
VISTA Status Report
June 1999

K. Dragosits, T. Grasser, R. Strasser, S. Selberherr

Institute for Microelectronics

Technical University Vienna

Gusshausstrasse 27-29

A-1040 Vienna, Austria

Contents

1 Parallel and Distributed Simulation 1

1.1 Parallel Computation . 1

1.1.1 Bottom-Level Strategy . 1

1.1.2 Top-Level Strategy . 2

1.1.3 Summary . 2

1.2 Distributed Computing . 3

1.2.1 Workload Distribution . 4

1.2.2 Robustness . 4

1.2.3 Load Polling . 5

1.2.4 Host Selection . 7

1.3 Performance Estimation . 8

1.4 User Interaction and Feedback . 8

1.4.1 The Queue Manager GUI . 8

1.4.2 Configuration of the Job Farming System . 8

2 Mixed-Mode Device Simulation 11

2.1 Introduction . 11

2.2 Circuit Simulation . 12

2.3 Thermal Simulation . 12

2.4 Device Simulation . 13

2.5 Mixed Mode Simulation . 13

2.6 Convergence . 14

2.7 Examples . 15

2.7.1 Five-Stage CMOS Ring Oscillator . 15

2.7.2 Five-Stage CML Ring Oscillator . 17

2.7.3 Electro-Thermal Analysis of a Complete OpAmp 18

CONTENTS 3

3 Simulation of Two-Dimensional Ferroelectric Hysteresis 22

3.1 Introduction . 22

3.2 Geometric algorithm . 22

3.3 Numerical problems . 23

3.3.1 Nonsymmetry of the locus curves . 23

3.3.2 Influence of the previous operating points . 24

3.3.3 Selection of the shape of the hysteresis curve . 24

3.3.4 Detection of the locus curve . 25

3.4 Simulation results . 25

1 PARALLEL AND DISTRIBUTED SIMULATION 1

1 Parallel and Distributed Simulation

Computing power is a vital resource for the extensive application of TCAD simulation. Moreover, the

efficient utilization of the computational resources is almost as important as their existence. Excess com-

puting power can often not be tapped due to lacking functionality of the software components involved in

a simulation. The shortcomings in this respect exist in two senses. For the first, the employed algorithms

are not capable of doing their computations in parallel, which means they can not compute on more than

one processor at a given time and thus excess processors, e.g. workstations, although available, can not

be used. The second reason which inhibits parallel and distributed computation, is the lack of a middle-

ware which cares for the problems that arise from parallel computation, namely synchronization, load

balancing, or error handling, to name some of them. SIESTA puts strong emphasis on these issues. It’s

job-farming facilities offer a very efficient front-end for parallel computation on a cluster of heterogeneous

workstations.

1.1 Parallel Computation

Since parallel computation offers a way to scale simulation problems, there has always been a strong desire

to do so. Inspired by common sense, the naive might think that two computers could solve one problem

within half of the time that is required on a single machine, and ten computers could even reduce the

amount of time to a tenth of that, and so on. However, it turns out that for many problems these projections

do not hold. Depending on the problem and the algorithm in use, this imagination of scalability only holds

for low grades of parallelization due to an inherent communication overhead.

Although computation itself takes place within less time, an additional amount of time has to be spent on

the communication between separated or even dislocated parts of a parallel simulation, as long as the parts

are not independent from each other. Faster computing parts will have to wait for slower ones, because

the exchange of the simulation state has to take place at certain simulation times and computation on the

involved heterogenous workstations will take different amounts of real time. This means that the slowest

part determines the performance of the whole simulation.

One way to improve scalability is to carefully select the level at which parallelization takes place. There

might be several levels which allow to split up a simulation problem into several smaller ones which can

compute in parallel. This strongly depends on the nature of the problem under consideration and the

algorithms that are utilized. Nevertheless, we discuss two extreme cases which should be applicable to a

wide range of problems.

1.1.1 Bottom-Level Strategy

The parallelization of a simulation problem at its bottom-level means that it is split up at the lowest

possible level (Fig. 1). In the case of the solution of a partial differential equation this could mean that the

solver operates in parallel. This kind of parallelization requires a high grade of specialization and strongly

depends on the nature of the problem. There exists software which supports the implementation of this

kind of parallel algorithm [1, 2, 3]. Nevertheless, the actual implementation differs from case to case and

represents a considerable effort.

Bottom-level parallelization produces maximum communication overhead compared to implementations

taking place on a higher level and will therefore deliver the worst scalability. However, some situations

require parallelization on bottom-level (huge simulation domain, etc.). Especially for simulations reaching

1 PARALLEL AND DISTRIBUTED SIMULATION 2

Pre-Processing

Solver Solver Solver

Post-Processing

Figure 1: The bottom-level strategy divides a simulation problem at the lowest possible level.

Pre-Processing

Post-Processing

Solver

Pre-Processing

Post-Processing

Solver

Pre-Processing

Post-Processing

Solver

Figure 2: The top-level strategy divides the simulation problem at the highest possible level.

to the limit of existing computers in terms of computation time and memory consumption, a parallelization

on bottom-level is the only option available.

1.1.2 Top-Level Strategy

In contrast to its counterpart, a top-level parallelization strategy (Fig. 2) is splitting up a simulation prob-

lem at the highest possible level. Let us consider a design of experiments involving several independent

executions of a simulator. Instead of executing a bottom-level parallelized simulator sequentially, top-level

parallelization executes several (sequential) simulators in parallel.

Since individual executions of a simulator are independent from each other, a communication overhead

does not exist at all. Moreover, top-level parallelization does not require any modifications to an exist-

ing simulation tool. As long as there exists software which is able to deal with remote execution and

the synchronization of the simulations, top-level parallelization can easily be applied to arbitrary simu-

lation tools. It should be stressed that this kind of parallelization is especially efficient when applied to

“design of experiments” applications or optimization problems. Since these tasks tend to require large

numbers of simulator invocations resulting in huge amounts of computation time, a good scalability is

highly desirable.

1.1.3 Summary

The discussion above has shown the implications — summarized in Table 1 — that result from the two

extremes of parallelization strategies. It is clear that bottom-level parallelization should only be applied

1 PARALLEL AND DISTRIBUTED SIMULATION 3

Top-level Bottom-level

Communication Overhead Low High

Implementation Effort Low High

Scalability Good Poor

Field of Application

design of experiments;

optimization;

sensitivity analysis;

statistical analysis

extensive single-run

simulations;

memory extensive

problems

Table 1: Properties of parallelizations at top-level and bottom-level.

Balancer Tool

Registry

Task

Queue

OSF

HP

Sun

i386

IBM

....

Figure 3: Distributed computing on a cluster of heterogeneous workstations.

where it really makes sense and no other alternative is available. The discussion also points out the

potential which parallelization on a high level offers for most of the simulation problems arising from

TCAD investigations. Despite of this, few implementations which explore this field exist [4, 5]. All

considerations will focus on parallelization at the top-level in the remaining of this chapter.

1.2 Distributed Computing

As long as the parallel computation is not carried out on a single machine with multiple processors, a

simulation has to spread out to remote machines using a network connection as depicted in Fig. 3. It

will therefore use machines with different properties in terms of speed, memory, and system load. This

implies that the computation time which is necessary to finish a given simulation problem will differ from

one machine to another. A further implication of distributed computation is an increased susceptibility to

single point failures, which will degrade the robustness of the whole simulation system unless measures

are taken to account for them.

1 PARALLEL AND DISTRIBUTED SIMULATION 4

P

Fail;T otal

1 Hour Total Simulation Time 16%

1 Day Total Simulation Time 98:8%

Table 2: For a distributed simulation which is susceptible to single point failures the probability to fail is

98:8% if the experiment on a cluster of 20 workstations takes one day.

1.2.1 Workload Distribution

Although there is no need for information exchange between concurrent parts of the parallel simulations,

the completion of the whole simulation depends on the very last part to finish. This means that load

balancing is necessary in order to reduce the overall simulation time. Load balancing means that faster

machines should get a bigger share of the whole workload and, on the other hand, slower machines should

obtain less of it. Thus, since the faster machines do more work than the slower ones do, the former will

have to wait less until the latter finish. The ultimate case occurs when workload is optimally balanced

and all parts finish simultaneously. A strategy which intends to achieve this situation is discussed in

Section 1.2.4.

1.2.2 Robustness

Distributed computation takes place in a quite complicated technical system. Aside from the stability of

the hardware and the operating system itself, distributed computation adds one more source of system

failures which is the network connections. Likewise to the complexity of the system, also the probabil-

ity of system failures rises. Additionally, the longer the overall simulation takes, the more likely is the

occurrence of a failure within that period.

In order to get a feeling for the stability that can be achieved let us briefly sketch a case study of distributed

computation on a cluster of workstations. Assuming the probability of a hardware or operating system

failure is P
OS

, the probability of failure due to disk storage shortage is P
Disk

, and a network failure occurs

with a probability of P
Net

. Thus the probability for the successful completion of a simulation on a single

machine is

P

Succ

= (1� P

OS

) � (1� P

Disk

) � (1� P

Net

) .

Whereas the probability to fail for an ensemble of N simulations which are computing in parallel is

P

Fail;T otal

= 1�

N

Y

P

Succ;i

= 1� (P

Succ

)

N

,

assuming that all parts of the distributed simulation are exposed to equal risk and an individual failure

invalidates the entire simulation. A reasonable assumption for values of P
OS

and P

Disk

is one failure

per month and one failure per week for network failures P
Net

which is equivalent to P

OS

= P

Disk

=

1:93 � 10

�3, and P
Net

= 5:95 � 10

�3 failures per hour.

Table 2 shows the resulting failure probabilities for two experiments taking one hour’s time and one day,

respectively, under the assumption that (sub-) processes are computing optimally balanced on a cluster of

20 workstations. Table 2 makes clear that parallel and distributed computation on a local area network

results in a fairly unstable system unless special measures are taken in order to improve stability. This

is particularly true for large scale simulation experiments such as optimizations, which can take up to a

week’s time or even longer.

1 PARALLEL AND DISTRIBUTED SIMULATION 5

Virtual Host

OS Load

Correction

Balancer

Load Correction

Job Registry
Job Control

Host Status

Sun

Figure 4: A virtual host corrects the delayed load that is reported by the operating system

1.2.3 Load Polling

The load of a computer is an important measure for an effective balancing mechanism, yet obtaining a

correct and up-to-date value of a host’s load is not trivial.

First, the load has to be polled periodically within acceptable time intervals. Since usually large numbers

of computers are involved (ten and more), this cannot be done sequentially, because not all hosts can be

polled within one interval. This is due to the fact that each host can take a couple of seconds until it

responds. Moreover, sequential polling is highly susceptible to corrupted computers, since it has to wait

for each computer’s response until it is able to proceed. Hence, the load of each host needs to be polled in

parallel using asynchronous communication.

Secondly, the load which is reported by an operating system, is usually subject to a delay. This delay is

not acceptable, since it results in an unstable system which will lead to an oscillation of the computers

workload. Therefore, the reported load needs to undergo some processing in order to account for this

delay.

Estimation of the Effective System Load. SIESTA uses as much knowledge about the state of a host as

possible in order to overcome the dilemma of a delayed value of the operating system load. The diagram

depicted in Fig. 4 shows how SIESTA deals with this issue in order to obtain an acceptable value for the

effective load of a computer which is feasible as a basis for load control leading to a stable system.

SIESTA introduces a virtual host which encapsulates the actual host and instead of communicating with

the real host it does its business with the hosts virtual substitute. Since this virtual host knows everything

about jobs that are running on itself, it is able to correct that portion of the host’s load which was produced

by jobs that have been submitted by SIESTA. For each of these jobs the virtual host adds a correction term

which compensates the delay inherent to the operating system load. Fig. 5 shows this procedure in detail.

l

os

is the load which is reported by the operating system, whereas l
corr

denotes the correction which is

added in order to obtain the effective load l
eff

.

l

eff

= l

os

+

N

X

i=1

e

�

t�t

start

i

�

| {z }

running jobs

�

M

X

i=1

��

1� e

�

t

stop

i

�t

start

i

�

�

� e

�

t�t

stop

i

�

�

| {z }

finished jobs
| {z }

l

corr

1 PARALLEL AND DISTRIBUTED SIMULATION 6

0 50 100 150 200 250 300 350 400 450

0

0.5

1

time [s]

[1]

los

0 50 100 150 200 250 300 350 400 450

0

1

time [s]

[1]

lcorr

0 50 100 150 200 250 300 350 400 450

0

0.5

1

time [s]

[1]

leff

Figure 5: The delayed operating system load l
os

of a host is corrected by l
corr

in order to get its effective

load l
eff

.

1 PARALLEL AND DISTRIBUTED SIMULATION 7

1.2.4 Host Selection

Assuming that acceptable values for each host’s workload are available, a decision has to be made to which

one of the registered hosts a job should be submitted. This decision basically depends on three criteria:

� The system command to be invoked must be available on a host.

� A host has to be reachable and its load must not exceed a certain limit after the job has been

submitted.

� Finally the estimated performance of the selected host has to be superior compared to the remaining

hosts.

Tool Management. A flexible management of tools is very important for a smooth operation of the

simulation environment in large clusters of heterogeneous workstations. Therefore, a registration of sim-

ulation tools, or system programs in general, with the simulation environment is desirable.

Each tool’s registration introduces a list of computation hosts where it is potentially available. This restric-

tion might be necessary due to the existence of so called node-locked licenses which require that a tool is

executed on a certain machine. Another reason for the restriction to a subset of the available hosts can be

different computer architectures or operating systems. It is easily possible that a simulation tool is only

available for some operating system. Furthermore, memory considerations might force a user to launch a

simulation tool only on hosts where sufficient memory for a proper operation of the tool is available. It

should be stressed that a registration is only necessary for tools which either are not available on every

host, or for tools which have a limited number of available licenses.

Additional to the host at which a tool is available, the number of licenses available for that tool can be of

importance. These licenses are usually a resource which is shared among concurrent users and, therefore,

need to be managed carefully. Otherwise, situations occur where the automated occupation of tool licenses

as it happens in SIESTA always grabs unused licenses before interactive users of simulation tools are able

to do it. Therefore, the SIESTA tool registry offers a way to define how many licenses of a tool can be

occupied by SIESTA.

Host Validation and Ranking. Each host is registered with SIESTA by defining a performance metric

w

i

of its CPUs, the number of CPUs n
cpu

i

, and the desired maximum load llim
i

. A host is considered to be

available if its current load does not exceed

l

max

i

=

�

l

lim

i

+ l

base

�

+ 1:0,

where lbase denotes an amount of workload by which the limit of each individual host is increased. For

each available host a ranking

p

i

=

max

�

1:0 ,
l

eff

i

+1:0

n

cpu

i

�

w

i

(1)

is computed, which is an estimate for the performance that could be obtained if a job were executed

under the hosts current operating conditions. Out of all hosts that have been identified to be suitable for

a simulation tool before, the one with the smallest value of p
i

is selected for computation. The setting of

l

base

can be utilized to increase the load limits of all hosts simultaneously in situations where none of the

hosts is below its load limit which might be caused by jobs of other users.

1 PARALLEL AND DISTRIBUTED SIMULATION 8

1.3 Performance Estimation

To illustrate the benefits arising from job-farming let us consider a rigorous calibration of a device sim-

ulator. For the estimation of the required simulation time let us assume the following: Transfer curves

(I
D

=V

G

) with the overall number of N operating points are available, M parameters have to be cali-

brated, I optimizer iterations are necessary, W workstations are available for computation, and the typical

computation time required per operating point is T .

Given that each optimization iteration consists of gradient computation and evaluation, the overall com-

putation time is roughly (M + 1) � I � T � N . Parallel evaluation of transfer curves reduces this time

to (M + 1) � I � T �

N

W

. For N = 30, M = 4, W = 15, I = 100, and T = 1min, this means that job

farming is able to reduce the time compared to operation on a single workstation from approximately 10

days to 16 hours.

1.4 User Interaction and Feedback

Remote computation usually involves a couple of workstations and large numbers of tasks that can be in

various states. Therefore, it is vital for the user to be able to track the state and actions of the queueing

system. Additionally, the user needs the ability to configure the job-farming system and to customize the

computation hosts as well as their programs.

1.4.1 The Queue Manager GUI

SIESTA offers a GUI (Fig. 6) which gives the user a detailed insight into the Queue Manager’s internal

state. It should be stressed that each SIESTA application which imports the job-farming module automat-

ically also gets the benefits from this users interface, without any further programming effort.

Computation Hosts. The Hosts part depicts the collection of computation hosts and their state. Colors

are utilized to indicate the state of each host. A green colored host is available for computation. Red color

means that the hosts load is too high to submit jobs to it. And finally a yellow color denotes hosts which

are currently not reachable.

Job Queue. All the jobs that have been submitted to the Queue Manager are depicted in the Queue

section. Green color marks executing jobs, whereas red color indicates that a job is waiting until a host

becomes available for computation. For each job the command, the command line arguments, and the

working directory are displayed. Additionally, the name of the execution host is displayed for executing

jobs.

1.4.2 Configuration of the Job Farming System

The Qman Settings window (Fig. 7) allows the user to adjust various settings of the computation hosts,

and to configure system tools. Furthermore, several settings used for load balancing can adjusted here.

The value of Base Load is added to the load limit of each host (see Section 1.2.4 on page 7) and the total

number of executing jobs is limited to the value of Job Limit.

1 PARALLEL AND DISTRIBUTED SIMULATION 9

Figure 6: The Queue Manager’s GUI comprehensively displays the state of SIESTA’s job farming

system.

1 PARALLEL AND DISTRIBUTED SIMULATION 10

Figure 7: A configuration GUI for SIESTA’s job farming system.

2 MIXED-MODE DEVICE SIMULATION 11

2 Mixed-Mode Device Simulation

2.1 Introduction

Over the last decades numerous powerful circuit simulation programs have been developed. Amongst

those are general purpose programs which have been designed to cope with all different kinds of circuits

and special purpose programs which provide highly optimized algorithms for, e.g., filter design. General

purpose programs can be divided into two categories. Programs belonging to the first category offer a

modeling language which can be used to define fairly arbitrary dependences between the circuit elements.

The most prominent member of this category is ASTAP [6] which was developed by IBM in the 1970s. To

provide the user with a maximum of flexibility, ASTAP generates FORTRAN source files which need to

be compiled before execution. The other category consists of programs which only allow for a predefined

set of circuit elements and dependences. Although the flexibility is strongly diminished, this approach

allows for a much faster execution and a compact, highly optimized simulator kernel. The most prominent

member of this category is SPICE which was developed at the University of Berkeley [7].

Circuit simulation programs have in common that the electrical behavior of the devices is modeled by

means of a compact model, that is an analytical expression describing the device behavior. Once a suitable

compact model is found, it can be evaluated in a very efficient way. However, this task is far from being

trivial and many complicated models have been developed. Even if the behavior of the device under

consideration can be mapped onto one of the existing compact models, the parameters of this compact

model need to be extracted. For example, in the case of the BSIM3v3 model [8] for short-channel MOS

transistors more than 100 parameters are available for calibration purposes, the identification of which is

obviously a cumbersome task. Similar arguments hold for other available MOS transistor models as the

EKV model [9, 10] and the Philips MM9 model [11]. If the device design is known and not modified,

these parameters need to be extracted only once and can be used for circuit design provided the accuracy

of the models is sufficient. When there is need to optimize a device using modified geometries and doping

profiles the compact model parameters have to be extracted for each different layout as many of these

parameters are mere fit parameters without any physical meaning.

The electrical behavior of the devices can either be measured or simulated. When performing a device

optimization, fabricating and measuring each optimization step would be very expensive. Hence, device

simulators became more and more popular, e.g., DESSIS [12], GALENE [13], MEDICI [14], MINIMOS

[15], and PISCES [16]. These device simulators solve the transport equations for a device with given

doping profiles and a given geometry. The transport equations form a highly nonlinear partial differential

equation system which cannot be solved analytically. Numerical methods have to be used to calculate a

solution by discretizing the equations on a suitable simulation grid. The data obtained from these simula-

tions can be used to extract the parameters of the compact model.

Altogether, this subsequent use of different simulators and extraction tools is cumbersome and error-

prone. To overcome these problems several solutions have been published where a device simulator was

coupled to SPICE [17, 18]. This is again problematic when considering the communication between two

completely different simulators. On the other hand some solutions were presented where circuit simulation

capabilities were added to a device simulator [19]. However, the restrictions imposed are so severe that

circuits containing more than a few distributed devices cannot be properly dealt with.

The examples in this paper were simulated using the device simulator MINIMOS-NT which has been

equipped with full circuit simulation capabilities with the only limitation being the amount of available

computer resources. MINIMOS-NT is a general purpose device simulator developed as the successor of

MINIMOS [20].

2 MIXED-MODE DEVICE SIMULATION 12

Electrical Circuit Thermal Circuit

Y

e

� ' = J Y

th

� # = P

P=P(';J)

Y

e

=Y

e

(#)

Figure 8: Interaction of the coupled electrical and thermal circuits.

With mixed-mode capabilities at hand devices can be characterized by their performance in a circuit

as a function of transport models, doping profiles, mobility models, etc. This is of fundamental im-

portance when investigating the behavior of modern submicron devices and non-mainstream devices

like Heterostructure-Bipolar-Transistors (HBTs) [21] or High-Electron-Mobility-Transistors (HEMTs)

[22, 23] where compact models are not so far developed. Furthermore, when the devices are scaled down,

non-local effects become more and more pronounced which can alter the device behavior significantly.

This cannot be handled by scaling the parameters of compact models.

2.2 Circuit Simulation

Several different methods have been published for the description of the circuit equations. However, nearly

all circuit simulators employ methods based either on the nodal approach (NA) [24, 25, 26] or the tableau

approach [27]. Methods based on the NA enjoy large popularity due to its ease of use. However, the basic

NA only allows for current-defined branches. Voltage-defined branches can be introduced without extend-

ing the formulation by the use of gyrators [28, 29]. To properly account for voltage-defined branches the

modified nodal approach (MNA) has been proposed which allows for the introduction of arbitrary branch

currents [30].

2.3 Thermal Simulation

The standard way of treating temperature effects in semiconductor devices and circuits is based on the

assumption of a constant device temperature which can be obtained by a priori estimates on the dissi-

pated power or by measurements. However, in general this a priori assumed dissipated power is not in

accordance with the resulting dissipated power. Furthermore, devices may be thermally coupled resulting

in completely different temperatures than would be expected from individual self-heating effects alone.

This is of special importance as many circuit layouts rely on this effect, e.g., current mirrors and differ-

ential pairs [31]. Therefore, the temperature must not be considered a constant parameter, but must be

introduced as an additional solution variable [32, 33, 34, 35].

Thermal coupling can be modeled by a thermal circuit [31, 36] (cf. Fig. 8). The topological equations

describing a thermal circuit are similar in form to Kirchhoff’s equations and the branch relations map

to familiar electrical branch relations. The electrical compact models have been extended to provide the

device temperature as an external node. For distributed devices MINIMOS-NT solves the lattice heat flow

equation [37] to account for self-heating effects. This is of course far more accurate than assuming a

spatially constant temperature in the device and estimating the dissipated power by Joule-heat terms alone

as is done for the compact models. To provide a connection to an external thermal circuit arbitrary thermal

contacts are defined.

2 MIXED-MODE DEVICE SIMULATION 13

2.4 Device Simulation

The vast majority of todays routinely performed device simulations are based on a numerical solution of

the basic semiconductor equations which include drift-diffusion current relations [37, 38, 39, 40]. The

efficiency of this numerical device model allows its extensive use in device optimization.

A device of a modern ULSI circuit is characterized by large electric fields in conjunction with steep

gradients of the electric field and of the carrier concentrations. Under these conditions, the accuracy of

the widely used drift-diffusion model becomes questionable. More sophisticated device models, such

as the hydrodynamic transport model [41, 42, 43, 44, 45, 46, 47] overcome these limitations. However,

the increased physical rigor of a model comes at the expense of increased computation times. This fact

prevented wide spread application of the hydrodynamic model in the past, and probably in the near future.

This is especially true for mixed-mode simulations which inherently suffer from large simulation times and

poor convergence properties. Thus, the necessity of using the hydrodynamic model should be checked by

comparison with drift-diffusion simulation results. However, for this comparison to deliver useful results,

several prerequisites must be met, the most important of them being that both transport models must

deliver similar results under homogeneous situations [48, 49].

2.5 Mixed Mode Simulation

Several works dealing with circuit simulation using distributed devices have been published so far [17, 18,

19, 50]. Most publications deal with the coupling of device simulators to SPICE. This results in a two-

level Newton algorithm since the device and circuit equations are handled subsequently. Each solution

of the circuit equations gives a new operating point for the distributed devices. The device simulator is

then invoked to calculate the resulting currents and the derivatives of these currents with respect to the

contact voltages. In [18] a method was proposed which was termed full-Newton algorithm. However,

this approach is very similar to the two-level method proposed in the same paper thus it will be termed

“quasi” full-Newton. The difference to the two-level Newton lies in the fact, that the device simulator

only performs the first step of the Newton iteration and returns the result to the circuit simulator. Both

approaches are easy to implement as only marginal changes in both simulators are required. The circuit

simulator acts as a server which controls the device simulator. At each Newton iteration of the circuit,

an input deck for the device simulator has to be generated and the device simulator has to be called to

calculate currents and conductances. The main advantage of this approach is that the device and circuit

simulator are decoupled and special device simulators may be used for different problems.

The other approach is called full-Newton algorithm as it combines the device and circuit equations within

one single equation system. This equation system is then solved applying Newton’s algorithm. In contrast

to the two-level Newton and the quasi full-Newton algorithm where the device and circuit unknowns are

solved in a decoupled manner, here the complete set of unknowns is solved simultaneously. In MINIMOS-

NT an approach similar to [19] is used. The capability to solve circuit equations was added to the simulator

kernel. This allowed for assembling the circuit and the device equations into one system matrix which

results in a real full-Newton method. There is no need to explicitly calculate the derivatives of the contact

currents with respect to the contact voltages as the contact currents are solution variables which simply

gives �1 as a derivative in the constitutive relations.

However, the benefits gained from using the numerous existing SPICE compact models must not be

neglected. As SPICE has a well defined and documented interface, it is, in principle, straight-forward to

implement a similar interface in the combined circuit-device simulator.

2 MIXED-MODE DEVICE SIMULATION 14

a) b)

Circuit Sim: Parts

Circuit Simulator Device Simulator

Device Simulator

Controlling UnitControlling Unit

Simulator StateSimulator State

System MatrixSystem Matrix

Compact ModelsCompact Models

Device Models

Device Models

C1C1 CKCK D1D1 DNDN

::: :::::: :::

Figure 9: Comparison of the two different strategies: a) Device simulator as client. b) Device simulator

as server

A comparison of these different architectures is shown in Fig. 9. In Fig. 9a the device simulator acts as

a client to the circuit simulator whereas in Fig. 9b the device simulator is extended with circuit simulator

capabilities and can reuse circuit simulator models on demand.

2.6 Convergence

The system of equations which has to be solved for mixed-mode device simulation is non-linear and

extremely sensitive to small changes in the solution variables. While the semiconductor equations are dif-

ficult to solve themselves the situation becomes even worse when using dynamic mixed-mode boundary

conditions. To solve these equations the Newton method is used which is known to have quadratic conver-

gence properties for an initial-guess sufficiently close to the final solution. However, such an initial-guess

is hard to construct for both the distributed quantities inside the device and the circuit equations. Hence

methods have to be found to enlarge the region of convergence to succeed even with a poor initial-guess.

This is achieved by applying suitable damping schemes. One of the most popular damping schemes has

been published by Bank and Rose [51, 52]. In MINIMOS-NT a purely heuristic method is used which

takes the exponential relation between the potential and the carrier concentration into consideration [53].

This method provides similar convergence properties to the method of Bank and Rose without costly

evaluation of damping parameters.

Especially important is a reliable method to obtain a DC operating point which is needed as a starting

point for a subsequent transient analysis or a static transfer characteristic. Transient simulations are far

better conditioned as the time derivatives provide main-diagonal entries and act as a natural damping. As

the solution of the last timestep provides a good initial-guess it is normally possible to obtain convergence

for a sufficiently small timestep. Although the conditioning of the equation system does not change for

DC transfer analysis the last solution again provides a good initial-guess. In case the system fails to

converge for a given step the step can normally be reduced in such a way to obtain convergence. Hence

the following discussion will focus solely on DC operating point calculation.

To the best knowledge of the authors no useful damping scheme for mixed-mode has been published so

far. Only in [17] it was stated that the change of the node voltages was limited to a user-specified value

which is in the range of 2 � V
T

. This is, as pointed out in the very same paper, far from being optimal as

it requires a large number of iterations for larger supply voltages. E.g., for the OpAmp circuit simulated

in the examples section the supply voltages are �15 V, hence it takes at least 15=0:05 = 300 iterations

to build up the supply voltages without even considering the effect of non-linearities. Furthermore it is

stated in [17] that a solution can only be obtained for an initial-guess as close to the solution as �0:2V for

forward-biased junctions.

2 MIXED-MODE DEVICE SIMULATION 15

These restrictions of mixed-mode simulations seem to be generally accepted nowadays. Experiments with

a new method delivered promising results for small circuits, the main field of application of mixed-mode

simulations. This method is based on the idea, that the distributed devices should be carefully embedded

into the rest of the circuit during evolution of the operating point. Similar observations were made by Ho et

al. [54] for FET circuits using compact models. They proposed to shunt a resistor of 3 k
 at the source and

drain during the first three Newton iterations to stabilize the coupled system and to slightly decouple the

device from the circuit equations. This approach has been extended by introducing an iteration dependent

conductance G

k

S

between each device node and ground. The following purely empirical expression for

G

k

S

delivered very satisfying results

G

0

= 10

�2

S (2)

G

min

= 10

�12

S (3)

G

k

S

= max

�

G

min

; G

0

� 10

�k=�

�

(4)

� = 1:0 : : : 4:0 (5)

with k being the iteration counter. It is worthwhile to note that the algorithm worked equally well with

G

min

= 0 for the simulated circuits. However, this expression is purely empirical but unfortunately any

attempt to use a more rigorous expression based on norms of the quantities did not work satisfactory.

Using this new technique, solutions could be found for several typical analog and digital circuits starting

from the zero initial-guess for the node voltages and charge neutrality assumptions for the semiconductor

devices within 20–50 iterations which is a comparable effort to SPICE which uses compact models.

2.7 Examples

2.7.1 Five-Stage CMOS Ring Oscillator

A five-stage CMOS ring oscillator circuit is shown in Fig. 10. For both the NMOS and the PMOS tran-

sistors a device width of W = 1 �m was assumed. Normally, to achieve equal noise margins, a ratio of

W

p

=W

n

� 2:5 is used to compensate for the poorer performance of the PMOS transistor [55]. To model

the influence of the interconnect circuitry, an additional load capacity of 5 fF was used. To force the circuit

into a predefined initial state, the input voltage '
in

of the first inverter was set to zero during operating

point calculation.

Two different ring oscillators have been simulated, one with long-channel transistors (L
G

= 2 �m), the

other one with short-channel transistors (L
G

= 0:2 �m). For the long-channel transistors, the simulation

'

in

'

out

V

CC

V

CC

V

CC

V

CC

V

CC

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

C

L

C

L

C

L

C

L

C

L

'

1

'

2

'

3

'

4

'

5

Figure 10: Five-stage CMOS ring oscillator

2 MIXED-MODE DEVICE SIMULATION 16

'

1

'

2

'

3

'

4

'

5

0

0

0:5

1

1:5

2 4 6 8 10

'

[

V

]

t [ns]

Figure 11: Node voltages of the long-channel five-stage CMOS ring oscillator. Drift-diffusion and hy-

drodynamic simulation results match perfectly.

DD

HD

'

1

'

2

0

0

0:5

1

1:5

200 400 600 800

'

[

V

]

t [ps]

Figure 12: Node voltages '

1

and '

2

of the short-channel five-stage CMOS ring oscillator for drift-

diffusion and hydrodynamic simulation.

2 MIXED-MODE DEVICE SIMULATION 17

results obtained with the drift-diffusion and hydrodynamic transport models agree so closely, that in the

graph no differences are visible (cf. Fig. 11). The simulation results for the short-channel devices are

shown in Fig. 12. Here, the differences between the transport models are significant. This is due to the

larger currents resulting from the hydrodynamic transport model as the charging and discharging times of

an inverter chain are inversely proportional to the drain currents. The simulated inverter delay times are

�

DD

� 30 ns and �
HD

� 26 ns giving a difference of about 15 %. For single devices the hydrodynamic

currents are approximately 30 % and 5 % higher for the NMOS and the PMOS transistor, respectively.

The average of these values (17:5 %) closely corresponds to the simulated delay time difference of 15 %.

2.7.2 Five-Stage CML Ring Oscillator

A current mode logic (CML) gate is an emitter coupled logic (ECL) gate stripped of the emitter-follower

[55, 56]. The gain of a single stage without load can be approximated by assuming a simple Ebers-Moll

model for the transistors [57] to be approximately �5. When considering an inverter chain consisting of

5 CML inverters as shown in Fig. 13 the total gain occurring at the last output node is (�5)5 = 3125.

With such a high gain, the circuit is too sensitive to the voltage changes occurring during iteration such

that no solution can be found without a proper initial-guess using conventional techniques. However,

using the shunt conductance technique with � = 4 a DC operating point was easily obtained with only

I

t

I

t

I

t

I

t

I

t

V

EE

V

EE

V

EE

V

EE

V

EE

V

ref

V

ref

V

ref

V

ref

V

ref

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

'

1

'

2

'

3

'

4

'

5

R

E

R

E

R

E

R

E

R

E

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

Figure 13: Five-stage CML ring oscillator

DD

HD

'

1

'

2

'

3

'

4

'

5

0:1

0

�0:1

�0:2

�0:3

�0:4

�0:5

�0:6

0

100 200 300 400

'

1

[

V

]

t [ps]

Figure 14: Oscillation of node voltage '

1

of the five-stage CML ring oscillator. Large discrepancies

between drift-diffusion and hydrodynamic simulations are observed.

2 MIXED-MODE DEVICE SIMULATION 18

34 iterations. As for the CMOS ring oscillator there is no unique operating point for the closed-loop and

one of the node voltages had to be fixed to force the circuit into an initial state from which oscillations

can start. Oscillations start immediately with a frequency f

DD

= 6:8 GHz for the drift-diffusion and

f

HD

= 10:6 GHz for the hydrodynamic model which gives a relative difference of 36% for the drift-

diffusion model (Fig. 14). This is due to the velocity overshoot which occurs in the base-collector space

charge region which cannot be modeled using a drift-diffusion transport model. The current levels are

approximately equal in both cases.

2.7.3 Electro-Thermal Analysis of a Complete OpAmp

Thermal effects are of fundamental importance for the chip design of integrated circuits. Typical op-

erational amplifiers (OpAmps) can deliver powers of 50–100 mW to a load, and as the output stage

internally dissipates similar power levels the temperature of the chip rises in proportion to the dissipated

output power [36, 58]. As the transistors are very densely packed, self-heating of the output stage will

affect all other transistors. This is especially true as silicon is a good thermal conductor, so the whole chip

tends to rise to the same temperature as the output stage. However, small temperature gradients develop

across the chip with the output stage being the heat source. The temperature coefficient of the junction

voltage for forward-biased pn-junctions is known to be approximately �2 mV=K, that is to obtain the

same current a smaller junction voltage is needed. These temperature gradients appear across the input

components of the OpAmp and induce an additional input voltage difference which is proportional to the

output dissipated power.

The complete �A709 [31, 59] as shown in Fig. 15 has been simulated considering thermal interaction

between the input and the output stage. This circuit is of special interest as it is one of the SPICE

benchmark circuits given in [7] (without thermal feedback). The DC transfer characteristic has been

calculated with and without thermal interaction. Consideration of thermal interaction was done by solving

the lattice heat flow equation for the transistors T
1

, T
2

, T
9

and T

15

and by assuming a thermal network

which provides for the thermal coupling of the devices as shown in Fig. 16. The thermal conductances

were assumed to be G
1

= G

2

= 2 mW=K and G

9

= G

15

= 10 mW=K while the coupling mismatch

was modeled by G
1;9

= G

1;15

= G

k

= 10 mW=K and G
2;9

= G

2;15

= G

k

� (1��) with � = 0:9 being

the mismatch parameter which is proportional to the temperature gradient across the input transistors [36].

The solution of the fully coupled equation system is possible with a proper iteration scheme. A small

change in the output voltage during iteration causes a large change in the collector current of the conduct-

ing output transistor. The dissipated power changes which influences the temperature distribution inside

the output transistor. This modified power alters the base-emitter voltages of the input transistors which

produces a change in the base-emitter voltages of the output transistors. As all these coupling mechanisms

are highly non-linear a special iteration scheme is used. In the first block the thermal quantities were ig-

nored until an electrical solution was found. In the second block, the lattice temperature was added to the

solution vector without considering the coupling effects caused by the node temperatures. This was also

found to be advantageous when stepping through the DC transfer curve hence this block was also used

for the consecutive steps. However, as the condition of the transient problem is much better, this block is

not used for transient simulation. Only after a proper temperature distribution inside the devices has been

established for the new voltage boundary conditions, can the complete equation system be used.

However, as the simulation failed very frequently for too large steps of the input voltage an additional

failure criterion was added. When the step of the input voltage was too large it caused oscillations in the

solution which, due to the strong non-linearities, blew up the lattice temperatures. This took approximately

30 iterations which were very expensive in computational terms as each iteration took approximately 20

–200 seconds depending on the condition of the system matrix. So this event had to be detected as soon

2 MIXED-MODE DEVICE SIMULATION 19

'

in

'

out

V

CC

V

CC

V

CC

V

CC

V

CC

V

CC

V

EE

V

EE

V

EE

V

EE

R

1

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

R

11

R

12

R

13

R

14

R

15

R

S1

R

S2

R

c

R

F

C

c

C

1

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

T

11

T

12

T

13

T

14

T

15

Figure 15: Schematic of the �A709 OpAmp.

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

G

1

G

9

G

2

G

15

G

1 ;9

G

1 ;15

G

2 ;15

G

2 ;9

#

1

#

9

#

2

#

15

P

1

P

9

P

2

P

15

Figure 16: Thermal equivalent circuit used to simulate thermal interaction for the �A709 OpAmp.

2 MIXED-MODE DEVICE SIMULATION 20

as possible. It was found that an abnormal behavior of the potential update norm E

1

(u

) was a good

indication of starting oscillations. Hence, whenever E
1

(u

) was larger than approximately 10

2

�V

T

after

10 iterations or whenever E
1

(u

) exceeded 105 �V
T

the iteration was canceled. Furthermore, the number

of iterations was limited to 30.

The DC transfer characteristic was calculated by stepping '
in

from �1 mV to 1 mV with �'
in

= 20 �V.

From SPICE simulations the open-loop gain of the �A709 was known to be approximately 35000 so for

each step of �'
in

a step of 0:7 V could be expected for �'
out

which is quite large. However, no conver-

gence problems occurred until '
out

approached 0 V. This was the most critical part of the simulation and

several step reductions were necessary for both the pure electrical and the thermal simulation. The size

of the system matrix was 37177 and 40449 for constant temperature and thermal simulation, respectively,

and the simulation took 9 and 25 hours on a Linux Pentium II 350MHz workstation. For the thermal

simulation the conditioning of the system matrix was found to be very poor and several step reductions

were necessary.

The DC transfer characteristic is shown in Fig. 17 with the obvious humps resulting from thermal feedback

effects. In Fig. 18 the open-loop voltage gain A
v

is shown and the dramatic impact of thermal coupling.

The thermal conductances assumed in this simulation were very optimistic and an even stronger impact

of thermal coupling has been published [33, 34]. For stronger coupling, even the sign of the open-loop

voltage gain may change and cause the OpAmp to become unstable [58].

The maximum temperature and the contact temperature of the output stage are shown in Fig. 19. It is

obvious that the self-heating inside the transistor plays only a minor role at these current levels. However,

the power dissipated inside the device heats up the NPN transistor due to the resistive thermal boundary

condition which obstructs the heat flow out of the transistor. This is in accordance to the commonly used

assumption that the transistor can be modeled by a power source alone. The PNP transistor has only a �

of approximately 10 and comparable current levels have been obtained by increasing the emitter area of

the transistor (W
PNP

=W

NPN

= 5). Hence the locally generated heat density H is even smaller than for

the NPN transistor and the temperature drop inside the device is negligible.

A similar situation occurs for the input transistors T
1

and T
2

. As they are biased with I
C

= 20 �A only

self-heating is negligible and the contact temperature resembles the heat transfered from the output stage.

As unsymmetric thermal conductivities have been assumed the temperature of T
1

is always slightly higher

than the temperature of T
2

. The maximum temperature difference T
2

�T

1

was found to be only �22 mK.

Even this small temperature difference has a strong impact on the output characteristic due to the high

gain of the circuit.

2 MIXED-MODE DEVICE SIMULATION 21

coupled

T

L

= 300 K

�1000 �500

0

0 500

15

10

5

�15

�10

�5

'

o

u

t

[

V

]

'

in

[�V]

Figure 17: DC transfer characteristic of the �A709 for constant lattice temperature and considering ther-

mal coupling of the input and output stage.

coupled

T

L

= 300 K

�1000 �500

0

0 500

50000

40000

30000

20000

10000

j

A

v

j

'

in

[�V]

Figure 18: Open-loop gain of the �A709 for constant lattice temperature and considering thermal cou-

pling of the input and output stage.

T

9

T

15

�1000 �500

0 500

306

305

304

303

302

301

300

299

T

C

;

T

m

a

x

[

K

]

'

in

[�V]

Figure 19: Maximum and contact temperature of the output transistors T
9

and T
15

during the DC transfer

characteristic.

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 22

3 Numerical Aspects of the Simulation of Two-Dimensional

Ferroelectric Hysteresis

3.1 Introduction

The advancing development of nonvolatile memory cells leads to structures which make use of the hys-

teretic properties of ferroelectric materials. In order to deal with two-dimensional device structures like

ferroelectric memory field effect transistors (FEMFET) [60] schematically outlined in Fig. 20, a two-

dimensional hysteresis simulator has been developed.

The simulation of the two-dimensional hysteresis curve leads to the nontrivial problem of field rotation

[61][62] and requires the calculation of a set of parameters for the non linear locus curves at each grid

point. Aside from calculating the exact field distribution a simulator for ferroelectric devices has to fulfill

further properties: To allow the calculation of transfer characteristics it has to be insensitive to the mag-

nitude of the applied voltage steps. To keep pace with future developments of ferroelectric devices, the

expansion of the algorithm to three dimensions should be possible.

Ferroelectric

layer
OxideP (E

2

)

Source Substrate Drain

Gate

"

1

"

2

"

3

Figure 20: Ferroelectric nonvolatile memory field effect transistor.

3.2 Geometric algorithm

A general algorithm capable of fulfilling the numerical and physical constraints outlined above was intro-

duced in [63]. It lays special focus on the simulation of field rotation. This enables the calculation of the

lag angle � between the electric field and the dielectric displacement that appears when the direction of

the electric field changes.

The algorithm is based on splitting the polarization vector into orthogonal components with respect to

the direction of the electric field at the next operating point. By means of these two components two

corresponding locus curves of the hysteresis are calculated, leading to two polarization components, one

parallel and one orthogonal to the electric field. These curves yield the polarization in direction of the

electric field and some sort of remanent polarization in the orthogonal direction, thus forming a primary

guess ~

P

0

for the next polarization (Fig. 21).

According to the fact that the saturation polarization is forming an upper limit, the component orthogonal

to the electric field is reduced if necessary. This leads to the actual polarization vector ~P
1

and the lag angle

� and is schematically outlined in Fig. 22.

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 23

�

x

y

~

P

k

~

P

0

~

P

?

~

P

?;max

~

P

1

~

E

E

Figure 21: Calculation of the resulting polarization.

~

P

k

~

P

0

~

P

?

~

P

?;max

~

P

sat

Figure 22: Reduction of the orthogonal component with respect to the saturation.

3.3 Numerical problems

As a consequence of the general approach, the following numerical aspects have to be considered in order

to allow a two-dimensional simulation with the box integration method:

� Nonsymmetry of the locus curves

� Influence of previous operating points

� Selection of the shape of the hysteresis curve

� Detection of the correct locus curve

3.3.1 Nonsymmetry of the locus curves

In contrast to most of the functions used in device simulation, the locus curves of the hysteresis are

nonsymmetric functions of the absolute value of the applied electric field k

~

Ek. Different to common

properties of symmetric functions, a criterion has to be established which decides whether the argument

of the function is treated as positive or negative. Accordingly the orientation of the field compared with the

box boundary becomes decisive to the sign of the function argument. Furthermore, it cannot be assumed

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 24

that the sign of the resulting flux of the electric displacement has the same orientation as the applied

electric field.

3.3.2 Influence of the previous operating points

The calculation of the current locus curves uses the parallel and orthogonal component of the previously

applied fields in respect to the current electric field. This is a major difference to one-dimensional simula-

tion, which only requires the storage of selected turning points [64]. In order to deal with this information

in a suitable way it is necessary to make adjustments to the field discretization. It is intuitive that the

history information is required on the box boundary and that it cannot be derived from a representation in

the grid points alone, as it is suitable for non hysteretic properties [53].

In case of one-dimensional properties, the orthogonal component has zero length and the parallel compo-

nent equals the previous electric field, which means that also this special case is covered by the algorithm.

In order to speed up the computation the locus curves are not calculated from the last turning point but

rather from the saturation polarization, so the lancette curves will not exactly fit the one-dimensional hys-

teresis model. The resulting locus curves of this approach are plotted in Fig. 23. They were achieved as

output of the simulation of a capacitor with ferroelectric dielectric.

-8

-6

-4

-2

0

2

4

6

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
h
a
rg

e
 [
e
-1

7
C

]

Voltage [V]

Figure 23: Simulation of a ferroelectric capacitor.

3.3.3 Selection of the shape of the hysteresis curve

Considering the fact that a different locus curve has to be calculated on each box boundary, it is necessary

to chose analytic functions. Numerical methods as described in [65] cannot be applied. In order to

overcome these difficulties a model was implemented into the device simulator MINIMOS-NT which

describes all hysteresis curves by tanh functions derived from analytical calculations.

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 25

3.3.4 Detection of the locus curve

A sophisticated task is to calculate the locus curves for a new operating point. As outlined in Fig. 24 one

of two possible locus curves has to be chosen at each operating point, depending on the history of the

electric field [64].

����������
����������
����������
����������

������������������
������������������
������������������
������������������

C

Figure 24: Possible locus curves in an operating point

As a consequence of the two-dimensional algorithm the common starting point C of these two branches

will move during the nonlinear iteration. In fact it highly depends on the assumed electric field. Therefore

it cannot be guaranteed that the same branch is selected at each iteration step. Regarding the different

derivatives of the two functions this will lead to poor convergence and in worst case to oscillations of the

nonlinear iteration.

As practice shows a preselection of the correct branch is necessary to achieve convergence, especially for

the simulation of complex structures. A suitable approach to detect the direction of the change of the

electric field is to solve a linearized equation system. In this system the polarization is kept constant and

only the linear part of the dielectric displacement is modified. Using this method an approximation to the

electric field in the new operating point is derived.

Based on this information it has to be decided whether the electric field was increased or not. The straight-

forward approach to compare the absolute values of the old and the new electric field will obviously fail,

even if the two field vectors are parallel. For the applied algorithm the parallel component of the old field

vector is calculated, and the result is interpreted in dependence of the orientation of the new field vector

as outlined in Fig. 25 and Fig. 26.

With this information it is now possible to select the correct branch of the hysteresis curve. The complete

scheme is outlined in Fig. 27.

3.4 Simulation results

The algorithm was implemented into the device simulator MINIMOS-NT[63]. A FEMFET was con-

structed by inserting a ferroelectric segment in the sub-gate area of the NMOS, as outlined in Fig. 20. The

operating point of the ferroelectric material was chosen on the initial polarization curve. In this case the

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 26

x

y

~

E

new

~

E

old

~

E

old;k

Figure 25: Detection of the change of the electric field, electric field decreases.

y

x

~

E

new

~

E

old

~

E

old;k

Figure 26: Detection of the change of the electric field, electric field increases.

ferroelectric polarization increases the displacement and leads to a significant higher space charge density

in the channel area. This will cause a higher drain current of the FEMFET for the same gate voltage as for

the NMOS. As a result of the hysteretic behavior of the polarization the drain current of the device does

not only depend on the gate voltage but also on the history of the gate voltage. So the I–V characteris-

tics of the transistor show also a hysteresis which allows the use of the device as a nonvolatile memory.

Fig. 28 sketches the simulated I–V characteristics for NMOS and FEMFET obtained by sweeping the gate

voltage from zero to saturation and vice versa The threshold voltage of the NMOS was 0:7 V and 0:6 V

for the FEMFET. The bulk voltage was set to 0:5 V, the drain voltage to 0:1 V. We received a voltage shift

of 0:1 V. Caused by the higher displacement, the drain current of the FEMFET is significantly increased

compared to the NMOS.

3 SIMULATION OF TWO-DIMENSIONAL FERROELECTRIC HYSTERESIS 27

Solve nonlinear system

Solve linearized system

Detect direction

Figure 27: Modified trivial iteration scheme

0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50 2.70

Gate Voltage [V]

1
.0

e
−

0
5

6
.0

e
−

0
5

1
.1

e
−

0
4

D
ra

in
 c

u
rr

e
n
t
[A

]

FEMFET

NMOS

E

Figure 28: Simulated I-V characteristics of FEMFET and NMOS

REFERENCES 28

References

[1] A. Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.Sunderam. PVM: Parallel Virtual

Machine — A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.

[2] T. J. Mowbray and R. Zahavi. The Essential CORBA. OMG/Wiley, 1995.

[3] D. W. Walker. The Design of a Standard Message-Passing Interface for Distributed Memory Con-

current Computers. Parallel Computing, 20(4):657–673, 1994.

[4] M. Neeracher. Scheduling for Heterogeneous Opportunistic Workstation Clusters. Hartung-Gorre,

Konstanz, 1198.

[5] Platform Computing Corporation, Toronto, Canada. LSF Load Sharing Facility, 1998.

www.platform.com.

[6] IBM. Advanced Statistical Analysis Program (ASTAP), Program Reference Manual. Technical

Report SH20-1118-0, IBM, 1973.

[7] L.W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Technical Report

UCB/ERL M520, University of California, Berkeley, 1975.

[8] Y. Cheng, M.-C. Jeng, Z. Liu, J. Huang, M. Chan, K. Chen, P.K. Ko, and C. Hu. A Physical

and Scalable I-V Model in BSIM3v3 for Analog/Digital Circuit Simulation. IEEE Trans.Electron

Devices, 44(2):277–287, 1997.

[9] Ch.C. Enz. The EKV Model: a MOST Model Dedicated to Low-Current and Low-Voltage Analogue

Circuit Design and Simulation. In G.A.S. Machado, editor, Low-Power HF Microelectronics A

Unified Approach, chapter 7, pp 247–300. IEE London, 1996.

[10] Swiss Federal Institute of Technology, Lausanne. The EPFL-EKV MOSFET Model Equations for

Simulation. http://legwww.epfl.ch/ekv/model.html, 1999.

[11] Philips. Philips Semiconductors Site on Compact Models. http://www-

eu2.semiconductors.com/Philips Models, 1998.

[12] ISE Integrated Systems Engineering. ISE TCAD Manuals vol. 4, release 4, 1997.

[13] B. Meinerzhagen and W.L. Engl. The Influence of the Thermal Equilibrium Approximation on

the Accuracy of Classical Two-Dimensional Numerical Modeling of Silicon Submicrometer MOS

Transistors. IEEE Trans.Electron Devices, ED-35(5):689–697, 1988.

[14] Technology Modeling Associates, Inc., Palo Alto, CA. TMA MEDICI, Two-Dimensional Device

Simulation Program, Version 2.0, 1994.

[15] S. Selberherr, A. Schütz, and H.W. Pötzl. MINIMOS—A Two-Dimensional MOS Transistor Ana-

lyzer. IEEE Trans.Electron Devices, ED-27(8):1540–1550, 1980.

[16] M.R. Pinto. PISCES IIB. Stanford University, 1985.

[17] J.G. Rollins and J. Choma. Mixed-Mode PISCES-SPICE Coupled Circuit and Device Solver. IEEE

Trans.Computer-Aided Design, 7:862–867, 1988.

[18] K. Mayaram and D.O. Pederson. Coupling Algorithms for Mixed-Level Ciruit and Device Simula-

tion. IEEE Trans.Computer-Aided Design, 11(8):1003–1012, 1992.

REFERENCES 29

[19] J.R.F. McMacken and S.G. Chamberlain. CHORD: A Modular Semiconductor Device Simulation

Development Tool Incorporating External Network Models. IEEE Trans.Computer-Aided Design,

8(8):826–836, 1989.

[20] S. Selberherr. Zweidimensionale Modellierung von MOS-Transistoren. Dissertation, Technische

Universität Wien, 1981.

[21] T. Grasser, V. Palankovski, G. Schrom, and S. Selberherr. Hydrodynamic Mixed-Mode Simulation.

In Meyer and Biesemans [66], pp 247–250.

[22] T. Simlinger. Simulation von Heterostruktur-Feldeffekttransistoren. Dissertation, Technische Uni-

versität Wien, 1996.

[23] H. Brech, T. Grave, T. Simlinger, and S. Selberherr. Optimization of Pseudomorphic HEMT’s Sup-

ported by Numerical Simulations. IEEE Trans.Electron Devices, 44(11):1822–1828, 1997.

[24] L.W. Nagel and R.A. Rohrer. Computer Analysis of Nonlinear Circuits, Excluding Radiation (CAN-

CER). IEEE J.Solid-State Circuits, SC-6(4):166–182, 1971.

[25] F.H. Branin, G.R. Hogsett, R.L. Lunde, and L.E. Kugel. ECAP II – A New Electronic Circuit

Analysis Program. IEEE J.Solid-State Circuits, SC-6(4):146–166, 1971.

[26] W.J. McCalla and W.G. Howard. BIAS-3 – A Program for the Nonlinear DC Analysis of Bipolar

Transistor Circuits. IEEE J.Solid-State Circuits, SC-6(1):14–19, 1971.

[27] W.T. Weeks, A.J. Jimenez, G.W. Mahoney, and D. Mehta. Algorithms for ASTAP – A Network-

Analysis Program. IEEE Trans.Circuit Theory, CT-20(4):628–634, 1973.

[28] A. Stach. Simulation von MOSFET-Schaltungen. Diplomarbeit, Technische Universität Wien, 1995.

[29] U. Tietze and C. Schenk. Halbleiter-Schaltungstechnik. Springer, Berlin, 1971.

[30] C.W. Ho, A.E. Ruehli, and P.A. Brennan. The Modified Nodal Approach to Network Analysis. IEEE

Trans.Circuits and Systems, CAS-22(6):504–509, 1975.

[31] P.R. Gray and R.G. Meyer. Analysis and Design of Analog Integrated Circuits. Wiley, 1993.

[32] P.C. Munro and F.Q. Ye. Simulating the Current Mirror with a Self-Heating BJT Model. IEEE

J.Solid-State Circuits, 26(9):1321–1324, 1991.

[33] K. Fukahori and P.R. Gray. Computer Simulation of Integrated Circuits in the Presence of Elec-

trothermal Interaction. IEEE J.Solid-State Circuits, SC-11(6):834–846, 1976.

[34] S.S. Lee and D.J. Allstot. Electrothermal Simulation of Integrated Circuits. IEEE J.Solid-State

Circuits, 28(12):1283–1292, 1993.

[35] W. Van Petegem, B. Geeraerts, W. Sansen, and B. Graindourze. Electrothermal Simulation and

Design of Integrated Circuits. IEEE J.Solid-State Circuits, 29(2):143–146, 1994.

[36] K. Nemeth. On the Analysis of Nonlinear Resistive Networks Considering the Effect of Temperature.

IEEE J.Solid-State Circuits, 1(1):550–552, 1976.

[37] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, 1984.

[38] R.E. Bank, D.J. Rose, and W. Fichtner. Numerical Methods for Semiconductor Device Simulation.

IEEE Trans.Electron Devices, ED-30(9):1031–1041, 1983.

REFERENCES 30

[39] W. Fichtner, D.J. Rose, and R.E. Bank. Semiconductor Device Simulation. IEEE Trans.Electron

Devices, ED-30(9):1018–1028, 1983.

[40] F. Assad, K. Banoo, and M. Lundstrom. The Drift-Diffusion Equation Revisited. Solid-State Elec-

tron., 42(3):283–295, 1998.

[41] K. Blotekjaer. Transport Equations for Electrons in Two-Valley Semiconductors. IEEE

Trans.Electron Devices, ED-17(1):38–47, 1970.

[42] P.T. Landsberg and S.A. Hope. Two Formulations of Semiconductor Transport Equations. Solid-

State Electron., 20:421–429, 1977.

[43] G. Baccarani and M.R. Wordeman. An Investigation of Steady-State Velocity Overshoot in Silicon.

Solid-State Electron., 28(4):407–416, 1985.

[44] M. Rudan and F. Odeh. Multi-Dimensional Discretization Scheme for the Hydrodynamic Model of

Semiconductor Devices. COMPEL, 5(3):149–183, 1986.

[45] D. Chen, E.C. Kan, U. Ravaioli, C.-W. Shu, and R.W. Dutton. An Improved Energy Transport Model

Including Nonparabolicity and Non-Maxwellian Distribution Effects. IEEE Electron Device Lett.,

13(1):26–28, 1992.

[46] C. Lab and Ph. Caussignac. An Energy-Transport Model for Semiconductor Heterostructure De-

vices: Application to AlGaAs/GaAs MODFETs. COMPEL, 18(1):61–76, 1999.

[47] N.R. Aluru, K.H. Law, P.M. Pinsky, and R.W. Dutton. An Analysis of the Hydrodynamic Semicon-

ductor Device Model – Boundary Conditions and Simulations. COMPEL, 14(2/3):157–185, 1995.

[48] T. Grasser, H. Kosina, and S. Selberherr. Consistent Comparison of Drift-Diffusion and Hydro-

Dynamic Device Simulation. In Simulation of Semiconductor Processes and Devices, Kyoto, 1999.

[49] T. Grasser. Mixed-Mode Device Simulation. Dissertation, Technische Universität Wien, 1999.

[50] W. Engl, R. Laur, and H.K. Dirks. MEDUSA - A Simulator for Modular Circuits. IEEE

Trans.Computer-Aided Design of Integrated Circuits and Systems, 1(2):85–93, 1982.

[51] R.E. Bank and D.J. Rose. Global Approximate Newton Methods. Numer.Math., 37:279–295, 1981.

[52] R.E. Bank and D.J. Rose. Parameter Selection for Newton-like Methods Applicable to Nonlinear

Partial Differential Equations. SIAM J.Numer.Anal., 17(6):806–822, 1980.

[53] C. Fischer. Bauelementsimulation in einer computergestützten Entwurfsumgebung. Dissertation,

Technische Universität Wien, 1994.

[54] C.W. Ho, D.A. Zein, A.E. Ruehli, and P.A. Brennan. An Algorithm for DC Solutions in an Ex-

perimental General Purpose Interactive Circuit Design Program. IEEE Trans.Circuits and Systems,

CAS-24(8):416–421, 1971.

[55] S.H.K. Embabi. Digital BiCMOS Integrated Circuit Design. Kluwer, 1993.

[56] R.L. Treadway. DC Analysis of Current Mode Logic. IEEE Circuits and Devices Magazine, pp

21–35, March 1989.

[57] P. Antognetti and G. Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, 1988.

[58] J.E. Solomon. The Monolithic Op Amp: A Tutorial Study. IEEE J.Solid-State Circuits, SC-

9(6):314–332, 1974.

REFERENCES 31

[59] National Semiconductors. Product Folder. http://www.nsc.com/pf/LM/LM709.html, 1999.

[60] S. L. Miller and P. J. McWhorter. Physics of the Ferroelectric Nonvolatile Memory Field Effect

Transistor. J.Appl.Phys., 72(12):5999–6010, 1992.

[61] P. Weiss and V. Planer. Hystérèse dans les Champs Tournants. Journal de Physique (Théor. et Appl.),

4/7:5–27, 1908.

[62] H. Pfützner. Rotational Magnetization and Rotational Losses of Grain Oriented Silicon Steel Sheets–

Fundamental Aspects and Theory. IEEE Trans.Magnetics, 30(5):2802–2807, 1994.

[63] K. Dragosits, M. Knaipp, and S. Selberherr. Two-Dimensional Simulation of Ferroelectric Non-

volatile Memory Cells. In Meyer and Biesemans [66], pp 368–371.

[64] B. Jiang, P. Zurcher, R.E. Jones, S.J. Gillespie, and J.C. Lee. Computationally Efficient Ferroelectric

Capacitor Model for Circuit Simulation. In IEEE Symposium on VLSI Technology Digest of Technical

Papers, pp 141–142, 1997.

[65] H.G. Brachtendorf, Ch. Eck, and R. Laur. Macromodeling of Hysteresis Phenomena with SPICE.

IEEE Trans.Circuits and Systems–II: Analog and Digital Signal Processing, 44(5):378–388, 1997.

[66] K. De Meyer and S. Biesemans, editors. Simulation of Semiconductor Processes and Devices, Leu-

ven, Belgium, 1998. Springer.

