x3; # expression(functions,matrices,...)

var3(var1,var2) = var1 - var2;

...

i = 1..n; # running index-variable from 1 to n

func[i] = 2*X[i]; # just defined for example

# Definition of residual and its derivative to

# get the numerical form:

# [jacobian] * [X] = [residual]

residual = [[f1(x1,x2,...,xn)]

[f2(x1,x2,...,xn)]

[ ... ]

[fn(x1,x2,...,xn)]];

jacobian = [[df1/dx1] [df1/dx2] ... [df1/dxn]

[df2/dx1] [df2/dx2] ... [df2/dxn]

...

[dfn/dx1] [dfn/dx2] ... [dfn/dxn]];

g

4.3.2 The Analytical Model Optimizer

To minimize the evaluation time of a model a special optimizer has been developed, that tries

to reduce the number of mathematical operations to a minimum. Especially, in use with matrix

operations it reduces the number of operations by an average of about two third, since each partial

solution of an expression will be stored for later reuse so every mathematical term is guaranteed

to be calculated just once. The simple example in Fig. 17 shows the general functionality of the

optimizer, where the number of operations decreases from four to three.

4.3.3 The Analytical Model Evaluator

The Analytical Model Evaluator is used for evaluating simple mathematical expressions by the

optimizer on the one hand, and, on the other hand, it o�ers a possibility for verifying a model, by

presetting all unknown variables with any number so that a numerical solution for the residual

vector and the jacobian matrix respectively can be printed and be checked for correctness.
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internal hashtable


key
 function


1


2
 -


...


302
 b


304
 +


303


...


502
 a


...


973
 *


...


1001
 c


...


expression: c * (a + b) - (b + a)


*


+
c


-


a
 b


Figure 17: Internal structure of expression handling and optimization using a binary tree con-

verted into an extendable hash table

4.3.4 The Numerical Model Stacker

Once the analytical part of AMI has �nished it holds a complete description of the model. Now

it is necessary to connect the abstract model quantities (de�ned as solution vector) to real quan-

tities which are de�ned on a segment of the simulation domain. This is done by the Numerical

Model Stacker that builds an internal array for functions (mathematical expressions) and their

arguments. Furthermore, it detects the input and output variables (solution variables, auxiliaries

and parameters de�ned in the analytical model) and prepares the stack so that the data transfer

between solver and model evaluator can take place. The example shown in Fig. 18 gives an im-

pression about the internal data management of the Numerical Model Stacker, using a=5, b=2

and c=6 from the previous example (Fig. 17) as input.

4.3.5 The Numerical Model Evaluator

After all previous steps we have got a complete physical model de�ned for a single �nite element

supported by the General Object-oriented Solver (GOS). As a result of a call to the Numerical

Model Evaluator we get the calculated local residual and jacobian which can now be inserted

into the global sti�ness matrix of the system. The evaluator itself is only used for the one-pass

mode since in the two-pass mode the evaluation of the model is already included in the produced

C-code.
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stack functionality


function stack


+

arg[4] = arg[2] + arg[3]


*

arg[5] = arg[1] * arg[4]


-

arg[6] = arg[5] - arg[4]


argument stack


1


2


3


4


5


6


c


a


b


a+b


c*(a+b)


c*(a+b)-(b+a)


6


5


2


7


42


35


C - Code Extraction for Two-Pass-Concept


Figure 18: Internal data representation of the Numerical Model Stacker

4.4 General Object-oriented Solver (GOS)

As just described the AMI generates a numerical model, even though it has no information about

the complete simulation procedure. Therefore it is embedded into the General Object-oriented

Solver (Fig. 19) which uses AMI's evaluated output (residual and jacobian) for building the

global sti�ness matrix on the one hand, and, on the other hand for splitting the global matrix

into smaller pieces detecting the couplings between quantities inside and between several segments

of the simulation domain (Equation System Analyzer). Furthermore, it has a complete built-in

grid adaptation [20] for all supported grid element types as well as a timestep control and newton

iterator with several di�erent modes to select.

To simplify the mapping of all abstract variables, outputs and inputs to the real simulation

domain a simple grid and boundary description language has been developed, which can be used

to de�ne all necessary boundary and volume instructions as well as for choosing among di�erent

simulation modes.
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Figure 19: Block structure of the General Object-oriented Solver
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4.5 Application

4.5.1 Coupled Di�usion of two Charged Dopants

Fig. 20 and 21 show the coupled di�usion of arsenic and boron. The simulation was started

from an unsymmetrical gaussian distribution of arsenic (Fig. 20) with a peak concentration of

10

20

cm

�3

and a constant boron background doping with 10

15

cm

�3

. As a well established test

case the following coupled di�usion equations were implemented with AMIGOS [21]:

@C
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= div

h

D (C)

�

grad (C) + Z

C

U

T

grad ( )

�i
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=
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Figure 20: Arsenic concentration before the di�usion process
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Figure 21: Boron concentration after the di�usion process
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