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1 Object-Oriented Management of Algorithms and Models

1.1 Introduction

The continuous development of new processes and devices in combination with the increasing number

of devices on a single chip requires to improve process and device simulator programs permanently

through implementing new or enhanced models and algorithms. In traditional simulators the integration

of new models requires to edit the source code of the simulator and, therefore, in-depth knowledge of

implementation details. For that reason a new library based concept was developed, which provides an

object oriented approach to the implementation, parameterization and selection of models without any

changes in the source code of the simulator. In this context no conceptual distinction is made between

the

The Algorithm Library is designed to support any kind of algorithm using arbitrary user defined data

structures as parameters, which are handled in their native C++ representation and forwarded to the

models using references. It provides a set of C++ classes and methods to handle these algorithms and

parameters directly in C or C++ code and the object-oriented Model Definition Language (MDL). The

MDL can be used as an interpreted language to ease the development of new algorithms, or as a compiler

language by using a two-pass concept to optimize the speed of simulations. Therefore algorithms and

data structures used in the innermost simulation loops can be handled using the mechanisms of this

library with almost no performance losses compared to traditional function calls.

These features distinguish the Algorithm Library from general purpose extension languages like TCL [1]

or specialized approaches as presented in [2], where the modeling language PMDL is introduced. The

PMDL compiler provides a subset of the C language extended by data types and expressions dealing

with mesh data and the automated generation of the Jacobian matrix.

1.2 Basic Structure

Algorithms provided by the Algorithm Library are represented by classes derived from the base class

Model or its subclasses representing various types of algorithms [3]. Model classes encapsulate private

data values used to evaluate the algorithm, an interface containing the required input and output parame-

ters and the documentation and methods for the initialization and evaluation of the algorithm. Additional

methods can be defined on demand. Fig. 1 shows a schematic diagram of the Model structure.

The Algorithm Library provides an interface mechanism which separates arbitrary algorithms and/or

models from the rest of the simulator. These interfaces contain the input and output parameters and spec-

ify the required type and the unique names for the connected Model class instances. Parameter values

are exchanged between (nested) algorithms and the simulator by “linking” the interface parameters of

the Model classes with interface parameters of the simulator, i.e., setting the value reference of involved

parameters to the same address (Fig. 2). Additional values can be exchanged between the program and

several Model instances by using global parameters.

The inheritance tree defined by the deriving the various Model classes (Fig. 3) is used to classify the

various model algorithms. During the run time of the simulator it is used in combination with the infor-

mation provided by the interfaces to check the conformity of the definitions on the input deck.

New parameter types can be instantiated by specializing the template class Parameterwith an arbitrary

C++ class describing the parameter value. This parameter class contains a reference to its value, a default
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Model:

     type and parent types, instance name,
     documentation
     private data

Interface:

Parameter:
  name, type, value, default value
  documentation

Parameter:
  name, type, value, default value
  documentation

...

Figure 1: Structure of the Model class

Interface

Parameter "T"

Program

Model "TestModel"
Interface

Model "SubModel"

Interface

Parameter
"temp"

Parameter
 "T0"

Variable
T

Figure 2: Parameter exchange between models and the simulator using interfaces

value, the name and the documentation of the parameter. Methods to link several parameters together

manage their value references to point to a value shared between them including a run time type check.

For each of these parameters a set of operators and functions can be specified which can be used in

calculations defined on the input deck as well as in algorithms defined in C++.
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Mathiessen Rule

vModel

Lattice_Scattering Carrier_Carrier_ScatteringImpurity_Scattering

Mobilitymodel Grid_Generator

LIC_Scattering

Figure 3: A sample Model Hierarchy

A basic set of predefined algorithms and parameter types providing all standard C++ data types and the

standard operators, functions and type conversions, is already provided by the Algorithm Library. These

can be extended at any time by additional user-defined libraries of further algorithms and parameter types

or by using the Model Definition Language.

An instance of a specific algorithm can be generated by forwarding the model type name to the Algorithm

Library or by giving an instance name for the algorithm. In this case the actual class type is determined

at run time by parsing the input deck. To evaluate the algorithm, its class instance is connected to an

interface providing the necessary parameter values.

1.3 Model Definition Language

The Algorithm Library contains an interpreter/compiler for the Model Definition Language, which allows

to:

� Define the actual algorithms (model instances) to be used for a specific task.

� Define the parameter values for model instances and default values for the parameters of certain

types of algorithms.

� Define new algorithms derived from previously defined ones. The evaluation rules can contain

calculations with parameters of any type, conditional and loop expressions, evaluations of other

models provided by the Algorithm Library. Parameters can have local and global scopes or are

provided through the interface of the model.

� Request a database record, describing all available algorithms, their interfaces and documentation

and the thereby defined model hierarchy.

� Request a debug report describing the actually used algorithms and/or parameter values for a spe-

cific model instance.

By using the MDL new models can easily be developed and fitted to measured data sets by editing only

the input deck of the simulator. Once the model development is finished the simulator speed can be
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improved by compiling the MDL statements and providing these models in object libraries. Therefore,

algorithms and parameters defined in the Algorithm Library itself, in binary object libraries, or in libraries

of input deck files can be used by simulators in any arrangement (Fig. 4).

100110

ABCD
ABCDABCD

ABCDABCD
ABCD

100110

100110

Model Library Manager

Program

Figure 4:

A minimal program using the Algorithm Library to evaluate a single algorithm may be structured as

following (see Fig. 5):

1. At first, the Algorithm Library has to be initialized. An optional input deck file containing MDL

statements can be parsed to define or customize available models.

2. For using a Model instance provided by the Algorithm Library, an interface containing all param-

eters and information about the required model type has to be defined.

3. Then a specific model instance is requested from the Algorithm Library and automatically initial-

ized and linked with the interface. This step can be controlled in detail by MDL definitions on the

input deck. If no such specifications are given on the input deck, default operations and values are

provided from the simulator and the Algorithm Library.

4. After the previous initialization phase is completed any Model instance can be evaluated without

any further necessary interaction with the Algorithm Library.

5. After the last evaluation of an algorithm provided by the Algorithm Library, resources should be

freed by deleting the Interface and the Model Instance.

Steps 1–3 should take place during the initialization phase of the program because they require the rather

time consuming parsing and interpretation of the input deck. Once the internal data structures of the

Algorithm Library are assembled, the additional time consumption caused by the usage of the Algorithm

Library is typically between 5–30 % depending on the complexity of the models.

By using the model library a clean interface is introduced between modularized algorithms and the rest

of the program. These algorithms can easily be replaced by newly defined ones during run time without
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Evaluate Model

Main Loops

Request  Model  Instance

Program:

Model  Manager  In i t ia l izat ion

Interpretation of the Input Deck

In ter face  Def in i t ion

Delete  Model  Instance

Figure 5: Structure of a simulator using the MDL

any additional coding efforts within the simulator. Due to the almost negligible run time performance

losses and the great simplifications in introducing new algorithms into simulators, the Algorithm Library

is a valuable tool for simulator and model development and their daily usage.

1.4 Example

To give a short example for the usage of the Model Definition Language, a simple carrier mobility model

is defined by combining a lattice scattering model [4]

mu = mu0 �

�

temp

300

�

�alpha

(1)

with a carrier-carrier scattering model using the simple Mathiessen rule. Fig. 7 shows the MDL source

code. The interface for all carrier mobility models (class name MobilityModel) contains among

others the parameters temp (lattice temperature in K), mu (the resulting carrier mobility in cm2

V

�1

s

�1 )

and np (the product of the electron and hole densities in cm

�6 ). It is assumed that an abstract class

MobilityModel which defines the interface for all carrier mobility models and the carrier-carrier

scattering model [5]
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mu =

1:428 � 10

20

p

np � ln(1 + 4:54 � 10

11

� (np)

�1=3

)

(2)

are already contained in a Model Library or defined in a previously scanned input deck. Fig. 6 shows a

block diagram of the resulting mobility model including the equivalences between various interface and

model parameters which are defined using the link command of the MDL.

LSMob

"mu0"

"temp""Temp"

Interface of LC_Mobility

"mu"

LC_Mobi l i ty

"np"

"alpha"

"mu"

CCSMob

MathiessenRule

"np" "mu"

Figure 6: Block diagram of the new mobility model
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#include "CC_Mobility.mdl"

// lattice scattering mobility model

Model LatScatMobility : MobilityModel

{

calc "mobility" {

Interface."mu" = Interface."mu0" * exp(-Interface."alpha"*

ln(Interface."temp"/300));

}

EvaluationOrder { "mobility"; }

}

// Define the combined mobility model

Model LC_Mobility : MobilityModel {

Model LatScatMobility "LSMob";

Model CC_ScatMobility "CCSMob";

// new default parameters for sub models (electrons)

Parameter " LSMob"."mu0" = 1448;

Parameter " CCSMob"."alpha" = 2.33;

link Interface."temp" to "LSMob"."temp";

link Interface."np" to "CCSMob"."np";

EvaluationOrder {

"LSMob";

"CCSMob";

calc {

Interface."mu" = 1/("LSMob"."mu"+1/"CCSMob"."mu");

}

}

}

// Specify some new default parameter values

Parameter "mu0" of Model "MobilityModel for holes" = 473;

Parameter "alpha" of Model "MobilityModel for holes" = 2.23;

LinkMap for Model "MobilityModel for electrons" {

Interface."mu_h" = Model."mu";

Interface."T" = Model."temp";

}

LinkMap for Model "MobilityModel for holes" {

Interface."mu_e" = Model."mu";

Interface."T" = Model."temp";

}

// Specify the actual algorithms used for mobility models

Model "MobilityModel for electrons" = LC_Mobility;

Model "MobilityModel for holes" = LC_Mobility;

Figure 7: MDL definition of the new mobility model
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2 Three-Dimensional Oxidation Simulation with AMIGOS

2.1 Introduction

Using AMIGOS a new approach to the local oxidation in three dimensions has been developed, based

on a parameter dependent smooth transition zone between silicon and silicon-dioxide. The resulting two

phase problem is solved by calculating a free diffusive oxygen concentration and its chemical reaction

with pure silicon to silicon-dioxide. This effect causes a volume dilatation which leads to mechanical

stress concerning the surrounding boundary conditions. By a suitable set of parameters this kind of

approach is equivalent to the standard sharp interface model based on the fundamental work of Deal and

Grove.

2.2 AMIGOS

AMIGOS is a problem independent simulation system which can handle any nonlinear partial differential

equation system in time and space in either one, two or three dimensions. It is designed to automatically

generate optimized numerical models from a simple mathematical input language, so that no signifi-

cant speed loss in comparison to ‘hand coded’ standard simulation tools occurs. In difference to similar

algorithms working with the so-called ‘operator on demand’ concept [6], AMIGOS is completely in-

dependent of the kind of discretization since the model developer can formulate any discretization of

choice. There are no restrictions whether using scalar, field or even tensor quantities within a model,

and, if desired, any derived field quantity can be calculated, too. Furthermore, the user can influence the

numerical behavior of the differential equation system by complete control of the residual vector and its

derivative (e.g., penaly terms, damping terms, etc.). Even interpolation and grid adaptation formulations

can be used within a developed model and can thus be very well fitted to the special problem.

2.3 A Novel Diffusion Coupled Oxidation Model

The idea is, instead of using the one-dimensional oxidation model from Deal and Grove [7], which is

comparatively easy to simulate concerning the basic equations but leads to severe difficulties in reference

to meshing especially in two or even three dimensions, we simulate the growth rate of silicon by coupling

the oxygen diffusion and the resulting silicon dioxide generation with the mechanical volume dilatation

respective to the different mechanical material behaviors. This extension leads to a much more complex

numerical model description but restricts the growth of a single grid element to the physical ratio of

volume dilatation from Si : SiO

2

to 1 : 2:2. This effect keeps the grid quality within the bounds of

acceptance, and neither remeshing after each time step nor any grid merging algorithms are necessary.

2.3.1 The Oxidation Model

For the definition of the model consider Fig. 8 as computation domain 
 which consists of a pure silicon

dioxide range 

1

, an interface range 

2

with a mixture of silicon and silicon dioxide, a pure silicon range




3

and a nitride mask 


4

, which is defined on a mesh of its own and is connected to 


1

via boundary

�

4

to transmit mechanical displacements. For the nitride mask an elastic model is used to calculate its

stress-strain contribution. To describe the different phases of oxygen within the domain 


1

[ 


2

[ 


3

a generation/recombination ratio of oxygen

R

O

= k

r

(1� �(x; t)) C

O

(3)
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Figure 8: Domain and boundary settings

is defined, where � = f

�

C

SiO

2

(x;t)

C

Si

0

�

is a function of a normalized silicon dioxide concentration related

to the C
Si

0

concentration of silicon in pure crystal. � varies between one (pure silicon dioxide) and zero

(pure silicon). The generation of silicon dioxide itself is handled by the formulation

@C

SiO

2

@t

= R

O

: (4)

The free oxidant diffusion in 


1

[ 


2

[ 


3

is described by

@C

O

@t

= div [D (�(x; t)) � grad (C

O

)]� 2 � R

O

(5)

with the boundary condition

@C

O

@n

= k � (C

O

� C

�

) on �

1

and
@C

O

@n

= 0 on �

2

;�

4

: (6)

Thus, the mobility of oxygen is strongly influenced by the amount of the generated silicon dioxide since

compounded oxygen atoms are immobile. On the other hand, the amount of generated silicon dioxide

depends on the local concentration of already generated oxide as well as of free oxygen which is assumed

to react with silicon immediately. This effect causes that in the beginning of oxidation of a pure silicon

block the oxidation is enhanced, since nearly all oxide atoms are reacting with silicon. Later on, oxygen

has to diffuse through the silicon dioxide range and the growth of the oxide layer is reduced. Finally, the

mechanical dilatation of the oxide is described by a Maxwell body which can handle both, elastic as well

as viscous material behavior. The used strain relation is based on Hook’s Law, which can be expressed

so that the dilatational component of stress, which involves a volumetric expansion, and the deviatoric
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part, which only accounts for shape modification, are completely decoupled:

2
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(7)

For the volumetric expansion we solve the equilibrium condition
0

@

Z

V

L

T

� D (�(x; t)) � L � dV

1

A

� fug =

Z

V

L

T

� D (�(x; t)) � f�

o

g � dV (8)

where u, �
o

, L and D represents the displacement vector, the strain caused by silicon dioxide generation,

the mechanical operator defined as f�g = L � fug, and the elasticity matrix, respectively. The right hand

side of equation [8] can be interpreted as an energy term caused by the chemical reaction between silicon

and silicon-dioxide. For the dilatation effect within the oxide we assume a hydrostatic pressure term

p = �� � (�

xx

+ �

yy

+ �

zz

) =) �V (9)

The stress histories have to be calculated in order to get a correct stress-strain distribution within the

different materials. Assuming the model suggested in [8] stress within elastic material is calculated by

�(n ��T ) =

n

X

i=1

�

i

(�T ) with �

i

(�T ) = � � �(�T ) (10)

and within viscous material by

�(n ��T ) =

n

X

i=1

�

i

(�T ) � e

�

(n�i)��T

� with �

i

(�T ) = G

eff

� �(�T ); (11)

where �T is interpreted as the time-step length, � as the relaxation ratio, � as the compressibility and

G

eff

= G �

�

�T

�

�

1� e

�T

�

�

as the effective modulus of rigidity.

2.3.2 The Simulation Results

As an example for the presented model two typical three-dimensional effects arising in the corners of the

nitride mask have been calculated [Fig. 9]. Starting from a pure silicon block the results show, that the

introduced model can even handle structures without pad oxide below the nitride mask, which leads to

the effect, that the interface meets the nitride layer vertically, which can hardly be solved by algorithms

based on a sharp interface formulation.

The new approach for the simulation of local oxidation of silicon in three dimensions, considering the

interface between silicon and silicon-dioxide as a smooth transition layer, demonstrates the abilities of

AMIGOS in a convincing manner. According to theoretical investigations it can be shown that by a

suitable set of parameters identical results to the standard Deal & Grove model can be obtained [9].

The advantage of this model against sharp interface descriptions is, that the mesh remains topologically

invariant during the progress of oxidation and therefore no remeshing is necessary. Furthermore, this

extension offers the possibility to handle much more complex physical effects than can be done with

remeshing or grid-merging algorithms, since especially topology changing oxidation is hardly solvable

with interface tracking algorithms.
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Figure 9: Oxidation of typical three-dimensional effects arising in the corners of the nitride masks
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3 A Method for Unified Treatment of Interface Conditions

in MINIMOS-NT

3.1 Introduction

Simulation has become a standard supplement for the development of new semiconductor devices. Often

the characteristics of these devices are determined by physical effects for which the development of

suitable models is difficult. Several of these effects, such as carrier heating or quantum phenomena, gain

influence on the device characteristics when the feature size falls below a certain limit and the impact

of interfaces on bulk behavior can not be neglected any more. Thus, proper interface modeling plays an

important role for device simulation.

Especially, modeling the electron and hole current across interfaces has been found to be a complex

task and a large number of models for different types of interfaces have been proposed [10][11][12][13].

For device simulation the interface type is automatically detected by analyzing the device structure or

is explicitly defined as an input parameter. This method works well as long as the interface type does

not depend on the internal state of the device. For instance, the thermionic emission model is commonly

used for modeling the current across heterojunctions of compound semiconductors. This model can be

extended to the thermionic field-emission model to account for tunneling effects through the heterojunc-

tion barrier.

If the tunneling effect becomes more and more dominating, the model will no longer determine the

current across the interface. Instead the model establishes a direct relationship between the carrier con-

centrations on both sides of the interface. Thus, sloppily speaking, the interface type changes from a

more Neumann boundary condition to a more Dirichlet boundary condition. Dirichlet boundary condi-

tions require numerical methods which are different from methods for Neumann boundary conditions.

If an interface model uses a numerical method for Neumann boundary conditions and the interface type

changes to a more Dirichlet type the condition of the linear system to solve is poor and deteriorates the

convergence behavior. In our work a unified treatment of interface models was developed which allows

for changing interface types without negative influence on convergence.

3.2 The New Method

The new method for specifying interface conditions is capable of handling all types of boundary condi-

tions used in device simulation, including the extreme cases of Dirichlet (12) and Neumann (13) bound-

ary conditions.

u = a (12)

~n � gradu = b (13)

The unified treatment of interface conditions is demonstrated for modeling the current flow across a

heterojunction interface (see Fig. 10b, c) [14]:

J

?

= � (e

b

) � q �

�

v

2

� n

2

�

m

2

m

1

� v

1

� n

1

� exp (�e

b

)

�

;

v

i

=

s

k

B

� T

i

2 � � �m

i

; e

b

=

�E

C

�

�

@ 

@n

�

k

B

� T

1

: (14)
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Figure 10: Finite box discretization (a), current flow across a

heterojunction interface without (b) and with (c) tunneling.

1 2 4

dd

n

Interface

n n 3 n

Figure 11: One-dimensional discretiza-

tion of the continuity equation across

an interface. The boundary values n
1

and n

4

are fixed (Dirichlet boundary

condition). For the current across the

interface the thermionic field-emission

model (14) is used.

The value of the factor � depends on the shape of the energy barrier and the physical effects taken into

account. For a simple thermionic emission model � is equal to 1. v
i

is the thermionic emission velocity

and e
b

the effective barrier height of the heterojunction. �E
C

�

�

@ 

@n

�

is the difference of the conduction

band edge energies, which depends on the normal component of the electric field.

When a finite box discretization scheme is used, one obtains for the discretization point i on the interface

(see Fig. 10a)

Box i
1

:

X

j

1

J

j

1

= +J

i?

; (15)

Box i
2

:

X

j

2

J

j

2

= �J

i?

: (16)

The subscripts 1 and 2 denote quantities associated to regions 1 and 2, respectively.

If tunneling is negligible, the current flow is suitably approximated by the thermionic emission model

(14). However, very often tunneling must be taken into account, e.g., by a field-dependent barrier height

lowering. Tunneling as well as carrier heating can reduce the effective barrier height significantly, and in
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its limit it approaches zero. Thus, large values of � can occur as lim
e

b

!0

� (e

b

) = 1. Since J
?

must

remain finite, this limit simply implies that the boundary condition type changes to Dirichlet:

lim

e

b

!0

1

�

J

i?

= 0 = f(n

1

; n

2

);

f(n

1

; n

2

) = q �

�

v

2

� n

2

�

m

2

m

1

� v

1

� n

1

�

: (17)

Hence, a low perpendicular component of the electric field on the interface and the absence of carrier

heating result in a Neumann type condition for the current flow across the interface, whereas for increas-

ing electric field or carrier temperature the interface model (14) determines the carrier concentration

itself rather than the current flow across the interface.

Large values of � which occur for effective barrier heights near zero increase the spectral condition

number of the system matrix [15][16], as will be demonstrated. For iterative linear solvers the spectral

condition number is a measure for the accuracy of the solution:

�

s

=

j�j

max

j�j

min

: (18)

j�j

max

and j�j
min

are the eigenvalues with maximum and minimum magnitude of the system matrix. The

larger the value of �
s

the poorer is the condition of the system matrix.

Considering the one-dimensional discretization of the continuity equation (see Fig. 11)

J = q �D �

@n

@x

; (19)

and assuming the electrostatic potential and dielectric flux as constant at the heterojunction, one obtains

for n
2

and n
3

the equations

0

B

B

@

�� �

m

3

m

2

� v

2

� exp(�e

b

)�

D

d

+� � v

3

+� �

m

3

m

2

� v

2

� exp(�e

b

) �� � v

3

�

D

d

1

C

C

A

�

 

n

2

n

3

!

=

0

B

B

@

�

D

d

� n

1

�

D

d

� n

4

1

C

C

A

: (20)

For the interface current (14) has been inserted. n
1

and n
4

are the fixed values on the left and the right

boundary (Dirichlet boundary condition).

If � is large, the eigenvalues of (20) read

�

1

= �� �

�

v

3

+

m

3

m

2

� v

2

� exp(�e

b

)

�

(21)

�

2

= �

D

d

: (22)

Thus,

�

s

/ � (23)

and, therefore, for large � the spectral condition of the system matrix will be poor. Thus, if the internal

state of a device results in a large value of � the solver cannot compute the solution of the linear system

with sufficient accuracy. The result will be an increase of iteration steps for the Newton scheme, if

convergence can be achieved at all.
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This problem can be alleviated by transforming the linear system (20) as follows. Adding the second

equation to the first one and scaling the second equation with 1

�

results in the new system

0

B

B

@

�

D

d

�

D

d

+

m

3

m

2

� v

2

� exp(�e

b

) �v

3

�

1

�

�

D

d

1

C

C

A

�

 

n

2

n

3

!

=

0

B

B

@

�

D

d

� (n

1

+ n

4

)

�

1

�

�

D

d

� n

4

1

C

C

A

: (24)

This system matrix has the eigenvalues

�

1;2

= �

1

2

�

�

v

3

+

D

d

�

�

s

1

4

�

�

v

3

�

D

d

�

2

�

m

3

m

2

� v

2

� exp(�e

b

); (25)

hence, �
s

does not longer depend on �. The strong influence of the internal state of the device on the

spectral condition of the equation system has been eliminated.

Applying the above transformation to the two-dimensional situation, the equations for box i
1

and i
2

can

be rewritten as

Box i
2

:

X

j

2

J

j

2

+

X

j

1

J

j

1

= 0; (26)

Box i
1

:

X

j

1

J

j

1

= J

i?

: (27)

Equation (26) is Kirchhoff’s law for the compound of box i
1

and i
2

(i.e., the sum of (15) and (16)) and

determines electron concentration n
2

, (27) does the same for box i
1

and determines n
1

. The problem of

� becoming large can be easily solved by scaling (27) with 1

�

as proposed for the one-dimensional case:

~� �

X

j

1

J

j

1

= f(n

1

; n

2

; e

b

); ~� =

1

�

: (28)

For lim
e

b

!0

~�(e

b

) = 0 follows f(n
1

; n

2

) = 0 which is equivalent to the Dirichlet boundary condition

n

1

= n

2

�

�

m

1

m

2

�

3

2

�

�

T

2

T

1

�

1

2

: (29)

Instead of large values of � the simulator has now simply to cope with small values of ~�. Furthermore,

the spectral condition of the system matrix is not deteriorated by large values of �.

The proposed method for a unified treatment of interface conditions is very useful for simulation of

generic semiconductor devices and is an elegant way to handle bias dependent interface condition types.

Furthermore, no distinction has to be made between heterojunction interfaces and interfaces where re-

gions with identical material properties are joined. By transforming the equations describing the interface

conditions the strong influence of the internal state of the device on the spectral condition of the equation

system can be eliminated.

3.3 Example

As an example a delta-doped pseudomorphic double-heterojunction HEMT (high electron mobility tran-

sistor) was simulated with MINIMOS-NT [17][18] using a hydrodynamic model. Fig. 12 shows a
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Figure 12: Schematic cross section of the simulated delta-doped pseudomorphic double-heterojunction

HEMT. The region of the vertical cut in Fig. 13 and Fig. 14 is marked.

schematic cross section of the simulated device. The energy flux across the heterojunction interface

was modeled by

S

?

= �2 � � �

�

�

2

�

m

2

m

1

� �

1

� exp (�e

b

)

�

;

�

i

= k

B

� T

i

� v

i

� n

i

;

S

2

= S

?

+

k

B

� T

1

q

� e

b

� J

?

: (30)

Similar to � in (14) the value of the factor � depends on the energy barrier and the physical models taken

into account.

The bias point was chosen in such a way that the carriers heat up considerably in the channel and the

effective barrier height is close to zero. Fig. 13 shows the electron temperature and the electric field along

a vertical cut across the heterojunction. Normally, the carrier concentration inside the channel is several

orders of magnitude higher than in the supply region. For the example shown the situation is reversed

as the carrier temperature in the channel exceeds the temperature in the supply region (29). Therefore

a large number of electrons has sufficient kinetic energy to surmount the barrier at the heterojunction

and reach the supply region (real-space transfer). Although the electron concentration in the channel is

much lower than in the supply a considerable amount of the current is conducted in the channel due to

the much higher mobility in the channel. The electron concentration and the current density are shown

in Fig. 14. This example can only be simulated with our new method.
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Figure 13: Carrier temperature and electric field along a vertical cut across the channel–supply interface

of a pseudomorphic HEMT.
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4 PHYSICALLY BASED SUBSTRATE CURRENT SIMULATION 18

4 Physically Based Substrate Current Simulation

with MINIMOS-NT

4.1 Introduction

In recent years, MOSFET feature sizes have been continuously scaled down into the submicron range.

This size reduction causes an increase of the maximum field strength inside the device and thus, an in-

crease of the substrate current. The amount of substrate current is an important indicator for the aging

behavior of the device. Small substrate currents can be attained by a careful design of the device doping.

To calculate the substrate current it is necessary to use an accurate, physically motivated impact ion-

ization model. The standard drift-diffusion (DD) model uses a field-dependent impact ionization model.

However, the electric field dependence is inaccurate especially in small devices. Nonlocal carrier heating

must be taken into account when the typical thickness of space charge regions becomes comparable with

the carrier energy relaxation lengths.

To calculate the local impact generation rate more appropriately the local carrier temperature has to be

used instead of the electric field. The carrier temperature can be calculated using Monte Carlo simu-

lations or hydrodynamic (HD) simulations. With the carrier temperature an equivalent electric field is

computed using results from Monte Carlo calculations for the electric field versus temperature charac-

teristic. Finally, the equivalent electric field is used in combination with a conventional DD model to

calculate the generation rate with the well-known exponential law [19].

When simulating substrate currents often an impact ionization model is applied which accounts for a

reduction of the surface generation rate [20][19]. The important influence of this surface reduction model

can be seen when the substrate current is calculated for different gate voltages where the drain voltage is

held constant. This investigation shows a decay of the substrate current for increasing gate voltages which

can be attributed to a shift of the current density away from the region where the ionization coefficients

have their maximum value.

4.2 The Simulated Device

The investigated devices are LDD pocket-implanted N-channel MOSFET test structures

(L
g

= 0:4�m; 1:0�m) for which detailed substrate current measurements were performed. During

the measurements the substrate and source contacts were grounded. The doping profiles were

generated with two-dimensional process simulation and have been verified by comparison of the

measured and simulated output characteristics. The maximum of the LDD doping is slightly below the

semiconductor-spacer interface. At low gate voltages, the pinch-off point is located closer to the source

side and the maximum current density is in the LDD-doping region rather than beneath the surface.

4.3 Substrate Current Analysis

The influence of a surface impact ionization model can be estimated, when we look at a vertical section

of the current density in the maximum generation point. Fig. 15 and Fig. 16 show that there is a sharp

local maximum of the current density in the DD model. In the HD model the current density is much

smoother. At low gate biases (Fig. 15) the maximum current density is in the LDD-doping region rather

than beneath the surface. At high gate biases (Fig. 16) the maximum current density moves towards the

surface. When we compare the two figures, it can be seen that the shift of the relative current density is
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much higher in the DD model than in the HD model. The broadening of the current density in the HD

model is caused by the high diffusion of the carriers after reaching the pinch-off point. This effect can

be explained when the partial driving forces of the DD model (1) are compared with the partial driving

forces of the HD model (2). The driving force for electrons with a concentration n reads in the DD model

(analogously for holes):

�!

F

DD

= �grad  +

k

B

� T

0

q

�

1

n

grad n (31)

Note that the prefactor to the concentration gradient depends on the lattice temperature T
0

which is

usually set constant. In homogeneous materials the HD model uses a driving force which depends on the

additional carrier temperature gradient.

�!

F

HD

= �grad  +

k

B

� T

n

q

�

1

n

grad n+

k

B

q

� grad T

n

(32)

The prefactor to the concentration gradient in the HD model now depends on the electron temperature

T

n

. Comparing the two prefactors of the concentration gradients, it can be seen that the factor in the HD

model can be much larger especially in the high temperature range. The influence of the grad T
n

term in

the HD model is small compared with the grad n term. The reason for this is the small vertical gradient

of the electron temperature in the region of interest.

Therefore, when the generation rate is calculated, the influence of the surface reduction in the HD model

is much smaller compared to the conventional DD model.

A recent publication [21] also shows that the reduction of the surface generation rate is much smaller

than published in earlier works. This agrees well with our HD simulations (Fig. 15, Fig. 16).

Because of the above mentioned reasons we have calculated the substrate current using a hydrodynamic

bulk ionization model even in the channel region. The model is based on the work of [22]. The advantage

of this model is that the calculated generation rate is proportional to the carrier concentration and not to

the particle flux density. This is physically more motivated because the saturation velocity is much

smaller compared to the thermal velocity. The model is implemented in a self-consistent manner, i.e.,

the energy flux equations account for carrier cooling.

The used equation for the electron generation rate depending on the concentration n reads:

G

n

(n; T

n

) = nA exp(B u)

��

1 +

1

2

u

�

erfc

�

1

p

u

�

�

1

2

p

u exp

�

�1

u

��

(33)

u = u (T

n

) =

k

B

T

n

E

th

B =

C k

B

T

0

E

th

(34)

The electron temperature strongly depends on the used energy relaxation time which is assumed to be

�

n

= 0:4ps. The parameters A and C have to be calibrated to give best agreement with the measurements.
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The best correspondence with the measurement is found when using the values for A = 4:53 � 10

9

s

�1

and C = 0:416. For the threshold energy E
th

the value 1:12eV is used.

The simulation results are shown in Fig. 17 and Fig. 18. The electron temperature in the maximum

generation point increases from 2690 K (0.4�m device V
D

= 2V;V

G

= 3V) up to 7750 K (0.4�m

device V
D

= 3:3V;V

G

= 0:6V). The highest generation rate is about 2:33 � 1028s�1cm�3 (0.4�m

device V
D

= 3:3V;V

G

= 1:4V) and the smallest generation rate in the maximum generation point is

about 5:62 � 1024s�1cm�3 (0.4�m device V
D

=2:0V;V

G

=0:6V)
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Figure 15: Current distribution in the maximum

generation point at low gate bias
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5 SPIN – A Schrödinger-Poisson Solver Including Nonparabolic Bands

5.1 Introduction

To accurately model the high-field transport in silicon inversion layers, several authors [23][24] have

introduced a nonparabolicity correction in the subband dispersions. In our work we quantitatively ana-

lyze nonparabolicity effects in various two-dimensional electron gases. For this purpose a self-consistent

Schrödinger-Poisson solver has been developed, capable of dealing with silicon inversion layers and het-

erostructures. For heterostructures, position-dependent material parameters are taken into account. As a

result each subband is characterized by three parameters, E
n

; m

n

; �

n

, which denote the subband energy,

mass and nonparabolicity coefficient, respectively. This set of parameters is intended to serve as input

for high-field transport calculations.

Our approach relies on the effective-mass approximation which is applicable if the confining potential,

V (z), satisfies two conditions [23]:

1. V (z) is slowly varying over a unit cell,

2. matrix elements of V (z) between Bloch functions of different bands are negligible.

5.2 Silicon Inversion Layers

With an electron energy dispersion �(k), the three-dimensional Schrödinger equation takes the form

(�(�ir) + V (z)) 	(r) = E	(r) (35)

where 	(r) represents the three-dimensional envelope function.

Since the Hamiltonian in (35) is independent of the in-plane coordinates, the wave function can be fac-

torized into a plane wave propagating parallel to the interface and an envelope function in perpendicular

direction. This assumption allows to separate a one-dimensional Schrödinger equation from (35).

�

�(�i

@

@z

;K) + V (z)

�

�

n

(z;K) = E

n

(K) �

n

(z;K) (36)

In this equation, �
n

denotes the envelope function, K is the in-plane wave number, and E(K) represents

the in-plane dispersion relation. The bulk dispersion relation, �(k), is assumed to have ellipsoids as

equi-energy surfaces,

�(k) = �

 

K

2

m

xy

+

k

2

z

m

z

!

: (37)

In principle, (36) can be solved numerically for different values of K so as to obtain a point-wise rep-

resentation of E(K). However, since the bulk dispersion is given by an analytic function one usually is

interested in obtaining analytic subband dispersions as well. The latter can be found by applying pertur-

bation theory at K = 0. The kinetic energy operator is expanded into a Taylor series, and terms up to

K

4 are retained in order to get information on the subband nonparabolicity.

�(

K

2

m

xy

�

1

m

z

@

2

@z

2

) � T

0

+T

1

K

2

+T

2

K

4 (38)



5 SPIN – A SCHRODINGER-POISSON SOLVER INCLUDING NONPARABOLIC BANDS 22

The unperturbed problem is defined by T
0

, and the terms containing the in-plane wave number are

considered as perturbation. The operators T
i

are given by:

T

0

= �(�

1

m

z

@

2

@z

2

)

T

1

=

1

m

xy

� �

0

(�

1

m

z

@

2

@z

2

)

T

2

=

1

2m

2

xy

� �

00

(�

1

m

z

@

2

@z

2

)

5.3 Heterostructures

For heterostructures we assume nonparabolic dispersion relations for the semiconductors of the different

layers:

�+ � �

2

=

�h

2

2

 

K

2

2m

xy

+

k

2

z

m

z

!

(39)

This implicit definition of the kinetic energy can be generalized to define a kinetic energy operator for

heterostructures where the material parameters, m
xy

; m

z

; �, are position-dependent.

T+T�(z)T =

�h

2

2

 

K

2

2m

xy

(z)

�

@

@z

1

m

z

(z)

@

@z

!

(40)

This equation, which is self-adjoint, can be solved for the kinetic energy operator, T.

T = �

�1=2

h(G

0

+G

1

K

2

)�

�1=2 (41)
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xy
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2x
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p

1 + 4x

In analogy with (38) the kinetic energy operator has to be decomposed as follows,

T(G

0

+G

1

K

2

) � T

0

+T

1

K

2

+T

2

K

4

; (42)

where the determination of the operators T
i

for heterostructures is more complicated than for uniform

material parameters since the operators G
0

and G
1

no longer commute.

For parabolic bands the operators T
i

simplify to:

T

0

= �

�h

2

2

@

@z

1

m

z

@

@z

; T

1

=

�h

2

2m

xy

(z)

; T

2

= 0: (43)

5.4 Subband Dispersion Relation

The eigenvalues of (36) at K = 0 are denoted by E0

n

and the eigenfunctions by �0
n

(z) (n = 0; 1; 2 : : :).

The the matrix elements of T
1

and T
2

in the f�0
n

g basis are T
1;mn

and T
2;mn

, respectively. Perturbation

theory yields a polynomial representation for E
n

(K):

E

n

(K) = E

0

n

+ T

1;nn

K

2

+

0

@

X

m6=n

jT

1;mn

j

2

E

0

n

�E

0

m

+ T

2;nn

1

A

K

4 (44)
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This expression allows to characterize each subband by an effective mass, m
n

, and a nonparabolicity

coefficient, �
n

, defined by

m

n

=

�h

2

2T

1;nn

(45)

�

n

= �

1

T

2

1;nn

0

@

X

m6=n

jT

1;mn

j

2

E

0

n

�E

0

m

+ T

2;nn

1

A (46)

Although (44) suggests a representation of E
n

(K) as a polynomial in K it appears favorable to assume

a second-order polynomial in the energy instead.

(E �E

0

n

)(1 + �

n

(E �E

0

n

)) =

�h

2

K

2

2m

n

(47)

Fig. 19 shows that (47) agrees very well with the point-wise calculated energies in the whole K-range

considered, whereas the polynomial (44) is apparently applicable only for sufficiently small K .
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Figure 19: The polynomial dispersion (44) and the nonparabolic dispersion (47) for the

subbands 0,2,4 in a silicon inversion layer. The symbols refer to a solution of (36) for

different in-plane wave numbers K .

5.5 Poisson Equation

The electrostatic potential is obtained by solving the one-dimensional Poisson equation

d

dz

�

0

�

r

(z)

d

dz

�(z) = e(p(z) � n(z) + C(z)) ; (48)

where �
r

is the relative dielectric constant of the semiconductor and C the net doping concentration,

C = N

+

D

� N

�

A

. The potential energy used in the Schrödinger equation is V (z) = �e�(z) + E

0

C

(z),

where E0

C

denotes the conduction band edge in the absence of an electrostatic potential. The electron

density is given as the sum of all position probabilities of the states jn;Ki weighted by their occupation

probabilities.

n(z) = g

v

X

n

X

K

j�

n

(z;K)j

2

f(E

n

(K)) (49)
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In (49) f denotes the Fermi-Dirac distribution function and g
v

the valley degeneracy factor. The summa-

tion over K is usually converted to an integral by employing the two-dimensional density of states after

(50). The carrier densities, n and p can then be expressed as:

�

2D;n(E)

= g

v

m

n

��h

2

(1 + 2�

n

(E �E

0

n

)) (50)

n(z) =

X

n

1

Z

E

0

n

j�

n

(z;K)j

2

f(E)�

2D;n(E)

dE (51)

p(z) = N

V

(z) exp

 

�

E

F

�E

0

V

(z) + e�(z)

k

B

T

!

(52)

The hole density (52) relies on the Boltzmann statistics. Since both the electron and hole densities depend

on the potential, the Poisson equation is strongly nonlinear. During each self-consistent iteration step the

Schrödinger equation and the linearized Poisson equation (53) are solved.

d

dz

�

0

�

r

(z)

d

dz

(�

k

+��

k

)� e(p(�

k

)� n(�

k

) + C) + e

@(p� n)

@�

��

k

= 0: (53)

After solving this equation for ��
k

the new potential computed by some damping strategy, �
k+1

=

�

k

+ t

k

��

k

, where t
k

is a damping factor � 1.

While the potential-dependence of the hole density is explicitly known, the electron density depends

implicitly on the potential via the Schrödinger equation. An approximate derivative of the electron

density by using its value for the bulk case turned out to be sufficient in order to stabilize the self-

consistent iteration.
@n

@�

=

n

U

T

F

�1=2

(�)

F

1=2

(�)

(54)

F

�1=2

denote the Fermi integrals with the reduced Fermi energy � as argument, andU
T

is the temperature

voltage.

5.6 Discretization

The wave functions, which satisfy the boundary conditions �
n

(0) = 0 and �
n

(L) = 0, are represented as

a Fourier series.

�

n

(z) =

r

2

L

�

N

X

l=1

a

nl

� sin(l K

0

z) ; K

0

=

�

L

(55)

After truncation of the series the Schrödinger equation (36) is converted into an algebraic eigenvalue

equation [25]

(T+V)a = Ea ; (56)

where T and V are N �N matrices, and a is a vector of rank N containing the Fourier coefficients.

The linearized Poisson equation (53) is discretized in real space using the finite difference method. This

yields a tridiagonal equation system which can be efficiently solved. During each iteration step the

Fast Fourier Transform is applied to transfer the required quantities from real-space representation to

momentum representation and vice versa.
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5.7 Results and Discussion

5.7.1 Silicon Inversion Layer

A MOS capacitor has been simulated. The parameters were chosen as follows: m
l

= 0:98, m
t

= 0:19,

� = 0:7 eV�1, t
ox

= 7nm, N
A

= 5 � 10

16 cm�3, V
GB

= 2:5V, T = 300K . A nonparabolic bulk

dispersion relation was assumed:

� =

2 


1 +

p

1 + 4� 


; (57)


 =

�h

2

2

 

K

2

m

xy

+

k

2

z

m

z

!

: (58)

In Fig. 20 the Fourier coefficients of the first two wave functions are plotted. This corresponds to a

representation of the wave functions in momentum space. The number of harmonics equals N = 64.

Due to nonparabolicity the motion of the carriers normal to the interface is no longer decoupled from the

motion parallel to the interface, as is the case for parabolic bands. For non-vanishing K narrower wave

functions are observed than for K = 0 (Fig. 21).
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Figure 20: Spectrum of the first three wave functions in a silicon inversion layer

5.7.2 InP-Based Pseudomorphic HEMT

A heterostructure after [26] has been simulated. The parameters of the structure are summarized in Table

1.

In the simulation both nonparabolic and parabolic bulk dispersions have been considered. When mov-

ing across this heterostructure an electron will experience considerable variations of the band structure

parameters.

Fig. 22 shows the self-consistent conduction band edge for U
GB

= 0V . The Fermi level is pinned to

the intrinsic level at the right boundary of the simulation domain. The simulated structure is not charge

neutral, i.e., the positive charge of the donor layer differs from the charge of the electrons.
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Figure 21: The wave functions 0,2,4 for K = 0 and K = 2 nm�1

Layer Material t mass �

(nm) (m
0

) (eV�1)

barrier Al
0:48

In
0:52

As 20 0.082 0.84

donor Al
0:48

In
0:52

As 12.5 0.082 0.84

spacer Al
0:48

In
0:52

As 2 0.082 0.84

channel In
0:53

Ga
0:47

As 20 0.038 1.02

substrate InP 20 0.077 0.83

Table 1: Parameters of the InP heterostructure. The donor layer is doped with N
D

=

2 � 10

18 cm�3.

In Fig. 23 the eigenenergies are compared for the parabolic and nonparabolic cases. For the lowest sub-

bands the influence of nonparabolicity on the eigenenergies is negligible, while for n > 6 the difference

amounts to a few 10 meV.

The subband parameters m
n

and �
n

are plotted in Figs. 24 and 25 up to subband 20. Strong variations

of these parameters can be observed. The masses of the lowest subbands are close to the small mass

of the InGaAs channel, m = 0:038. In the nonparabolic case, the mass increases significantly when

going from subband 3 to 4, while in turn the nonparabolicity coefficient decreases. This means that

the changes of m
n

and �
n

are correlated. This behavior can be understood when considering the wave

functions (Fig. 26). While an electron in subband 3 resides preferably in the InGaAs channel (low mass,

high �), an electron in subband 4 feels predominantly the material properties of the AlInAs barrier. Fig.

25 reveals another remarkable result. The lower curve indicate a nonparabolicity on the order of 0:4

eV�1 for the lowest subbands, even though the bulk dispersions of the different layers were assumed

parabolic. In this particular case the matrix elements T
2;nn

vanish. After (46) the only contribution to

subband nonparabolicity is due to the off-diagonal elements T
1;mn

. This means that the inhomogeneity

of the in-plane mass, m
xy

, causes mixing of the subband states and induces subband nonparabolicity.
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Figure 22: Self-consistent conduction band edge and 10 energy levels for the InP

heterostructure under the assumption of a nonparabolic bulk dispersion
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Figure 23: The subband masses for the InP heterostructure for both the nonparabolic

and parabolic case
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Figure 24: The subband masses for the InP heterostructure for both the nonparabolic

and parabolic case
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Figure 25: The subband nonparabolicity coefficients for the InP heterostructure. Al-

though for the lower curve parabolic bulk dispersions are assumed, the subbands are

nonparabolic due to the material inhomogeneity.
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Figure 26: Wave functions 3 and 4 in the InP heterostructure
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