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1 TCAD Optimization with SIESTA

The SIESTA simulation environment offers powerful features for TCAD optimization prob-

lems. For the first, it offers modeling mechanisms that enable an engineer to describe

the simulation problem in a clearly structured and encapsulated manner through so called

TCAD Models (see Fig. 1). Secondly SIESTA’s integrated optimizer allows for global opti-

mization with bound constraints, and minimization of vector quantities, which can be used

for calibration and inverse modeling tasks, respectively.

Name[Type] Name[Type]

Name[Type] Name[Type]

Model

Figure 1: A model transforms its data at input ports into data at the output ports

Model

Model Model
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Figure 2: The hierarchy of models available in SIESTA

Several kinds of TCAD models exist for various tasks. Fig. 2 shows the models that are more

or less sufficient to describe state of the art simulation problems. Aside from auxiliary mod-

els, the Process Model, the Device Model, and the Network Model are the core components

that are used to encapsulate simulation tasks.

1.1 Process Simulation Abstractions

The Process Model offers a highly flexible interface to control sequences of arbitrary simula-

tion tools (see Fig. 3) that are driven by some sort of input deck or controlled through their

command line. Additionally, it allows for the control of dedicated parts of these input decks

through the ports of the model’s (see Fig. 5).
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Figure 3: The Process Model encapsulates a sequence of simulation tools.

1.2 Device Simulation Abstractions

Similar to the Process Model, the Device Model is used to encapsulate the device simulation

task. Therefore, a device simulator (MMNT, MEDICI, DESSIS) is controlled by the Device

Model. All necessary control parameters of the device simulator (terminal potentials, vari-

ous simulator settings) are available through the ports of the Device Model and so it serves

as an abstract device simulator which hides as many details as possible behind its model

ports.

1.3 Modeling Networks of Simulation Tools

The Network Model combines several models in order to create a new model. Fig. 4 gives a

schematic view of a Network Model encapsulating two models.

The Network Model offers features, that keep even extensive simulation tasks maintainable

to a TCAD engineer. Due to its flexible structure, it enables a wide range of simulation ap-

plications, since it implies virtually no restrictions to a users creativity. The Network Model

serves as a perfect basis for sophisticated TCAD applications like optimization, calibration,

or statistical analysis.

1.4 Model Reuse

By means of the Network Model already existing models can be utilized to perform different

investigations based on the same subject. That means that a library of models can be com-
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Model
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Figure 4: The Network Model combines several models to create a new one. Its models are

able to connect their input ports to input ports of the Network Model, to output

ports of other models, or they can leave it unconnected and assign it a default

value. Output ports of models can be defined as output ports of the Network

Model, or they can remain unconnected.

piled and used later-on for various tasks in multiple projects. For example one could imagine

a Process Model producing a CMOS device. Multiple instances of this Process Model might

be necessary for the evaluation of a certain technology under various conditions. It would

be an overwhelming effort for a designer if he had to maintain separate Process Models for

all these technology snapshots. Instead, model reuse together with default overloading of

models reduces this effort dramatically.

1.5 Default Overloading

Since many TCAD applications require several similar variants of a Process Model, the pos-

sibility to overload a port’s default setting is desirable. Let us assume that the gate length

of a device that is produced by a Process Model is available via a model port of this Process

Model. This Process Model could then be used multiply in a Network Model, as depicted in

Fig. 4, using different values for the gate length by means of default overloading. As a result,

the model is only defined once but there exist several similar instances of it in the simula-

tion. Given that an investigation requires more than one instance of this Process Model,

all of these models share common properties except the gate length. Therefore, if a change

of the Process Model has to be done, this change has only to be done once at the definition

of the Process Model. As a rule of thumb, typical TCAD investigations might require up to

ten snapshots of a process (including several wafer areas under various process conditions).

This illustrates how useful model reuse in conjunction with parameter overloading is, and

the drastic decrease of administrative efforts, respectively, that are necessary to maintain

simulation descriptions.
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Figure 5: This model (subnet.mod) generates a synthetic device of a specific gate length

and compares the electrical characteristics of this device with corresponding mea-

surements.

1.6 An Inverse Modeling Example

The features described above are demonstrated by an inverse modeling application as de-

scribed in the following. A Process Model (subnet.mod) is used to generate a synthetic

semiconductor device. A Device Model (device.mod) performs an electrical characteriza-

tion (transfer characteristics, output characteristics) of this device and afterwards these

characteristics are compared to measurements, which is done in a Network Model as de-

picted in Fig. 4 and Fig. 5. A network model creates three instances of subnet.mod in order

to perform the described procedure for different values of the gate-length of the synthetic

device (see Fig. 6). Here the default overloading is used to create devices with gate-lengths

of 0:18�m, 0:48�m, and 9:88�m and compare their electrical characteristics with measure-

ments for these device geometries.

1.6.1 The Optimizer

Fig. 7 shows the optimization that is performed based on the models described above. The

optimizer is searching for parameters of the synthetic model which deliver an optimum fit

between simulated electrical device characteristics and the measurements. Since SIESTA

offers a powerful job farming mechanism which performs dynamic load balancing, these ex-

periments are computing extremely fast. The whole system does as much work in parallel

as possible and therefore the required simulation time for such an experiment is kept at ac-

ceptable values. Fig. 8 shows SIESTA’s queueing system that allows a user to track running

and queued system jobs, and the status of the computation hosts.
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(network-model
;;˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(submodel dev-018 "subnet.mod"
;;##########
(inputs (private (gateLength 0.18)
(idvd-refcurve "meas/018um/Id-Vd.crv")
(idvg-refcurve "meas/018um/Id-Vg.crv")
(idvd-archive "simu/018um/Id-Vd.crv")
(idvg-archive "simu/018um/Id-Vg.crv")
(wafer-archive "simu/018um/device.pbf"))))

;;˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(submodel dev-048 "subnet.mod"

;;##########
(inputs (private

(gateLength 0.48)
(idvd-refcurve "meas/048um/Id-Vd.crv")
(idvg-refcurve "meas/048um/Id-Vg.crv")
(idvd-archive "simu/048um/Id-Vd.crv")
(idvg-archive "simu/048um/Id-Vg.crv")
(wafer-archive "simu/048um/device.pbf"))))

;;˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(submodel dev-988 "subnet.mod"
;;##########
(inputs
(private (gateLength 9.88)
(idvd-refcurve "meas/988um/Id-Vd.crv")
(idvg-refcurve "meas/988um/Id-Vg.crv")
(idvd-archive "simu/988um/Id-Vd.crv")
(idvg-archive "simu/988um/Id-Vg.crv")
(wafer-archive "simu/988um/device.pbf"))))

;;˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
(submodel merge1 (merge-vector-model

(inputs (vec1 vector)
(vec2 vector)
(vec3 vector)))

;;##########
(inputs (connect (vec1 dev-018 error)
(vec2 dev-048 error)
(vec3 dev-988 error)))

;;##########
(outputs (public (vector error))))

)

Figure 6: The outer Network Model for inverse modeling
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Figure 7: SIESTA’s integrated optimizer allows a user to track the optimization progress

in a comprehensive way.
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Figure 8: The Queue Manager shows the status of SIESTA’s queueing system.
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2 Input Deck Programming Language

2.1 Introduction

A growing complex, general purpose device and circuit simulator like MINIMOS-NT demands

a highly developed controlling interface. Default values, control parameters and their math-

ematical dependencies must be set and decisions must be given. To keep the simulator com-

pact and maintainable it is necessary to supply a separate new module, the input deck,

which eases the burden of the simulator and administers all user settings.

The simulator can be controlled with so-called keywords. In MINIMOS-NT hundreds of key-

words are introduced to control all possible events. All keywords are grouped in so-called

sections and are allowed to be time-dependent functions, tables, expressions, and the like.

To accomplish this, the input deck is handled as a database which is only queried when the

desired keyword is required. This way, the simulator stores internal values which should be

externally accessible in a special keyword of a specific section. These external variables (e.g.,

iteration counter, different update norms) can then be used to form keyword expressions in

the input deck. When the simulator inquires a special keyword from the input deck, its

current value is returned.

The entire input deck functionality has been implemented as a library which can be cus-

tomized by adding user-defined functions. These external functions can be used like any

other function for any keyword. Due to this powerful feature, the functionality of the simu-

lator increases without changing one line of the code.

Another case where these features are utilized is the control of block iteration. Especially,

hydrodynamic simulations require such a great flexibility because convergence is usually

hard to achieve. Each iteration block is defined by a separate section in the input deck

file. For each block several keywords such as the list of quantities to be solved, the damping

scheme to use, parameters for this damping scheme, and a stop expression are supplied to

control the iteration. These sections can be arbitrarily nested, forming complex sequences

of iteration blocks.

All data are stored in ASCII text files following a well-defined syntax described below. The

input deck programming language (IPL) is a programming language of its own which has

been designed with simulator control in mind. The syntax of IPL is similar to that of the C

programming language. Several typical features of programming languages are available,

e.g., if() statements, function definitions, etc.

2.2 Keywords

In the input deck an arbitrary number of variables can be defined. Moreover, variables can

be grouped in sections as shown in the next chapter. A variable may be defined only once.

All variable names are case sensitive.

Variables which are inquired by the simulator are called keywords. Most of the variables

specified in an input deck file are such keywords.

Variables can be classified by their different kind of access by MINIMOS-NT: Variables which

can be read or written, variables which can only be read and variables which are hidden to
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the simulator. The type of a variable must be explicitly specified before the name. If no type

is given when defining a variable, MINIMOS-NT is only permitted to read it, e.g.,

// This is as simple comment
ext x = 32; // variable the simulator may read and write
ext y = 4; // variable the simulator may read and write
aux a = sqrt(x * x + y * y); // auxiliary variable, hidden to the simulator
ex = x / a; // read-only variable
ey = y / a; // read-only variable

No data-type declaration of variables is necessary. Since the expressions stored in a variable

will be evaluated at runtime the data-type will be determined during calculation.

Data-types available for variables are shown in Table 1.

Type Example

Boolean a = true;
Integer a = 3;
Real a = 3.1415;
Complex a = 4.3 + 3.1 j;
Quantity a = 3.1415 m;

a = 3.1415 "m/s";
String a = "This is a string";
Array a = [ 1, 2, 3 ];

a = [ 1, "pi", 3 A];

Table 1: IPL data-types

Several common operators are defined on these data-types. The precedence of all operators

is shown in Table 2. All operators within the same box have the same precedence. Operators

in higher boxes have higher precedence than operators in lower ones. For instance the

expression a + b * c means a + (b * c) rather than (a + b) * c.

The results of the given rules are expressions denoted as expr where an expression expr

again may contain other expressions described by these rules.

Unary operators are right-associative, binary operators are left-associative. For instance

the expression a - b + c means (a - b) + c but not a - (b + c).

All operators are not defined for all data-types. Furthermore, the result of an operator

depends on the data-type of the operands given. For example the addition operator (+) is

defined for Integers, Real, and Complex numbers, Quantities, Strings and Arrays
as well but not for Boolean values.

When using variables the input deck combines various functionalities of a database and

a calculation tool. Variables may be set and queried by MINIMOS-NT where expressions

are evaluated at runtime. When defining variables, expressions can be assigned by equa-

tions. Such expressions will be simplified to increase the performance of calculation. The

input deck distinguishes between constant and non-constant expressions where the lat-

ter contains references to other variables. Each time a value of a variable is inquired by

the simulator, the input deck recalculates its value using its stored expression, but only if

recalculation is necessary.
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Operator Rule

array subscripting name [ expr ]
function call name ( expr sequence )
not ! expr

unary minus - expr

unary plus + expr

multiply expr * expr

divide expr / expr

modulo (remainder) expr % expr

add expr + expr

subtract expr - expr

less than expr < expr

less than or equal expr <= expr

greater than expr > expr

greater than or equal expr >= expr

equal expr == expr

not equal expr != expr

logical AND expr && expr

logical inclusive OR expr || expr

Table 2: Operator precedence

The advantage of this proceeding is, that when a value of a variable changes, all values of

influenced variables (which refer to it) would have to change too, which may, again, cause

many others referring to them to change. To keep calculation times very short, recalcula-

tions take only place when the variable is inquired.

2.3 Sections

To manage large input deck files it is necessary to introduce clearly arranged structures,

and to support classification of keywords. Therefore, the IPL makes it possible to group

variables into so-called sections. Each section has a name which is handled case sensitive.

The section body is enclosed in braces (fg), e.g.,

global_var = 7;
MySection
{

decision = no;
value1 = 2.3 + ˜global_var;
text = "short Text";
value2 = value1 * 2;
MySubSection
{

value3 = 4.5;
array = [1, 2, 4, 8, 16];

}
}

Sections can contain variables and subsections, thus sections can be nested to an arbitrary

depth. To prevent from splitting up a single section definition across several blocks reopen-

ing of sections defined once is forbidden.
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The absolute name of a variable which is its real name consists of its location (the path

which may consist of an arbitrary number of section names separated by a dot) starting

at the root section and its defined name. The root section is denoted by the tilde symbol

(˜). Variables defined outside of any section are global variables. For instance the absolute

name of the variable value1 in the section MySection is ˜MySection.value1 whereas

the absolute name of the global variable global var is ˜global var.

An input deck file may consist of several sections. In order to refer to a variable which is

defined within the same section only its name must be given. To refer to a variable located

in another section the path of the respective variable must be specified. This path can be

given relatively or absolutely. If the variable is defined outside of the current section, the

circumflex (ˆ) can be used to step up one section, on the other hand the absolute name can

be explicitly specified by means of the tilde symbol (˜) which denotes the root section.

The IPL uses an inheritance mechanism similar to object-oriented programming languages.

In this connection, the equivalent to object classes are IPL-sections. A structure of a section

can be passed on to other sections. This can be done using the inheritance operator (:)

followed by the name of the section (the base-section) which may be given by a relative or

absolute name, e.g.,

A
{

x = 3;
y = x + 2;

}
B : A;

First a section named A is defined. Subsequently the section B is inherited from section A to

contain all elements (variables and all subsections) of section A.

A section may have several parent sections. In this way, to define a multiply inherited

section, a list of (relative or absolute) names of the base-sections must be given in decreasing

order of priority. If an element with the same name occurs in several base-sections its first

occurrence will be used, e.g.,

C1
{

a = 1;
c = 17;
X
{

m = 100;
n = 101;

}
}

C2
{

b = 2;
c = 18;
X
{

o = 200;
p = 201;

}
}

D : C1, C2;
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The section D now consists of the three variables a, b, and c inherited from C1 and C2 respec-

tively, where the variable c is inherited from section C1. The subsection ˜D.X contains the

two variables m and n. Note that the variables o and p are not elements of this subsection.

Inherited sections may be locally modified. This can be done by specifying a section body for

the inherited section, e.g.,

A
{

x = 3;
y = x + 2;

}
B : A
{

x = 4;
}

The variables ˜B.y and ˜A.y store the same formula containing a relative addressed vari-

able reference x. Evaluating both variables will deliver ˜A.y=3+2 and ˜B.y=4+2.

When using inherited sections, only those elements can be locally modified that are passed

on to this section. By default an inherited section is protected from appending new entries.

This allows to detect wrong typed keywords in inherited sections and prevents from creating

new ones.

This behavior can be explicitly disabled for a whole section by enclosing the section-name in

angle brackets or by explicitly preceding the new variable name with a plus (+).

2.4 Functions

The use of functions can clearly enlarge the field of application. Functions can be used in

expressions which are stored in variables. In the input deck, the standard mathematical

functions and functions for conversion of values are implemented. Additional functions can

easily be defined by the user. Parameters are enclosed in parentheses and can be complex

expressions as well as simple constants. Parameters must be given in a defined order, sepa-

rated by commas, and possibly have to be of a specific data-type. Some functions might have

optional parameters which must be given with their parameter-names and must be the last

parameters in the list.

a1 = func1(); // Calling function func1(). No Parameter.
a2 = func2(1 + 2); // Calling function func2(). 1 Parameter.
a3 = func3(10, optPara = true); // Calling function func3(). 2 Parameters.

// The second parameter is optional.

Furthermore application specific functions may be added to the input deck by the simulator

itself (for instance the step() function defined by MINIMOS-NT). Those functions can be

used in combination with this application only.
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2.4.1 Built-in Functions

The standard mathematical functions are implemented which are defined for Complexnum-

bers in general. Many-valued mathematical functions (for instance asin) are implemented

too (for instance asin()) which return their principal value. All available functions are

listed in Table 3. The types of the arguments are written within the parentheses. The

first box shows the mathematical functions defined, the second shows all available cast-

functions, and the third shows additional functions supported which are useful for opera-

tions on Complex or Quantity numbers respectively.

A simple example calculates the diagonal of a cube with its volume given:

v = 27 "m*m*m";
a = cbrt(v); // -> 3 m
r = sqrt(3 * squ(a)); // -> 5.2 m

An example for cast-functions is to cast the value of an environment variable, which is

usually given as a String, to a Real number, e.g.,

a = "3.56";
b = real(a); // -> 3.56

The next example shows how the additional functions shown in the last box of Table 3 can

be used:

a = (3.1 + 4.2 j) * 1 A;
// Remove the unit:
b = value(a); // -> 3.1 + 4.2 j
// Get the real part of a quantity:
c = realpart(a); // -> 3.1 A
// Get the imaginary part of a complex number:
d = imagpart(b); // -> 4.2
// Get the unit:
f = unit(a); // -> "A"

Another built-in function is the if() statement which expects three arguments. The first

argument is a Boolean value. The second and the third one can be of any data-type. If the

first argument is equal to logical true, the second argument will be evaluated and its result

will be returned. If not, the third argument will be evaluated and its result will be returned.

An example calculating the minimum value of two variables is given below:

a = 2;
b = 4;
min = if (a < b, a, b);

To extract the absolute name of a specified variable the function fullname() can be used,

e.g.,

a = 1;
aName = fullname(a); // -> "˜a"
E
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{
b = 2;
bName = fullname(b); // -> "˜E.b"
ESub
{

c = 3;
cName = fullname(c); // -> "˜E.ESub.c"

}
}

Function Description

abs(Complex Quantity) absolute value

arg(Complex Quantity) argument value

sign(Real Quantity) sign

sigma(Real Quantity) step function

sin(Complex) sine

cos(Complex) cosine

tan(Complex) tangent

cot(Complex) cotangent

asin(Complex) inverse sine

acos(Complex) inverse cosine

atan(Complex) inverse tangent

acot(Complex) inverse cotangent

sinh(Complex) hyperbolic sine

cosh(Complex) hyperbolic cosine

tanh(Complex) hyperbolic tangent

coth(Complex) hyperbolic cotangent

asinh(Complex) inverse hyperbolic sine

acosh(Complex) inverse hyperbolic cosine

atanh(Complex) inverse hyperbolic tangent

acoth(Complex) inverse hyperbolic cotangent

exp(Complex) exponential function

pow(Complex, Complex) first argument to the power of the second argument

pow2(Complex) 2 to the power of the given argument

pow10(Complex) 10 to the power of the given argument

log(Complex) natural logarithm

log2(Complex) logarithm to the base 2

log10(Complex) common logarithm (to the base 10)

squ(Complex Quantity) square

sqrt(Complex Quantity) square root

cub(Complex Quantity) power of three

cbrt(Complex Quantity) cubic root

boolean(Complex) cast to Boolean
integer(Real) cast to Integer
real(Integer) cast to Real
string(Any value) cast to String
value(Complex Quantity) value without unit

realpart(Complex Quantity) real part of a Complex number

imagpart(Complex Quantity) imaginary part of a Complex number

unit(Complex Quantity) unit of a Quantity as a string

Table 3: Built-in functions
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Environment variables can be queried using the function getenv(). The data type of the

value returned is String, e.g.,

home = getenv("HOME");
// -> "/home/user9"

path = getenv("HOME") + "/work/defaults.ipd";
// -> "/home/user9/work/defaults.ipd"

2.4.2 User-Defined Functions

With the IPL new functions can be defined very simply and flexibly. So the functionality of

the programming language can be easily enlarged and customized.

Functions can be defined similar to variables. The function name is followed by an argument

list enclosed in parentheses, e.g.,

add(x,y) = x + y;
sub(x,y) = x - y;
inc(x) = x + 1;
dec(x) = x - 1;

In this example four functions named add(), sub(), inc(), and dec() are defined. Pa-

rameters like x and y are not input deck variables – they are parameters, valid within the

function definition only. Defining a variable named x anywhere in the input deck file would

not influence the behavior of a function using a parameter x.

User-defined functions can be used in the same way as built-in functions, for example:

a = 11;
b = 23;
sum = add(a,b);
sum = inc(sum);

The value of the variable sum will evaluate to 35.

2.5 Files

The default input deck files are part of the MINIMOS-NT distribution. These files contain

default values and should never be changed.

With the #include command the input deck can be told to insert a file at the position

the command is called. This command allows including of files like its counterpart in the

C programming language. The file name must be enclosed in double quotes, if a path is

specified, or in angle brackets, if the default paths of MINIMOS-NT should be used. After

including the default files the keywords can be changed by locally modifying them.

The default extension of input deck files is ipd which may be omitted. File names used may

contain environment variables too. Some examples:

#include <defaults> // Include the file "defaults.ipd".
#include "˜/work/mydefs" // Include the file "mydefs.ipd".
file1 = "$HOME/work/myfile1"; // variable containing a file name
file2 = "˜/work/myfile2"; // variable containing a file name
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2.6 Special Features

2.6.1 Tracing of Variables

Sometimes it might be useful to know when a variable is set by the simulator or if a specific

variable is used for calculation or not. To be able to observe access on specific variables, the

trace statement can be used. The trace statement expect a list of variables to be traced,

e.g.,

a = 1;
b = 2;
c = 3;
trace a, c;

trace reports each time a variable is

� used while calculation,

� overwritten by the simulator,

� deleted by the simulator.

2.6.2 eval()

The input deck can be told to evaluate an expression immediately while parsing. This can

be done using the eval() function, e.g.,

ext a = 10;
ext b = 2;
c = (a * b);
d = eval(c); // evaluated to 20

In this example the variables a and b are declared as extern and can, therefore, be changed

by the simulator. Both variables are initialized. The variable c contains a formula calcu-

lating the product of the variables a and b. Variable d immediately calculates the result of

variable c and, from now on, stores a constant value. In contrast to variable c it does no

longer depend on any other variable. Each time variable a or b is changed by the simula-

tor variable c will change automatically while variable d remains unchanged and keeps its

initialization value calculated once while parsing.

2.7 Constants

The input deck supplies the following constants:

Constant Value Description

j
p

�1 indicates the imaginary unit

e 2:71828182845904523536 the Euler constant e
pi 3:14159265358979323846 �

Table 4: Predefined constants
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3 The Physical Models in MINIMOS-NT

A lot was done recently for our two-dimensional device simulator MINIMOS-NT in order to

have it ready for its first release. In order to enable simulation of devices with high com-

plexity and specifity in respect to materials, geometries, etc. many of the existing physical

models had to be refined, some of them were replaced by finer ones, many new models were

added. This will be the topic of the following section, more details can fe found in the docu-

mentation of the simulator.

3.1 Sets of Partial Differential Equations

In MINIMOS-NT carrier transport can be treated by the drift-diffusion (DD) and the hydro-

dynamic (HD) transport models. For either carrier type the transport model can be chosen

independently, or transport can even be neglected by assuming a constant quasi-Fermi level

for one carrier type. In addition, the lattice temperature can be treated either as a constant

or as an unknown governed by the lattice heat flow equation.

3.2 Carrier Mobility

MINIMOS-NT provides mobility models for various materials. Their particular transport

properties lend themselves to divide the materials into three main groups: IV group semi-

conductors, III-V compound semiconductors and their alloys, and non-ideal dielectrics. To

each group a separate section is devoted in the following.

3.2.1 Silicon and Other Basic Materials

In MINIMOS-NT, the well-tried mobility model of MINIMOS 6 [1] is implemented. In addition,

we have a new model, which distinguishes between the majority and minority electrons in

Si, as well as between dopant species [2] (see Fig. 9). The expression

�

LI

n

=

�

L

n

� �
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� �

2

1 +

�

C

I

C

1

�

�

+

�
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�

C

I

C

2

�

�

+ �

2

(1)

can be used to express the mobility in any semiconductor of interest, GaAs for instance (see

Fig. 10).

3.2.2 Alloys

In the case of III-V semiconductor alloys or SiGe we use a model which employs the low-field

mobilities of the basic materials (A and B) and combines them by a harmonic mean.

1

�

AB

=

1� x

�

A

+

x

�

B

+

(1� x) � x

C

(2)
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Figure 10: Electron mobility in GaAs

C is referred to as nonlinear or bowing parameter. For the high-field mobility the model

suggests a quadratic interpolation between the saturation velocities of the basic materials

(A and B).

v
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�;300

= v

A

�;300

� (1� x) + v

B

�;300

� x+ C � (1� x) � x (3)

3.3 Energy Relaxation Time

The energy relaxation times are used in the HD mobility models, in the energy balance

equations of the hydrodynamic transport model, and in the lattice heat flow equation. For

elementary and binary semiconductors the energy relaxation time for electrons is calculated

by

�
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where T

L

is the lattice temperature and T

n

is the carrier temperature. This model is appli-

cable to Si, Ge, GaAs, AlAs, InAs, InP, GaP (Fig. 11, Fig. 12).

In case of SiGe, AlGaAs, InAlAs, InGaAs, GaAsP, or InGaP the model for alloys is used. The

parameters �

�;0

and C

0

depend on the material composition x. For an alloy A

1�x

B

x

the they

are calculated by

�

AB

�;0

= �

A

�;0

� (1� x) + �

B

�;0

� x+ �

C

� (1� x) � x (5)

C

AB

0

= C

A

0

� (1� x) + C

B

0

� x+ C � (1� x) � x (6)

�

C

and C are referred to as nonlinear or bowing parameters (Fig. 13, Fig. 14).

3.4 Bandgap Energy

The semiconductor bandgap is well-studied. The new solution of interest here is the

bandgap alignment. An energy offset Eoffs is used to align the band edge energies of
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different materials. In the case of semiconductor alloy it is expressed as
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3.5 Bandgap Narrowing

We use a band gap narrowing model which delivers better results in comparison with other

models (see Fig. 15) and is valid for various semiconductors, also alloys (see Fig. 16).
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3.6 Generation and Recombination

Several models are available in MINIMOS-NT in order to account for processes like SRH,

Auger, and direct recombination, band-to-band tunelling, impact ionization, etc.

3.7 Lattice Heat Flow Models

To account for self heating effects, the lattice heat flow equation has to be solved. For dif-

ferent materials, MINIMOS-NT uses proper models for the mass density, specific heat, and

thermal conductivity.

3.7.1 Mass Density Models

The mass density in the case of SiGe and ternary III-V compounds is expressed by a linear

change between the values of the basic materials.

�
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= (1� x) � �

A

+ x � �

B (9)

3.7.2 Heat Flux Models

In this subsection the expressions representing the MINIMOS-NT thermal heat flux models

for pure and compound materials are summarized. The model calculates the lattice thermal

flux density between two boxes and its derivatives to the input quantities, which are the

temperatures T

1

and T

2

. The thermal conductivity equation is given by

�(T
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�

�
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300 K

�
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; (10)
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where �

300

is the exact value for the thermal conductivity at 300 K. The thermal heat flux

is expressed as
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The model is used for the basic materials Si, Ge, GaAs, AlAs, InAs, InP, or GaP. The thermal

conductivity for SiGe, AlGaAs, InAlAs, InGaAs, GaAsP, or InGaP is varied between the

values of the basic materials (A and B).
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The thermal heat flux is again expressed by (11).

3.7.3 Specific Heat Capacity Models

The model evaluates the specific heat capacity for the transient simulation with self-heating.

The input parameters are the temperatures T

L;n

and T

L;n�1

. The parameter n denotes the

corresponding time step. The function also requires the coefficients for the specific heat

capacity of the considered material.
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(15)

C

0

is the exact value for the specific heat capacity at 300 K. The model is used for the basic

materials Si, Ge, GaAs, AlAs, InAs, InP, or GaP. The specific heat capacity coefficients in

the case of SiGe and ternary III-V compounds are expressed by a linear change between the

values of the basic materials (A and B). The specific heat capacity is then expressed by (14).
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4 AMIGOS : Analytical Model Interface & General

Object Oriented Solver

AMIGOS is a problem independent simulation system which can handle a wide range of

nonlinear partial differential equation systems in time and space in either one, two or three

dimension(s). It is designed to automatically generate optimized numerical models from

a simple mathematical input language, so that no significant speed loss in comparison to

‘hand coded’ standard simulation tools occurs.

In difference to similar algorithms based on the so called ‘operator on demand’ concept [3],

AMIGOS is completely independent of the kind of discretization since the model developer

can formulate any discretization of choice. There are no restrictions whether to use scalar,

field or tensor quantities within a model, and, if desired, any derived field quantity can

be calculated, too. Furthermore, the user can influence the numerical behavior of the dif-

ferential equation system by complete control of the residual vector and its derivative (e.g.

punishing terms, damping terms, etc.). Even interpolation and grid-adaptation formula-

tions can be used within a developed model and can thus be very well fitted to a special

problem.

AMIGOS is equipped with three layers of access to serve the needs of the variety of users

(Fig. 17).

� user-mode: users, who are just interested in simulating a special process step (e.g. ox-

idation, diffusion, etc.), can select a model appropriate for the necessary calculation

and can modify several process parameters (e.g. duration, temperature, material char-

acteristics, etc.) as well as the boundary and grid definitions using the Input & Control

Interface.

� model developer-mode: users, who are interested in developing new models or extend-

ing existing ones with new physical characteristics, have access to all models via the

developed Analytical Model Interface (AMI ). They may modify existing equations by

simply adding parameters, mathematical terms or equations or even develop a com-

plete new model.

� platform developer: users, interested in developing new features for AMIGOS itself con-

cerning e.g. special damping paradigms, using other solver libraries, time integration

algorithms or just supporting a wider range of input grid formats than the tool does at

the moment, need not concern with physical modeling.

In contrast to previous generations of software only the platform developer requires access

to and modification of the source code. Even during model development the analytical user

input will be interpreted, optimized, transformed and solved on any complex simulation

domain at once without the necessity of time consuming recompilations (one-pass concept)

supporting a variety of several testing and debugging features. After finishing the test and

calibration phase the user can switch to the two-pass concept where all modifications are

translated to C-code and are linked to a model library. This allows for high performance

calculations on large simulation domains in the standard user-mode.



4 AMIGOS 23

AMI  - Editor


Model


Development


Database


Input & Control Interface


Definition of


Simulation domain


File


Selection


Y
-A

x
is




X-Axis


Graphics


X-Emacs


Source


Code


heterogenous


Network


Printer


user-mode

developer-
mode

platform-
developer

Figure 17: Several different user perspectives



4 AMIGOS 24

4.1 Example 1: A Pair-Diffusion Model in One Dimension

A five species phosphorus diffusion model introduced by Richardson and Mulvaney [4] has

been developed. The species behavior can be formulated by the following system of coupled

reaction diffusion equations
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where the solution vector u = [V; I; P;E; F ]

T represents, respectively, the concentration of

vacancies, interstitials, substitutional phosphorus as well as phosphorus–vacancy pairs (E–

centers) and phosphorus–interstitial pairs (F–centers).

Furthermore, zero flux boundary conditions for all species are enforced everywhere except

at the exposed surfaces where V , I, P , E, and F are specified with

V = V

eq andI = I

eq

P = C

� (ambient gas concentration)

E =

k

E

for

k

E

rev

P V

F =

k

F

for

k

F

rev

P I

Using a finite element discretization within the analytical model interface the complete

formulation of the discretized differential equation system is written in the code segment as

shown below. The predefined variables like X;Y;Z (coordinates of the element points) and

t (time) are initialized during runtime and can be used like any other variable within the

model definition language.
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MODEL PairDiff = [V,I,E,F,P];
{

############## Discretization ################################

N(xsi) = [1-xsi,xsi]; # the element shape function defined as
# a function of xsi

dNdxsi = [ -1 , 1 ]; # derivative of the shape function

dxdxsi = dNdxsi * X; # X is a predefined vector [X1,X2,...,Xn]
# getting real size and coordinates
# during runtime

detJ = |dxdxsi|;
dxsidx = Inv(dxdxsi); # calculates the inverse matrix

L = dNdxsi*dxsidx; # gradient operator
K = LˆT*L; # Laplace operator where (ˆT) is a

# transpose operator
C = N(1/2)*N(1/2)ˆT; # time operator using lumping

# N(1/2) -> calculates the value
# of the shape function
# for xsi=0.5

############## The Parameters #################################

Param k_for_e = 1.0E-14; # in cmˆ3/s
Param k_for_f = 1.0E-14; # initializing default values
Param k_bi = 1.0E-10; # for parameters

Param k_rev_e = 10; # in 1/s
Param k_rev_f = 12;

Param Dv = 1.0E-10; # in cmˆ2/s
Param Di = 1.0E-09;
Param De = 1.0E-13;
Param Df = 2.0E-13;

Param Veq = 1.0E14; # in 1/cmˆ3
Param Ieq = 1.0E14;

############## The Differential Equations #####################
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dt = t.t0-t.t1; # access to several time steps
dV = V.t0-V.t1; # of unknown and predefined
dI = I.t0-I.t1; # variables
dE = E.t0-E.t1;
dF = F.t0-F.t1;
dP = P.t0-P.t1;

i = 1..2; # running variable from 1 to 2

PV[i] = P[i] * V[i];
PI[i] = P[i] * I[i];
VI[i] = I[i] * V[i];
VIeq[i] = Veq * Ieq;

resV = detJ * (Dv*K*V + C * (dV/dt-k_for_e*PV+k_rev_e*E-k_bi*(VI-VIeq)));
resI = detJ * (Di*K*I + C * (dI/dt-k_for_f*PI+k_rev_f*F-k_bi*(VI-VIeq)));
resE = detJ * (De*K*E + C * (dE/dt+k_for_e*PV-k_rev_e*E));
resF = detJ * (Df*K*F + C * (dF/dt+k_for_f*PI-k_rev_f*F));
resP = detJ * C * (dP/dt-k_for_e*PV+k_rev_e*E-k_for_f*PI+k_rev_f*F);

############## The Residual and its Derivative #####################

residuum = [[resV][resI][resE][resF][resP]]; # the residual vector
jacobian = D([[V][I][E][F][P]],residuumˆT)ˆT; # auto derivative

# of residual
}

To define the necessary simulation parameters and to map the developed analytical pair-

diffusion model onto a definite simulation domain including its boundaries the specifications

of the Input & Control Interface have to look like:

# Where to read the grid from
Source=Pif
{

Physical = lin2.pbf # the input filename
Logical = BareWafer # the logical name of the mesh

}
# Where to write the grid and the result to
Output = Pif
{

Physical = lin2res.pbf # the output filename
Logical = BareWafer # the logical name of the new generated

# output mesh
}
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Time = 60 # the first 60 seconds
{

Step = 1.0E-3 # initial timestep
Epsilon = 1.0E-3 # maximum error
RejectionRatio = 0.5 # reduce step-size in case of non

# converging or epsilon error
StretchRatio = 1.5 # increase step-size in case of success
MaxNewton = 15 # stop after 15 iterations and reduce step

# size
}

Grid = Si_Region # the name of the grid in the default input file
{

Model = PairDiff(V,I,E,F,P) # use the model PairDiff
{ # and map the quantities

Value(V) = 1.0E14 # initialize the quantity V
Value(I) = 1.0E14 # initialize the quantity I
Value(E) = 0.0E0 # initialize the quantity E
Value(F) = 0.0E0 # initialize the quantity F
Value(P) = 0.0E0 # initialize the quantity P

}
}

Boundary = Backside # any name because auto boundary detection
# is used

{
Interface(Si_Region,Top) # Choose the top boundary of the grid with

# name Si_Region

# Use Dirichlet boundaries for the defined quantities

Model = Dirichlet(V){Value(V) = 1.0E14}
Model = Dirichlet(I){Value(I) = 1.0E14}
Model = Dirichlet(P){Value(P) = 5.0E20}
Model = Dirichlet(E){Value(E) = 5.0E19}
Model = Dirichlet(F){Value(F) = 4.16666E19}

}

Finally the simulation results that show the distribution of all five species after 60 seconds

(Fig. 18) are written to the file defined in the output section. Fig. 19 shows the result for the

same model calculating the distribution after 600 seconds.
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Figure 18: Dopant distribution after 60 seconds
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Figure 19: Dopant distribution after 600 seconds
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4.2 Example 2: Local Oxidation with a Floating Nitride Mask

Thermal oxidation of silicon is one of the most important steps in fabrication of highly in-

tegrated electronic circuits, being mainly used for efficient insulation of adjacent devices.

Those parts of silicon which shall not be oxidized are masked by a layer structure of silicon

nitride that is not effected by an oxidation. Exposed parts of already existing silicon oxide

are penetrated by the oxidant (oxygen diffusion), which finally reacts at the interface of sil-

icon and silicon dioxide to form new dioxide. This chemical reaction consumes silicon, and

due to the increased volume of the newly generated dioxide the old dioxide layer is lifted up.

From the mathematical point of view the problem can be described by a coupled system of

partial differential equations:

� diffusion equation describing the penetration of the oxidant through the existing sili-

con dioxide

� chemical reaction describing the transformation of material due to the storage of oxy-

gen molecules into the silicon layer reacting to silicon dioxide

� displacement of the oxide layer usually modeled as an elastic, visco-elastic or viscous

flow. Due to the unknown motion of the interface between silicon and silicon dioxide

this leads to a free boundary problem.

Using AMIGOS a new model has been developed based on the model of E. Rank [5]. The key

idea is the description of the local oxidation as a three component thermodynamic process

involving silicon, silicon dioxide and oxidant molecules. This results in a reactive layer

of finite width in contrast to the sharp interface between silicon and silicon dioxide in the

conventional formulation. The numerical approximation takes advantage of this description

in a finite element approach which models silicon, silicon dioxide and the reactive layer

together, thus avoiding the necessity to track the interface with element edges. The smooth

transition zone is a means to regularize the mathematical free boundary problem and can

be selected in a way, that numerically seen, the same results appear as in case of sharp

interface formulations. To distinguish between different materials a method similar to the

level set method was chosen to keep the transition zone as small as possible (usually the

transition zone is limited to a single element).

Fig. 20 shows the three-dimensional geometry where an oxidation process has been calcu-

lated. To distinguish between the different materials a level set function has been chosen

that provides an immediate jump from zero to one at the interface between silicon and sili-

con dioxide. The deformation of the nitride mask was calculated with an elasto-mechanical

model whereas the oxide itself was modeled with a visco-elastic deformation behavior. Due

to the enormous size of the model itself (eight coupled quantities) no more than 17376 node

points putting up 41421 elements have been used to calculate the oxidation process. Nev-

ertheless, due to the grid adaption algorithm it was possible to get quite acceptable results.

The post-processed cuts through the layer shown in Fig. 21 and Fig. 22 depict the familiar

oxidation results firstly at the longer side of the mask and secondly at the shorter one.

Fig. 23 shows the same calculation but with a four times thicker nitride mask. The fact that

now the mask can hardly be deformed leads to high stresses beneath the nitride mask, and

because of the viscous material behavior of oxide the deformation of the formed oxide layer

differs in form and size (Fig. 24 and Fig. 25) from the previous examples.
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Figure 20: Three-dimensional oxide growth around a thin floating nitride mask

Figure 21: Two-dimensional cut through the simulation result showing the materials de-

formation along the longer side of the mask

Figure 22: Two-dimensional cut through the simulation result showing the materials de-

formation along the shorter side of the mask
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Figure 23: Three-dimensional oxide growth around a fat floating nitride mask

Figure 24: Two-dimensional cut through the simulation result showing the materials de-

formation along the longer side of the mask

Figure 25: Two-dimensional cut through the simulation result showing the materials de-

formation along the shorter side of the mask



REFERENCES 32

References
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