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1 LITHOGRAPHY SIMULATION IN VISTA 1

1 Lithography Simulation in VISTA

The lithography tool incorporated in VISTA consists of two parts, namely an aerial image simulator and

a layout editor. The aerial image tool calculates the two-dimensional light intensity incident on top of the

wafer. It is capable of simulating projection printing with arbitrary shaped illumination apertures, includes

models for lens aberrations, and handles layouts up to a size of 30 �m � 30 �m with a run-time less than

half an hour. The layout editor is based on the PIF-editor PED. It provides functionality to convert mask

files stored either in the GDSII- or CIF-file format, supports phase-shifting masks, and automatically

checks printability of the mask pattern by analyzing the aerial image. In the following three sections we

first describe the aerial image simulator, then we summarize the most relevant features of the layout editor,

and finally demonstrate the capability of the lithography package by showing some simulation examples.

1.1 Aerial Image Simulation

The aerial image tool incorporated in VISTA provides a scalar as well as a vector model to calculate the

image of optical projection printing systems. The technique of image forming with a lens employed in

projection printing is similar to that used in microscopes. Hence, the involved optical phenomena includ-

ing diffraction effects have been long-studied and are well-understood [1, Chapters VIII–XI]. Especially,

the theory of Fourier optics—either in its scalar or vector form—provides a powerful physical framework

to describe projection printing. We thus start with a brief sketch of the fundamental results of Fourier

optics and discuss then the lens aberrations caused by the imperfection of the optical systems. Advanced

apertures are also discussed and finally some aspects on the numerical implementation of the aerial image

module are given.

1.1.1 Fundamental Results of Fourier Optics

The light propagation through the optical system and the light transmission through the photomask can be

studied by ray-tracing of homogeneous plane waves. Thereby a linear relation between the object and the

image is established. Under the assumption of the commonly used Köhler illumination [1, pp. 524–526]

and the restriction to periodic mask patterns the resulting formulas can efficiently be evaluated with Fast

Fourier Transform (FFT) algorithms.

Köhler illumination means that a point source (pq) provides a plane wave illumination of the

masks. If the location of the point source is chosen in a way such that the wavevector equals

k

pq

=

h

2�p=a; 2�q=b;

p

k

2

0

� (2�p=a)

2

� (2�q=b)

2

i

the image amplitude follows to

V

pq

(x; y) =

X

n;m

V

pq

nm

e

j2�(nx=a+my=b)

; (1)

whereby a and b are the mask periods and the coefficients V
pq

nm

are given by

V

pq

nm

= A

pq

T

n�p;m�q

P(n;m)e

jk

0

�(n;m)

: (2)

Here, A
pq

is the amplitude of the plane wave, T
nm

represents the Fourier coefficients of the photomask,

P(n;m) stands for the pupil function, and �(n;m) is the aberration function of the projection lens. The

general expressions (1) and (2) apply for both the scalar as well as for the vector simulation. In the
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former case V pq

(x; y) represents the scalar field amplitude, in the latter case it stands for the electric field

amplitude. The pupil function is given for the scalar simulation by

P (n;m) =

(

M if

q

(n

�

a

)

2

+ (m

�

b

)

2

� NA,

0 otherwise,
(3)

and for the vector case by

P(n;m : p; q) =

(

M	(n;m : p; q) if

q

(n

�

a

)

2

+ (m

�

b

)

2

� NA,

0 otherwise.
(4)

In the above two equations M is the magnification of the projection system, NA is the numerical aperture,

and � is the used wavelength. The quantity 	(n;m : p; q) describes the polarization state of the illumi-

nation and is computed by following the plane waves through the system [2]. The contribution I

pq

i

(x; y)

of one point source to the aerial image is calculated by

I

pq

i

(x; y) =

1

2

r

�

0

"

0

jV

pq

(x; y)j

2

: (5)

1.1.2 Lens Aberrations

The operation of an ideal lens is only diffraction limited, i.e., the lens catches rays only up to a certain

degree of obliquity, but otherwise the image is composed in an ideal way. In reality fabrication imperfec-

tions of the lens degrade the image quality as the image composition is distorted by phase errors occurring

during the passage of the ray through the lens. Such imperfections are commonly called lens aberrations

and are modeled by the general phase factor exp(jk
0

�(n;m)) in (2).

Defocus. The simplest and most basic aberration type is defocus caused by a wrong vertical position of

the image plane. In case of a positioning error �
Def

the plane waves do not converge at the wafer. The

optical path difference depends on the orientation of the incident rays. The aberration function describing

defocus follows from the plane wave decomposition (1) and writes to

�(n;m) = �

Def

i

z;nm

;

whereby i
z;nm

is the vertical component of the normalized wavevector

i

nm

=

h

n�=a; m�=b;

p

1� (n�=a)

2

� (m�=b)

2

i

T

:

The paraxial approximation valid for almost vertical incident rays, i.e., i
x;n

; i

y;m

� 1, yields the simpler

relation

�(n;m) = �

Def

q

1� i

2

x;n

� i

2

y;m

�

=

�

Def

+

1

2

(i

2

x;n

+ i

2

y;m

)�

Def

; (6)

which will subsequently be used to study the impacts of higher-order aberration types. The obvious effect

of defocus is a vertical shift of the focal point above or below the Gaussian image point depending on the

sign of �
Def

. However, if �
Def

varies across the lens field, the surface of best imagery is not planar and

the usable depth of focus is correspondingly reduced.
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Power Series Representation of Primary Seidel Aberrations. The common way to describe the five

primary or Seidel aberrations is a power series expansion of the aberration function �(n;m) [1, pp. 211–

218]. It is convenient to scale the incident wavevector i
nm

in the image space with the numerical aperture

NA of the imaging lens first, i.e.,

_�

nm

=

1

NA

i

nm

;

which has the advantage that the pass-region of the pupil function (cf. (3) and (4)) transforms in the scaled

domain into the unit circle:

i

2

x;n

+ i

2

y;m

� NA

2

=) _�

2

x;n

+ _�

2

y;m

� 1:

Hence, the optical path difference of the most obliquely incident ray does not depend on the numerical

aperture and the resulting formulas provide clear information on the impact of each aberration type.

The power series expansion of the aberration function has a form of [3],

�(n;m) = �

X

a;b;c�0

a+b+c=k

�

abc

(x

2

o

+ y

2

o

)

a

(x

o

_�

x;n

+ y

o

_�

y;m

)

b

( _�

2

x;n

+ _�

2

y;m

)

c

; (7)

whereby �

abc

denotes the maximal optical path difference in units of the wavelength between the rays

entering in the center of the lens and at the boundary, while (x

o

; y

o

) is the position of the mask with

respect to the optical axis. In the power series only polynomials of degree 2k in the three variables

r

o

=

p

x

2

o

+ y

2

o

, � =

q

_�

2

x;n

+ _�

2

y;m

, and � =

p

x

o

_�

x;n

+ y

o

_�

y;m

occur. A term of a particular degree 2k

is said to represent a wave aberration of order 2k. The aberration of lowest order (2k = 4) are usually

called primary or Seidel aberrations. As can be seen from (7) five terms with a + b + c = 2 exist. In

Table 1 a summary of the Seidel aberrations including the resulting image shift is described.

Although the expansion of (7) is a general representation of the aberration function in that any aberra-

tion function �(n;m) can be represented, other polynomials are more suited to describe higher-order

aberration terms.

Table 1: Seidel aberrations are described by power series expansion of the aberration function �(n;m).

The position of best focus is shifted by (R

f

cos�

o

; R

f

sin�

o

; Z

f

).

Focal shift
Aberration (a; b; c) �(n;m)

R

f

Z

f

Spherical (0,0,2) ��

Sph

( _�

2

x;n

+ _�

2

y;m

)

2

0

2�

NA

2

�

Sph

Coma (0,1,1) ��

Com

(x

o

_�

x;n

+ y

o

_�

y;m

)( _�

2

x;n

+ _�

2

y;m

)

2�r

o

3NA

�

Com

0

Astigmatism (0,2,0) ��

Ast

(x

o

_�

x;n

+ y

o

_�

y;m

)

2

0

�r

2

o

NA

2

�

Ast

Curvature� (1,0,1) ��

Cur

(x

2

o

+ y

2

o

)( _�

2

x;n

+ _�

2

y;m

) 0

2�r

2

o

NA

2

�

Cur

Distortion (1,1,0) ��

Dis

(x

2

o

+ y

2

o

)(x

o

_�

x;n

+ y

o

_�

y;m

)

�r

3

o

NA

�

Dis

0

�For a fixed object position curvature equals “approximate” defocus (cf. (6)), whereby the amount of defocus �
Def

is related

to the optical path difference �
Cur

by �
Def

= 2�r

2

o

�

Cur

=NA

2.
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Zernike Polynomials for General Aberration Terms General aberration terms are described most

conveniently by the circle polynomials Zc

b

(�; �) of Zernike [1, pp. 464–468]. The aberration function

�(n;m) is expanded as follows:

�(n;m) = �

X

a;b�0; c

a�jcj even

�

abc

A

ac

Z

c

b

(�

nm

; �

nm

):

As before, �
abc

refers to the maximal optical path difference of the lens measured in units of the wave-

length, while the factor A
ac

is determined by the object location (r

o

cos�

o

; r

o

sin�

o

),

A

ac

=

(

r

2a+jcj

o

cos(c�

o

) if c � 0,

r

2a+jcj

o

sin(c�

o

) otherwise.

The orientation of the incident wavevector is described by the polar coordinates (�
nm

; �

nm

),

�

nm

=

q

_�

2

x;n

+ _�

2

y;m

and �

nm

= arctan

�

_�

x;n

_�

y;m

�

:

The Zernike polynomials in real-valued form are defined as

Z

c

b

(�; �)

def

=

8

<

:

R

c

b

(�) cos(c�) if b � 0,

R

c

b

(�) sin(c�) otherwise,

whereby Rc

b

(�) are the so-called orthogonal radial polynomials. A thorough discussion can be found in,

e.g., [1, Appendix VII]. In Table 2 the explicit forms of these polynomials for the first few values of the

indices b and c are listed. The normalization has been chosen so that Rc

b

(1) = 1 for all permissible values

of b and c.

Table 2: Radial polynomials Rc

b

(�) for b � 7, c � 7 (after [1, p. 465]).

c

n

b

0 1 2 3 4 5 6 7

0 1 2�

2

� 1 6�

4

� 6�

2

+ 1 20�

6

� 30�

4

+ 12�

2

� 1

1 � 3�

3

� 2� 10�

5

� 12�

3

+ 3� 35�

7

� 60�

5

+ 30�

3

� 4�

2 �

2

4�

4

� 3�

2

15�

6

� 20�

4

+ 6�

2

3 �

3

5�

5

� 4�

3

21�

7

� 30�

5

+ 10�

3

4 �

4

6�

6

� 5�

4

5 �

5

7�

7

� 6�

5

6 �

6

7 �

7

1.1.3 Advanced Illumination Aperture

The illuminator of a projection printing system is not a simple point source. Spatially extended apertures

are often applied to enhance the imaging performance. A convenient method to model imaging with such

advanced illuminators is due to Abbe [1, pp. 418–424]. This method is based on a spatial discretization of

the source into discrete point sources, whereby the point sources are mutually incoherent due to the thermal
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nature of the light source. The statistical independence is of crucial importance for the performance

of projection systems as only a local spatial coherence is introduced on the mask. The image is then

calculated by taking one incident ray at a time, finding its diffraction, and summing the collected field.

For the image calculation of one coherent source point either the scalar or the vector formulation can be

used. However, the aerial image is obtained by an incoherent superposition of all the contributions (5) and

formally writes to

I

i

(x; y) =

X

p;q

I

pq

i

(x; y): (8)

The point sources (pq) are located within the illumination aperture (cf. Figure 1). Beside this no further

restrictions on the shape of the aperture are made.

The spacing between the individual point sources has to satisfy a specific criterion. As mentioned before, it

is chosen in such a way that the lateral wavevector components k
x;p

and k
y;q

of the waves which incident

on the photomask equal an integer multiple of the sampling frequencies 2�=a and 2�=b. This choice

guarantees that the image on the wafer surface is periodic with periods a and b, which enables an extremely

fast implementation of the resulting formulas. This requirement is illustrated in the wavevector diagram

of Figure 1 for the case of conventional illumination.

2�

b

2�

a

k

x;p

k

y;q

w

pq

= 1

w

pq

< 1

k

0

NA

k

0

NA�

Figure 1: Source discretization of a conventional partially coherent illumination system. The spacing

between the individual point sources is chosen to yield a periodic field incident on the photomask.

What is missing now is the determination of the amplitudes A
pq

of the point sources. Clearly, they depend

on the total imaging intensity I

0

as well as on the discretization scheme illustrated in Figure 1. The

intensity of one point source is related to the discretization area w
pq

and to the square of the light amplitude

A

2

pq

. Hence, we write

A

2

pq

= A

2

0

w

pq

; (9)

where A
0

is a simple normalizing constant. By considering a missing or “perfectly transparent”, we obtain

the relationship between A
pq

and I
0

looked for [4],

scalar theory: A

0

=

1

M

v

u

u

u

t

2�

0

I

0

X

p;q

w

pq

vector theory: A

0

=

1

M

v

u

u

u

t

2�

0

I

0

X

p;q

w

pq

p

1� (p�=a)

2

� (q�=b)

2

:
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1.1.4 Numerical Implementation

From the above discussion it can be seen that basically two Fourier transforms are required:

� Forward Transform: The Fourier coefficients T
nm

of the mask transmission function t(x; y) have

to be calculated. As in our model t(x; y) consists of piecewise constant regions with ideal sharp

transitions, a simple sampling is not adequate because t(x; y) is definitely no low-pass function.

Hence, we developed a semi-analytical method to avoid errors arising from aliasing.

� Backward Transform: The Fourier coefficients T
nm

are weighted with the pupil function and have

then to be transformed back to the spatial domain to obtain the image field. As the projection lens

acts as a low-pass filter due to the finite extent of the pupil function the image has only spectral

components up to a certain order. Therefore sampling can be employed for the backward transform

without introducing any aliasing.

Consequently, the calculation of the aerial image is in a certain sense “exact”, i.e., no additional discretiza-

tion errors are introduced by the numerical implementation. All approximations made throughout can be

physically explained and therefore constitute a sound physical and mathematical basis of the aerial image

simulator.

“Alias Free” Forward Transform: The basic idea is to decompose the mask transmission function

t(x; y) into elementary geometrical patterns. Triangles are most suited for this purpose because any func-

tion t(x; y) consisting of piecewise constant transmission areas can be triangulated and an analytical ex-

pression for the Fourier coefficients of a triangular shaped area can easily be derived [4]. As a typical

photomask often consists of rectangular areas we consider them as the second type of elementary patterns.

Formulas for the Fourier coefficients of rectangles can also be found in [4].

Let us now find a mathematical description for the proposed algorithm. The area of a general elementary

pattern is described by its indicator function PAT(x; y) defined as

PAT(x; y)

def

=

(

1 if (x; y) inside the pattern,

0 otherwise.

In our situation the elementary patterns are either triangles or rectangles. In principle any other pattern

type can be used as long as analytical expressions for its Fourier coefficients can be derived.1 The decom-

position of the mask transfer function writes as

t(x; y) =

X

k

t

k

PAT

k

(x; y); (10)

whereby t

k

is the transmission of the respective elementary pattern. In the case of binary masks all

transmissions t
k

equal unity, for phase-shifting masks t
k

is a complex number with module less or equal

one, i.e.,
binary masks: t(x; y) � 1

phase-shifting masks: jt(x; y)j � 1 ^ t(x; y) 2 C:

1The Fourier coefficients of polygonal areas can always be computed analytically; circular or elliptic areas can also be treated

analytically.
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Due to the linearity of the Fourier transform the coefficients T
nm

of the mask transmission function t(x; y)

can be computed as follows:

T

nm

=

1

ab

a

Z

0

b

Z

0

t(x; y)e

�j2�(nx=a+my=b)

dxdy

=

1

ab

a

Z

0

b

Z

0

"

X

k

t

k

PAT

k

(x; y)

#

e

�j2�(nx=a+my=b)

dxdy

=

X

k

t

k

2

4

1

ab

a

Z

0

b

Z

0

PAT

k

(x; y)e

�j2�(nx=a+my=b)

dxdy

3

5

: (11)

The term in square brackets in the last row, i.e.,

P

k;nm

=

1

ab

ZZ

(x;y)2PAT

k

e

�j2�(nx=a+my=b)

dxdy; (12)

can be calculated analytically for the elementary patterns. With (10) and (11) the Fourier coefficients T
nm

follow to

T

nm

=

X

k

t

k

P

k;nm

:

The algorithm has the big advantage that the Fourier coefficients T
nm

are calculated exactly, i.e., no sam-

pling of the mask transfer coefficients is involved. In addition to accuracy speed is the second important

benefit. The calculation is faster when compared to a numerical FFT transform, because the formulas for

P

k;nm

can easily be evaluated. This second point is especially important for a dense layout as the mask

can be decomposed into a relatively small number of geometrical patterns.

Numerical Backward Transform: The spectrum V

pq

nm

due to one point source is determined by the

following three quantities: source amplitude A
pq

, Fourier coefficients T
nm

of the mask transfer function,

and discrete pupil function P (n;m) or P(n;m : p; q). For each of them formulas are provided above.

Hence, the spectrum can be calculated and the field is obtained by evaluating the transform in (2). This

last step is accomplished as follows.

The finite extent of the pupil function in (3) or (4) shows that the image spectrum is always a low-pass

function, i.e.,

V

pq

nm

= 0 for

r

�

n

a

�

2

+

�

m

b

�

2

>

NA

�

: (13)

Hence, the fundamental results of the sampling theory [5] can be applied, which states that any bandlim-

ited, finite-energy function f(x) can be reconstructed from discrete equally-spaced samples f(n�x), if

the spacing between the samples �x meets the Nyquist criterion �x � 1=2W , whereby W is the highest

frequency occurring in f(x). Self-evidently the sampling theorem is also valid for functions defined in

a higher dimensional space. As can be seen from (13) the aerial image spectrum V

pq

nm

is circularly ban-

dlimited with cut-off frequency NA=�. Consequently, it suffices to evaluate the field V pq

(x; y) at discrete

points only without any loss of information. We choose the spacings �x and �y to meet the Nyquist

criterion and require that the numbers of samples within the mask periods N
x

and N

y

equal a power of
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two,2 i.e.,

�x �

�

2NA

^

a

�x

= 2

r

x

�y �

�

2NA

^

b

�y

= 2

r

y

:

Thus the powers r
x

= ldN

x

and r
y

= ldN

y

are chosen as the smallest integers meeting

r

x

� ld

�

aNA

2�

�

and r

y

� ld

�

bNA

2�

�

:

The field disturbance on the equally spaced ortho-product grid is given now by

V

pq

(k�x; l�y) =

N

x

=2�1

X

n=�N

x

=2

N

y

=2�1

X

m=�N

y

=2

V

pq

nm

e

�j2�(nk=N

x

+ml=N

y

)

:

This formula can efficiently be evaluated with a radix-2 FFT algorithm [6, Chapter 12], [7, Chapter 11].

We have chosen a public-domain software package that employs heavily inlined FFT routines and precal-

culated weight tables to achieve maximal speed.3 The length of the weight tables is 4096 and the unroll

value is 128. Above the unroll value conventional recursive routines are employed. To check the cor-

rectness of the algorithm we compared the results with the well-established packet FFTPACK [8] from

the NETLIB.4 Information on the computational performance of the aerial image tool, e.g., run-time and

memory consumption, is given in connection with simulation examples.

2The second requirement is not obligatory, but the resulting formulas can then be evaluated with the most efficient radix-2

FFT algorithm.
3This package was written by Richard Krukar and is available at http://hpux.u-aizu.ac.jp/hppd/hpux/�

�/Maths/Misc/ffts in C-1.0/readme.html.
4The package FFTPACK was written by Paul N. Swarztrauber and is widely available, e.g., from the original NETLIB

location at http://www.netlib.org/fftpack/index.html.
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1.2 Handling layouts for lithography simulation

The PED tool can be used to edit or import from exterior frameworks (if in CIF or GDSII) layout infor-

mation. This can be handled in an interactive way in order to prepare it to the simulators inside VISTA.

Cut-lines or areas of interest can be defined if respectively two or three-dimensional simulator are used.

As with lithography simulation is concerned, we extended the basic features of a layout editor, with the

capabilities for phase-shift masks edition, as this feature is not available in conventional ECAD layout

editors. For the background as well to every polygon of any mask, we can specify values to the modulus

and phase attributes of their transmittance (see Figure 2).

Figure 2: The capabilities of PED are extended to edit phase-shift masks.

We introduce also a button in the PED panel to make easy the task of checking the printability of one lay-

out. It evokes the simulator described previously, and from the aerial image result, automatically identifies

possible problems with the printability of the features in the layout. This is done by applying a threshold

to the resulting aerial image to create a binary image. Using digital imaging processing techniques we

detect the contours of the binary aerial image, and then we write this information in a layout file, that can

be used by topography simulators. From comparisons between this layout and the original, we investigate

its printability.

1.3 Examples

Figure 3 shows simulation results of one layout with nested elbows. The minimum feature size is 0.4 �m.

We compare conventional binary masks (left) with alternating phase-shifting masks (right). The simula-

tion parameters were a numerical aperture of NA = 0:55, a wavelength of365 nm (I-line), and a focus

error of 1�m. Figure 3-(iv) demonstrate the superior performance of phase-shifting masks.

The lithography package can handle large pieces of layout. We show in Figure 4 an example where the

simulation domain was 29 �m � 23 �m large. With a spatial grid of 256 � 256 and 1056 point sources

the simulation time is about 5 minutes on a DEC-600 workstation. A quadrupole source was used with

� = 0:22 (see Figure 1). The distance between the four sources must be optimized according the minimum
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feature size, and yield for this layout: X=Y=0.556. We used again a numerical aperture of NA = 0:55

and a wavelength of 365 nm.

Legend
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Figure 3: Simulation of nested elbows: (i) Layout; (ii) Aerial image; (iii) Aerial image cutted at horizontal

line y = 3:95 �m; (iv) Binary mask after applying threshold (see text).



1 LITHOGRAPHY SIMULATION IN VISTA 11

(ii)

(i)

Figure 4: Simulation of a large piece of layout. (i) Original Layout (ii) The result.

Note: Grid spacing= 1 �m.
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2 Simulation of Ion Implantation with MCIMPL

2.1 Introduction

For the simulation of ion-implantation mainly two approaches are used. Firstly, an analytical method

where the doping profile is represented by probability functions, with probability moments depending on

various implantation parameters. Secondly, a Monte Carlo method where the trajectories of all ions are

followed on their way through the target until they come to rest or leave the simulation domain.

The ion-implantation simulator MCIMPL uses the Monte Carlo method. MCIMPL can handle fully three

dimensional applications, but also lower dimensional problems. The simulation domain can consist of

several amorphous and crystalline segments made up of various materials normally used in semiconductor

fabrication. The only restriction is, that all crystalline segments have to consist of silicon. MCIMPL can

not only handle single atomic ions, but also molecular ions, either via a simple model where the energy

of the doping material is weighted according to the mass ratio in the molecule, or via a more accurate

approach where the trajectories of all atoms of the molecule are calculated.

In the following sections the simulator MCIMPL is described more in detail. Some input parameters

related to the text are stated in parentheses.

2.2 Models

For the simulation of ion-implantation using a Monte-Carlo method mainly two types of physical models

are required. When the ion enters the target material, the nearest target atom is estimated, either randomly

for amorphous materials or by checking the positions of the atoms in the crystal. Then the scattering of

the ion by the target atom is calculated. Therefore a binary collision model for two charged particles is

used. The interaction potential of the two atoms is described by the function [9] [10] [11] [12] [13]

V

c

(r) =

Z

1

Z

2

e

2

r

� �(r) (14)

where Z
1

and Z

2

are the core charges and r is the distance of the centers of mass of the two atoms. The

function �(r) describes the screening of the core charges by the surrounding electrons. MCIMPL uses

the universal screening potential

�(r) =

n

X

i=1

a

i

� exp(�b

i

r

a

I

) (15)

with the coefficients

a

i

b

i

0.18175 3.19980

0.50986 0.94230

0.28022 0.40290

0.02817 0.20160

and the screening length

a

I

=

0:468

Z

0:23

1

+ Z

0:23

2

(16)
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For computation time reduction a pre-calculated table of scattering angles is used from which the amount

of energy which is transfered to the target atom is derived.

After one scattering event, the ion is considered as flying along a straight line until the next collision. The

length of the free flight-path is estimated by looking for the next target atom if the ion moves through a

crystalline material, or an average free flight-path, which is a function of the density of the material, is

taken if the ion moves through amorphous material.

Along the free flight-path the ion looses energy because of the interaction with electrons of the target ma-

terial. To handle this electronic stopping process MCIMPL uses a partly empirical model which is based

on the stopping of charged particles moving through a plasma of electrons [14]. For crystalline materials

this model is modified by some empirical expressions that take into consideration, that the density of the

electrons varies within a solid, mainly depending on the distance from lattice atoms [15] [16] [17] [18]

[19]. The loss of energy �E of an ion in the electron gas is

x

nl

= max(y

nl

E

q

); a = f

a

I

0:3

(17)

x

loc

= 1� x

nl

(18)

�E

loc

= x

loc

k

corr

k

p

E�R

2a

2

�

�

n

X

i=1

�

exp

�

�

p

i

a

��

(19)

�E

nl

= Nk

corr

k

p

E�R �

h

x

nl

+ x

loc

�

�

1 +

p

max

a

�

� exp

�

�

p

max

a

�i

(20)

�E = �E

nl

+�E

loc

(21)

where n is the number of atoms around the current ion position that contribute to the local part of the

electronic stopping power, p is their distance from the ion and p

max

is the maximum distance that is

searched for surrounding atoms. �R is the length of the flight-path, E is the current ion energy and N

is the density of the atoms. The coefficient a
I

is the screening length as described above. k
corr

; f ; q ; y

nl

are empirical coefficients which depend on the ion species.

For amorphous materials the energy loss caused by electronic stopping is calculated by

�E = Nk

corr

k

p

E�R (22)

The parameters are the same as mentioned for the crystalline case.

When the ion hits an atom of the target material, energy is passed to the target. If this energy is higher

than the displacement energy of the target atom, it is pushed away from its lattice cite. This recoil itself

can afterwards remove other atoms from their original positions in the lattice and a cascade of collisions

is initiated. Because of that a lot of interstitial atoms are generated. But it is possible that some of

these interstitials move to regular lattice sites. In MCIMPL an empirical model is used to describe the

damage generation, which also takes recombination effects into account. The number of interstitials that

are generated by one cascade are calculated using the modified Kinchin-Pease-Model [20] [21].

N

I

=

8

<

:

0 0 � E

�

� E

d

1 E

d

� E

�

� 2:5E

�

0:8E

�

2E

d

2:5E

d

� E

�

(23)

where E
d

is the displacement energy of one lattice atom and E
v

is that part of the transfered energy, that is

available for damage generation. To consider the recombination, two additional parameters are introduced

to the model [13] and the number of remaining defects is

N

IR

= N

I

f

rec

�

�

1�

N

�

N

sat

�

: (24)
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N

�

is the density of interstitials that already exists at the current ion position. The parameter N
sat

describes

a saturation density of point defects, whereas f
rec

is an inverse recombination rate. Both parameters of

this point defect model depend on the ion species.

Although there are good default values available for the modeling parameters k
corr

(lindhardCorrection),

f (screeningPrefactor), q (nonlocalPower), y
nl

(nonlocalPrefactor), N
sat

(saturation), f
rec

(recombina-

tionFactor), p
max

(searchDistance), E
d

(displacementEnergy) they can be modified by the user, as well as

several other parameters like the final energy (finalEnergy) of an ion and the amplitude of the lattice atom

vibration (atomVibration).

2.3 Simulation Input

MCIMPL needs a description of the simulation domain in a PIF file which has to provide the structure

of the geometry and the material types of segments. In the case of a two dimensional simulation it is

also possible to provide a triangular input grid (useGrid). MCIMPL uses the points of the input-grid to

represent the simulation result and adds some grid-points if the resolution of the initial grid is not sufficient

to fulfill the grid criteria that can be specified by the user (minGridAngle, maxDoseError, maxGradient).

In order to accurately describe the simulation conditions various parameters are available. The

name of the implanted ions (ionName),

energy of the implanted ions (energy),

implantation dose (dose),

tilt (tilt) and twist angle (twist) of the ion beam,

divergence (beamDivergence) of the ion beam,

orientation of the silicon crystal (crystalOrientation)

Furthermore it is possible to rotate the ion beam during the simulation, either continuously (revolving) or

step-by-step (nbRotation).

2.4 Simulation Flow

First there is an initialization step where the input-geometry is prepared for the simulation and a rectangu-

lar implantation window is defined automatically if the user does not force the use of a special implantation

window (implantationWindow). The staring positions of all calculated ions are equipartitioned within this

implantation window, which is parallel to the x/y-plane and has the minimum possible area with respect

to all ion beam directions during the simulation.

Before the simulation is started, the shape of the geometry is modified in order to treat the boundary

conditions correctly. During the simulation the boundaries of the geometry are treated as real physical

boundaries. The effect is that the doping concentration decreases in the vicinity of the left, right, front

and back side of the geometry. In order to get the correct doping profiles over the whole simulated device,

it has to be considered that just the top of the geometry is a real physical boundary, whereas all other

boundaries are just artificial boundaries.

To avoid the problem of the decreasing doping profiles, the geometry is expanded on the left, right, front,

and back side, assuming that the shape of the real device outside the simulated geometry can be derived
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from the shape of the boundary. This means that the surrounding geometry can be generated by adding

new prismatic solids to each face of the artificial boundaries. A special treatment is necessary for faces

which contain points that belong to edges of the simulated geometry. In this case some lateral faces of the

added prismatic solid have to be tilted in order to create a fully closed expanded geometry. The size of the

expanded geometry depends on the penetration depth of the ions.

Original Geometry

Expanded Geometry

Figure 5: Shape of the simulation domain and the expanded geometry

While writing the output doping concentrations, only those points of the grid are considered which are a

part of original simulation domain.

After expanding the geometry an ortho-product-grid is generated. In the two dimensional case the ortho-

product-grid is automatically restricted to regions which can be reached by ion trajectories whereas in the

three dimensional case the grid size in the x- and y-direction is determined automatically and the depth of

the grid has to be set by the user (simulationDepth).

During the simulation all results are stored in the boxes that are bound by the grid lines. In general just

the concentration of the doping profiles is calculated, but if damage is considered (siliconRecoil) also the

distribution of the silicon interstitials and the damage energy density are evaluated. The damage energy

density can be used to locate amorphous regions that have been generated during the implantation.

The results of the simulation are finally interpolated to an output grid. In the three dimensional case

the previously generated ortho-product-grid is used as an output grid. In the two dimensional case the

data are interpolated to a geometry conforming triangular grid which is refined according to the doping

concentration as mentioned above. The results are written to a PIF file that contains the grid and the

profiles. Additionally it is possible to generate a one dimensional output for each calculated species

(output1d), which is the average of the profile at a certain depth.
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2.5 Examples
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Figure 6: One-dimensional Simulation: Phosphorus implanted into bare silicon with 50keV, 3�1014cm�2,

7� tilt, 180� twist
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Figure 7: Two-dimensional Simulation: LATID Phosphorus implant with three rotation steps and 40keV,

4�1013cm�2, 50� tilt, 50� twist
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Figure 8: Three-dimensional Simulation: LAT Boron implant with one rotation step and 25keV,

7�1012cm�2, 45� tilt, 0� twist
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3 The MINIMOS-NT Input Deck

3.1 Introduction

A complex, general purpose device and circuit simulator like MINIMOS-NT puts heavy demands on its

controlling language. In fact, a simple input deck as collection of static keywords is not sufficient. Even if

this keywords are allowed to be functions, tables, or other complex objects, the burden of evaluation lies

on the simulator. Normally, to control complex simulations like hydrodynamic transient mixed mode sim-

ulations, dozens of keywords are introduced to control all possible events. For instance, if the simulation

failed to converge, several decisions for continuation are imaginable.

In the case of MINIMOS-NT a different approach has been taken. The main idea is to limit the number

of keywords and group them in so called sections. These keywords are allowed to be time dependent

functions, tables, expressions and the like. To accomplish this, the input deck is handled as a database

which is only queried when the desired keyword is required. The simulator stores internal variables which

should be externally accessible in a special section. These external variables (e.g., the iteration counter,

update norms) can then be used to form keyword expressions in the input deck. When the simulator

inquires a special keyword from the input deck, its current value is returned.

The entire input deck functionality has been implemented as a library to handle the complex situations

which can arise. This library can be customized to the special needs since external functions written in the

programming language C can be added to the internal function list of the input deck library. These external

functions can be used like any other function for every keyword. This feature is used for the inclusion

of so-called point clouds, which are general data tables stored in an ASCII file. Due to this powerful

feature, the functionality of the simulator can be extended without changing one line of simulator code.

For instance, the contact voltage of every voltage source can be given as a general function of time.

Another case where these features are utilized is the control of block iteration. Especially, hydrodynamic

simulation requires such flexibility, because convergence is usually hard to achieve. For the definition of

each of these iteration blocks, a section in the input deck exists. For each block several keywords such as

the list of quantities to be solved, the damping scheme to use, parameters for this damping scheme, and

a stop expression are supplied to control the iteration. These sections can be arbitrarily nested, forming

complex sequences of iteration blocks.

3.2 Features of the Input Deck Control Language

The input deck language is a programming language of its own, which has been designed with simulator

control in mind. Several typical features of programming languages are available, e.g., if statements,

function definitions, etc. All necessary data-types for variables are available:

Type Example

boolean a = true;

integer a = 3;

float a = 3.1415;

quantity a = 3.1415 m;

a = 3.1415 "m/s";

string a = "This is a test";

array a = [ 1, 2, 3 ];

list a = [ 1, "pi", 3 A];
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For these data types, the basic mathematical operations are defined, strings may be concatenated by using

the + operator, whereby non-string values convert to their string representation. Variables which are

inquired by the simulator are called keywords.

All expressions are evaluated at runtime except constant expressions.

a = 3 + 4;

b = 4;

c = a + b;

In this example, the expression for c is stored and evaluated each time its value is inquired by the simulator,

since the values for a and b may be overwritten by the simulator and may therefore change. On the other

hand, the expression for a is evaluated only once, since there is no way for the simulator to overwrite 3

and 4 in the expression for a.

Variables may be grouped into sections, e.g.,

MySection

{

a = "test";

b = a + 3.0;

}

Sections can be arbitrarily nested. It is important to note, that the user can define as many variables and

sections as needed to structure his personal data.

Functions can easily be defined by

min(a,b) = if (a<b, a, b);

Each variable or function has a unique name given by its path in the section hierarchy.

a = 1;

Test

{

a = 2;

Test

{

a = 3;

}

b1 = ˆa; // relative addressing

b2 = ˜a; // absolute addressing

b3 = a; // relative addressing

b4 = ˜Test.a; // absolute addressing

b5 = Test.a; // relative addressing

b6 = ˜Test.Test.a; // absolute addressing

}
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In this case b1 = b2 = 1, b3 = b4 = 2, and b5 = b6 = 3. The tilde character (˜) is used to

denote an absolute path, the accent character (ˆ) is used to go up one level in the hierarchy (several ˆ can

be used to go up more than one directory).

Sections can be copied using the : operator

Test1 // Create section Test1

{

a = 1;

b = 2;

}

Test2 : Test1; // Create copy of section Test1

Test3 : Test1

{

b = 3; // Modify variable b of section Test3 only

c = 4; // Append variable c to section Test3

}

Test1 // Re-open section Test1

{

a = 5; // Modify variable b of section Test1 only

d = 6; // Append variable d to section Test1 only

}

Dumping the example above yields

Test1

{

a = 5;

b = 2;

d = 6;

}

Test2

{

a = 1;

b = 2;

}

Test3

{

a = 1;

b = 3;

c = 4;

}

3.2.1 Simulator Specifics

There is only a small number of predefined sections in the top level which are queried by the simulator.

However, there are a lot of other sections defined for instance in the defaults.ipd file to allow group-

ing of related data, e.g., the Devices section. The top level sections queried by the simulator are the

following:

� SteppingControl: Contains the stepping control algorithm for stepping simulations.
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� TimestepControl: Contains the stepping control algorithm for transient simulations.

� Circuit: Contains the circuit net list.

� Num: Contains damping, solver, and scaling information.

� Solve: Contains information about the actual simulation.

� Output: Determines the kind of information which is written to distinct output files.

3.3 The default.ipd File

The file defaults.ipd is part of the MINIMOS-NT package. This file is the fundamental MINIMOS-

NT input deck and has to be included into all user definded input decks. Despite of user-interaction with

MINIMOS-NT, the defaults.ipd file is a very useful tool to test and develop new MINIMOS-NT

code.

Usually the information in the defaults.ipd file is not time critical and therefore can be interpreted

without any recompilation.

To get an idea what the file defaults.ipd does, some important parts of this file are described in

the next sections. A complete description of defaults.ipd can be found in the MINIMOS-NT Users

Manual.

3.3.1 The Extern Section

This section contains the keywords which are updated by the simulator. These keywords can be used

afterwards to control the simulation. To update these keywords, the MINIMOS-NT executable has to call

ipd-library functions.

Extern

{

updateNorm = 0.0;

updateNormPot = 0.0;

updateNormLast = 0.0; // Update norm of the last parent block

updateNormPotLast = 0.0; // Update norm pot of the last parent block

iterationCount = 0; // A counter of the current iteration block

}

3.3.2 The Quantities Section

In this section variables are defined, which group together quantities that are solved by MINIMOS-NT.

The section typically looks like:

Quantities

{

contact = "Contact*";

electrons = "ElectronConcentration,BoundaryElectronCurrent";

holes = "HoleConcentration,BoundaryHoleCurrent";

driftDiffusion = contact + "," + electrons + "," + holes +
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",Potential,Boundary*,DisplacementField,Occ*";

hydro = "ElectronTemperature,HoleTemperature";

mixed = "NodeVoltage,FixNodeVoltage,BranchCurrent";

}

The variable contact groups together all quantities preceded by the letters ”Contact”. Examples

for these quantities are ContactPotential, ContactCurrent, ContactCharge. The group

driftDiffusion depends on the subgroup contact and several other quantities. The groups are

connected with the + sign and separated with colons.

A list of all available quantities can be found in the MINIMOS-NT Users Manual.

Arrangement of quantities into groups is essential for the iterate section, where these groups are used

for the iteration scheme.

3.3.3 The Models Section

This section defines segment specific information whether certain additive components for the equation

system should be used. These components are built up from predefined component sets. Examples for

components are SRH recombination, impact ionization, band to band tunneling etc. For example, the used

impact ionization model calculates a generation rate which is entered as additive inhomogeneity to the

right hand side of the equation system. The type of impact ionization model (the formula how to calculate

the generation rate) is not specified. This is done in the SegmentDefaults section were one of the

available impact models is chosen. The available model sets are can be found in the MINIMOS-NT Users

Manual. The Models section reads:

Models

{

testSRH = ˜getDevices("Phys.srh"); // local test variable (array)

testHydro = ˜getDevices("Phys.hydro"); // local test variable (array)

useDCSRH = "staticSRH[" + testSRH[yes] + "]";

useHydro = "electronsHydro[" + testHydro[yes] + "],electrons["

+ testHydro[no] + "]," + "holesHydro["

+ testHydro[yes] + "],holes[" + testHydro[no] + "]";

driftDiffusionDC = "potential,electrons,holes," + useDCSRH;

hydroDC = "potential," + useHydro;

hydroTrans = useTransient + "potential," + useHydro + "," + useTransSRH;

}

The function ˜getDevices("Phys.srh") looks in all devices for the Phys section. When the

section is found it searches for the srh keyword. The variable testSRH consists of a one-dimensional

string array with two entries. The Entry testHydro[yes] holds all elements (segments) where the

search was successful. All other elements (segments) are stored in the entry testHydro[no].

An example for the Phys section reads:

Phys

{

srh = "L*";

}
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In this example all segments with names starting with a capital L are inserted in the testSRH[yes]

array. Therefore the variable useDCSRH holds all segment names where SRH-Recombination should

be used and whose name starts with a capital L. This information is used in the variable driftDif-

fusionDC which finally holds information about all additive components for the equation system on

individual segments. In a similar way the variable hydroDC is built up where useHydro holds in-

formation about the equation components for the hydrodynamic model in each segment. The variable

useHydro contains all additive terms of the energy flux equation (Energ flux term, Joule heat term,

Relaxation term,...) for the segments where hydrodynamic simulation is performed.

Note: The difference between Quantities and Models is that quantities specify variables which can

be solved by the simulator. This is why a single quantity represents a complete equation in the equation

system. Models are the internal representation of additive terms in the implemented equations.

3.3.4 The Iterate Section

The Iterate section describes how to process a simulation. The section defines the equation systems

and how they should be solved. The Iterate section can handle subsections which are evaluated re-

cursively. Each subsection needs at least a models and a quantities keyword. In case of a transient

simulation additional terms are required to describe the transient term of the differential equations.

In the example below the boolean keyword transient which is defined in the Solve section decides

whether to simulate stationary or transient.

The keyword quantities defines the quantities of the equation system which should be solved. This

is necessary to specify the sub-equation systems. In the example a mixed mode simulation is performed

where ˜Quantities.mixed holds branch currents, node potentials etc.

The iteration block HydroDD solves the hydrodynamic equations with the drift-diffusion quantities. This

means that we solve the Poisson equations and the continuity equations where the carrier temperature is

fixed. The number of iterations in the HydroDD block depends on the while condition which depend

on the evaluated norms. The GUMMEL/ASHER transformation can be turned on an off with the keyword

transform.

Iterate

{

MixedHydro

{

HydroDD

{

models = ˜if(˜Solve.transient, ˜Models.hydroTrans, ˜Models.hydroDC);

quantities = ˜Quantities.mixed + "," + ˜Quantities.driftDiffusion;

while = ˜Extern.updateNorm > ˜Num.finalNorm &&

˜Extern.iterationCount < ˜Num.iterationLimit/100;

transform = yes;

}

// Now we have a good initial guess for the actual hydro simulation.

Hydro

{

models = ˜if(˜Solve.transient, ˜Models.hydroTrans, ˜Models.hydroDC);

quantities = ˜Quantities.mixed + "," + ˜Quantities.driftDiffusion +

"," + ˜Quantities.hydro;

dampScheme = "potential";
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ignoreDer = ˜if (˜Extern.updateNorm > 1.0, "EleDEtm,HolDHtm", "");

print = ˜if (˜Extern.updateNorm > 1, "", "UseCompleteDer");

CarrierTempBlock

{

quantities = "ElectronTemperature,HoleTemperature,

ElectronConcentration,HoleConcentration";

dampScheme = "global";

models = ˜Models.hydro;

limit = ˜if(˜Extern.updateNormPotLast < 1e-6, 100, 1);

while = ˜Extern.updateNorm > ˜Num.finalNorm &&

˜Extern.iterationCount < limit;

}

while = ˜Extern.updateNorm > ˜Num.finalNorm &&

˜Extern.iterationCount < ˜Num.iterationLimit;

}

}

}

In the example the HydroDD block evaluates an initial guess for the Hydro block. The Hydro block

contains the CarrierTempBlock as sub-block to solve the carrier temperature system until the while

keyword evaluates to false. The quantities in the Hydro block now include all variables which

should be solved in a regular hydrodynamic simulation. A damping scheme is used which depends on the

potential update-norm.

The MINIMOS-NT input deck is able to directly control the derivatives of the JACOBIAN. If the up-

date norm is higher than 1.0, the derivatives of the continuity equations to the carrier temperatures are

neglected.

Each iteration block can contain a print keyword to write any desired information to the log file.

The CarrierTempBlock solves the carrier temperature equations, decoupled from the concentration

and potential equations. This is done until the while keyword evaluates to false. The condition depends

on the defined variable limitwhich is calculated using the last potential update-norm of the parent block.

After solving the CarrierTempBlock, the while keyword of the Hydro block checks whether the

simulation has finished.

3.4 Example

This section demonstrates some basic features of the MINIMOS-NT input deck which are used for the

simulation of the output characteristic of a heterojunction bipolar transistor (HBT). The simulated device

consists of three semiconductor segments and three contact segments. The material of the collector and

the emitter segments is Si and SiGe for the base segment. Fig. 9 shows the geometry and the material

composition of the simulated HBT.

The next subsection describes in detail some of the input deck entries used in the example. The complete

input deck can be found in subsection 3.4.2.

3.4.1 Description of the Input Deck Used for Simulation of a HBT

Using the #include statement in the first line of the input deck the contents of the file defaults.ipd

are inserted into the input deck, similar to including C-Header files into C-Source files.
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Figure 9: Geometry and material composition of the simulated HBT.

The most important input deck section for simulation of single devices is the Solve section. In this

simple example the Solve section consists of only two user defined subsections. These are the Device

and the Iterate subsections.

The Device section is copied by the statement Device : ˜Devices.Device. Afterwards some

variables of the Device section are assigned new values. For example the contact voltage for the emit-

ter contact is specified by EmitterContact = 0.0 V. The next line BaseContact = [0.7V,

1.0V, 0.1V] specifies that the base contact voltage will be stepped from 0.7V to 1.0V in steps of

0.1V. The collector voltage is stepped from 0V to 2.0V in 0.1V steps. This results in two nested loops for

calculating the bias points of the output characteristic. Fig. 10 shows the simulated output characteristic.

In the Files section the names of the inputPBF and the outputPBF are specified for reading the

geometry and the doping information and writing resulting distributed quantities respectively.

In the Phys section physical models and parameters for the device are specified. With the line Emit-

terContact f contact = "Voltage"; g the segment named EmitterContact is defined

to have a voltage boundary condition.

For the SiGe segment named Base special physical models (permittivity, band gap energy, etc.) for this

material are specified.

The grid used for the simulation is specified in the Grid section by inputGrid = "Simulation-

Grid"; and is read from the inputPBF. With the line gridRefinement = 2.0; the ratio of the

grid spacing is limited to a value of 2. In case this ratio is larger than 2 additional grid lines are inserted.

For the Iterate subsection, which is the second subsection of the Solve section in this example, the

values for the drift-diffusion iteration scheme are just copied from the defaults.ipd file.

In the Num section parameters for the linear and the nonlinear equation solver can be set. By linear-

Accuracy = 1e-10; the accuracy of the solution for the linear equation system is specified.

The form of output is controlled by the Output section. By specifying printDeviceInfo = "*";

the contact voltages and currents are written to the log file for each bias point. For plotting the output
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Figure 10: Simulated output characteristic.

characteristic the contact voltages and currents for all bias points are written to the file hbt.crv in the

curve format.

3.4.2 The Input Deck for the Simulation of a HBT

#include <defaults.ipd>

Solve

{

Device : ˜Devices.Device

{

EmitterContact = 0.0 V;

BaseContact = [0.7V, 1.0V, 0.1V];

CollectorContact = [0V, 2V, 0.1V];

Files

{

inputPBF = "SiGeHBT";

outputPBF = "SiGeHBT_out";

}

Phys

{

EmitterContact { contact = "Voltage"; }

BaseContact { contact = "Voltage"; }

CollectorContact { contact = "Voltage"; }

Base

{

permittivity = "Compound";

bandGapEnergy = "Ltm_SiGe";
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densityOfStates = "Ltm_SiGe";

relativeMass = "K300_SiGe";

}

}

Grid

{

inputGrid = "SimulationGrid";

gridRefinement = 2.0;

}

}

Iterate : ˜Iterate.DD;

}

Num

{

linearAccuracy = 1e-10;

}

Output

{

printDeviceInfo = "*";

outputCrv = "hbt.crv";

}

3.5 Mixed-Mode Simulation with MINIMOS-NT

3.5.1 Introduction

Traditionally, TCAD based device design is restricted to the analysis of single devices, which are char-

acterized in terms of IV curves and device parameters. In many cases, however, it would be desirable to

simulate one or more devices in the circuit environment in which they are actually used. Typical candi-

dates are power devices like DMOS transistors, RF devices such as HEMTs and HBTs, ESD protection

devices, or MOSFETs operating under unusual conditions like low supply voltages. In many of these cases

standard compact models for circuit simulation are not readily available or at least not straight forward

to apply. For this purpose MINIMOS-NT has been equipped with an extensive mixed-mode capability,

which allows the user to simulate circuits that contain one or more ‘distributed’ devices, i.e., devices which

are simulated by solving the semiconductor equations rather than evaluating a compact model.

The distributed devices are handled in a two-step manner. First, for each type of device an entry is made in

the devices’ section (in this case MyDevices) just as in the case of a normal device simulation. Second,

in the circuits section one or more instances of a device can be created by copying an entry in the devices’

section. Internally one logical working PIF file is created for each device instance to store the distributed

quantities.

3.5.2 Using Mixed-Mode

The mixed-mode functionality is accessed through the MINIMOS-NT input deck by storing the circuit in

the Circuit section and by selecting the appropriate iteration scheme in the Solve section. Currently,

there are two predefined schemes for mixed mode: MixedDD and MixedHydro. Of course, it is still

possible to override the details for individual devices or segments, which is useful especially in the case

of mixed-mode hydrodynamic simulations with more than one heterojunction device. Subcircuits are
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supported in a flexible way so that certain standard circuits like, e.g., measuring or benchmark circuits can

be put into libraries. The following is the complete mixed-mode input deck of a 5-stage ring oscillator

circuit:

#include <defaults.ipd>

Mydevices

{

NMOS : ˜Devices.Device

{

vScal = 1.0;

iScal = 1.0;

Files

{

inputPBF = "nmos";

outputPBF = "ro.pbf";

output = "";

}

Phys

{

Source { contact = "Voltage"; }

Drain { contact = "Voltage"; }

Bulk { contact = "Voltage"; }

Gate { contact = "Voltage"; Ew = -0.55 eV; }

Semiconductor { epsr = 11.7; }

GateInsulator { epsr = 3.9; }

}

Grid

{

inputGrid = "Gr_1";

}

}

PMOS : ˜Mydevices.NMOS

{

vScal = -1.0;

iScal = -1.0;

}

}

Subcircuits

{

Inv

{

Load = 5.0fF;

in = "";

out = "";

Ma : ˜Mydevices.NMOS {Source = "gnd";Gate = ˆin;Bulk = "gnd";Drain = ˆout;}

Mb : ˜Mydevices.PMOS {Source = "Vdd";Gate = ˆin;Bulk = "Vdd";Drain = ˆout;}

CL : ˜Devices.C {N1 = ˆout;N2 = "gnd";C = ˆLoad;}

}

}

Vdd = 1.5V; // supply voltage

Circuit

{

Vdd : ˜Devices.V { P = "Vdd"; M = "gnd"; V0 = ˜Vdd;}

Inv1 : ˜Subcircuits.Inv { in = "N1"; out = "N2"; }
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Inv2 : ˜Subcircuits.Inv { in = "N2"; out = "N3"; }

Inv3 : ˜Subcircuits.Inv { in = "N3"; out = "N4"; }

Inv4 : ˜Subcircuits.Inv { in = "N4"; out = "N5"; }

Inv5 : ˜Subcircuits.Inv { in = "N5"; out = "N1"; }

}

Solve

{

transient = yes;

startTime = 0.0 s;

endTime = 0.2e-9 s;

minStepSize = 2e-12 s;

maxStepSize = minStepSize;

FixNode // start-up condition

{

N1 = ˜Vdd;

N2 = 0;

N3 = ˜Vdd;

N4 = 0;

N5 = ˜Vdd;

}

Iterate : ˜Iterate.MixedDD

}

Num

{

finalNorm = 1e-0;

directSolver = no;

linearAccuracy = ˜if(˜Extern.t == 0s, 1e-9, 1e-5); //cute eh?

maxFillin = 50+30*(˜Extern.t == 0s);

}

The parameters iScal and vScal are used for current and voltage scaling to account for different device

widths or to easily emulate complementary devices like a PMOS transistor. This is done by electrically

mirroring the NMOS transistor by setting iScal = -1 and vScal = -1 (note the use of the copy

operator ‘:’ in the devices’ section). This technique allows, e.g., to optimize a single device based on

simulated circuit performance data.

Segments of a distributed device like, e.g., contacts, are referenced in the Phys section by their segment

names, which are stored in the SegmentName attributes in the PIF file containing the device structure.

This mechanism is used to override default values for certain segments or to specify contact types.

The circuit is made up of five inverters Inv which are defined in the Subcircuits section. Note, that

more than one section with arbitrary names can contain subcircuits. Circuits and subcircuits may also be

parameterized (like, e.g., the Load parameter of the Inv subcircuit).

The Solve section, which controls the simulation, also contains the settings for the start-up condition,

which is necessary in this case. In the Num section, which controls the simulation numerics, the accuracy

of the linear solver is set to a small value for the initial DC solution and is made larger for the transient

simulation. Fig. 11 shows the result of the simulation. This simulation and simulations of an inverter were

used to verify algorithms of an efficient VLSI performance metric [22].
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Figure 11: Mixed-mode simulation of a 5-stage ring oscillator circuit with 0.18�m NMOS transistors and

electrically mirrored PMOS transistors
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4 Optimization of Analytical Doping Profiles

4.1 Introduction

Advanced analysis features are implemented in the Vienna Integrated System for TCAD Applications

(VISTA) simulation environment. These functionalities support automatic experiment generation (De-

sign of Experiments), model fitting (Response Surface Methodology), optimization and calibration. They

interact with the core functionality of the framework dealing with the simulation of the manufacturing

process and electrical characterization of semiconductor devices. The presented example deals with the

optimization of analytical doping profiles of MOS transistors.

4.2 Vienna Integrated System for TCAD Applications

The VISTA framework and its modules form a programmable simulation environment for TCAD appli-

cations. The framework is based on the VLISP interpreter [23]. This object oriented LISP language is

similar to the popular JAVA [24] programming language with class inheritance and polymorphism. The

interpreter provides also interfaces to the MOTIF widget-set [25] and some additional widgets.

The advantage of VLISP compared to Tcl/Tk [26] is the object system and the large number of sophisti-

cated basis classes for data manipulation, user interface generation, and for handling asynchronous events.

As an open framework a large number of process and device simulators from different vendors like

TSUPREM [27] and MEDICI [28] from TMA and ATHENA [29] from SILVACO are accessible. In-

tegrated wrapper programs are used to convert the input files to the corresponding data format of the

simulator.

The distribution of the workload is done by job farming. For an efficient use of the resources the framework

polls periodically the load of the available hosts and compares it with the allowed maximum number of

jobs for automatic load balancing.

The functions of the framework are designed to operate also without the user interface. By defining a

small sequence using the VLISP extension language, the framework can be used for off-line execution.

4.3 Optimization

For optimizing device performance parameters over a given input variable space, a constrained optimizer

has been integrated. The use of a constrained optimization algorithm is important to prevent possible

unphysical optima. The integrated nonlinear constrained optimizer uses an augmented Lagrangian method

[30]. It minimizes the target function which can be assembled out of input and output values. The gradient

is calculated by evaluating adaptive finite differences.

For calibration and parameter fitting tasks an optimizer based on the Levenberg Marquardt Algorithm [31]

is also integrated in the framework.

4.4 Application

In this section another successful TCAD application based on the presented framework is described. The

doping profile for a specified device structure is optimized to achieve certain performance improvements.
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Analytical doping profiles are generated by a template based device generator. Parameters are global

technology values like the geometry and doping level of a layer. These parameters are used as control

parameters for the optimization process.

In this example, an NMOS device with 0:25�m geometry gate length and 5nm gate oxide thickness is

optimized for 1:5V supply voltage. The analytical doping profile consists of a retrograde well and a

channel implant, both generated with Gauß-functions. Control parameters are the depth, the deviation,

and the doping level of the channel implant and the retrograde profile.

The optimization target is defined for achieving maximum on-current. Without a constraint, this opti-

mization would result in a decrease of the threshold voltage, only. The off-current would be drastically

increased because of its exponential dependence on threshold voltage in the sub-threshold region [32].

A large off-current leads to high system standby power which does not meet the requirements for future

MOSFET technology [33]. Therefore, the off-current is entered as a constraint for the optimization pro-

cess and kept at a constant value. Two device simulation steps have to be performed to extract the two

current-values. To increase speed of the optimization, these two steps are done in parallel.

A uniformly doped device is used as the initial device, the on-current is improved drastically by the pre-

sented optimization process. Together with the flexible framework features, tasks like reverse engineering

of doping profiles can be realized.

In this example the parameter space is very large and the simulation flow consists only of the generation

step and the electrical characterization. Therefore, a direct optimization of the device is performed.

Figure 12 shows the analytical acceptor and donor doping profile of the optimized transistor with the

source and drain regions and the channel implant.

The on-current of the optimized transistor (I
on

= 2:98 10

�4

A) was increased by 20% compared with a

uniformly doped device (I
on

= 2:49 10

�4

A) with the same off-current I
off

.
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Figure 12: Analytical acceptor and donor doping profile of the optimized MOS transistor.
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[16] G. Hobler, H. Pötzl, L. Palmetshofer, R. Schork, J. Lorenz, C. Tian, S. Gara, and G. Stingeder. An

Empirical Model for the Electronic Stopping of Boron in Silicon. COMPEL, 10(4):323–330, 1991.
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