
VISTA Status Report
December 1999

T. Grasser, A. Hössinger, R. Kosik, R. Mlekus, W. Pyka,

M. Stockinger, S. Selberherr

Institute for Microelectronics

Technical University Vienna

Gusshausstrasse 27-29

A-1040 Vienna, Austria

Contents

1 Mixed-Mode Device Simulation 1

1.1 Introduction . 1

1.2 Circuit Simulation . 2

1.3 Thermal Simulation . 2

1.4 Device Simulation . 3

1.5 Mixed Mode Simulation . 3

1.6 Convergence . 4

1.7 Examples . 5

1.7.1 Five-Stage CMOS Ring Oscillator . 5

1.7.2 Five-Stage CML Ring Oscillator . 6

1.7.3 Electro-Thermal Analysis of a Complete OpAmp 6

2 Closed-Loop CMOS Gate Delay Time Optimization 16

2.1 Introduction . 16

2.2 Optimization Procedure . 16

2.3 Doping Profile Optimization . 18

2.3.1 Two-Dimensional . 18

2.3.2 Implantation Models . 18

2.4 Discussion . 20

3 Modeling of High-Pressure Chemical Vapour Deposition 23

3.1 Introduction . 23

3.2 CVD-Model . 23

3.3 Applications and Results . 25

4 Parallelization of a Monte-Carlo Ion Implantation Simulator 27

4.1 Introduction . 27

4.2 Parallelization Strategy . 27

4.3 Simulation Flow . 28

4.4 Results . 29

4 CONTENTS

4.5 Conclusion . 30

4.6 Acknowledgment . 30

5 PROMIS-NT 31

5.1 Features of PROMIS-NT . 31

5.2 Supported Model Structures . 31

5.2.1 Volume Models . 31

5.2.2 Boundary Models . 32

5.2.3 Process Temperature Modeling . 33

5.3 Quantity Management and VISTA Integration . 34

5.3.1 Charge States . 34

5.4 The Structure of PROMIS-NT . 34

5.5 The PROMIS-NT Input Deck . 35

5.5.1 Logical Structure of the PROMIS-NT Input Deck 35

5.5.2 PROMIS-NT Process Flow . 38

5.6 PROMIS-NT Application Examples . 41

5.6.1 Five Species Phosphorus Pair-Diffusion Model 41

5.6.2 Performance Considerations . 44

6 Comparison of Finite Element and Finite Box Discretization 49

6.1 Introduction . 49

6.2 Discretization using AMIGOS . 49

6.3 Numerical Experiments . 50

6.4 Impact on Meshing Strategies . 50

6.5 Conclusion . 50

6.6 Acknowledgments . 51

1

1 Mixed-Mode Device Simulation

1.1 Introduction

Over the last decades numerous powerful circuit simulation programs have been developed. Amongst

those are general purpose programs which have been designed to cope with all different kinds of circuits

and special purpose programs which provide highly optimized algorithms for, e.g., filter design. General

purpose programs can be divided into two categories. Programs belonging to the first category offer a

modeling language which can be used to define fairly arbitrary dependences between the circuit elements.

The most prominent member of this category is ASTAP [?] which was developed by IBM in the 1970s. To

provide the user with a maximum of flexibility, ASTAP generates FORTRAN source files which need to

be compiled before execution. The other category consists of programs which only allow for a predefined

set of circuit elements and dependences. Although the flexibility is strongly diminished, this approach

allows for a much faster execution and a compact, highly optimized simulator kernel. The most prominent

member of this category is Spice which was developed at the University of Berkeley [?].

Circuit simulation programs have in common that the electrical behavior of the devices is modeled by

means of a compact model, that is an analytical expression describing the device behavior. Once a suitable

compact model is found, it can be evaluated in a very efficient way. However, this task is far from being

trivial and many complicated models have been developed. Even if the behavior of the device under

consideration can be mapped onto one of the existing compact models, the parameters of this compact

model need to be extracted. For example, in the case of the BSIM3v3 model [?] for short-channel MOS

transistors more than 100 parameters are available for calibration purposes, the identification of which is

obviously a cumbersome task. Similar arguments hold for other available MOS transistor models as the

EKV model [?, ?] and the Philips MM9 model [?]. If the device design is known and not modified, these

parameters need to be extracted only once and can be used for circuit design provided the accuracy of

the models is sufficient. When there is need to optimize a device using modified geometries and doping

profiles the compact model parameters have to be extracted for each different layout as many of these

parameters are mere fit parameters without any physical meaning.

The electrical behavior of the devices can either be measured or simulated. When performing a device

optimization, fabricating and measuring each optimization step would be very expensive. Hence, device

simulators became more and more popular, e.g., DESSIS [?], GALENE [?], MEDICI [?], MINIMOS 6

[?], and PISCES [?]. These device simulators solve the transport equations for a device with given doping

profiles and a given geometry. The transport equations form a highly nonlinear partial differential equation

system which cannot be solved analytically. Numerical methods have to be used to calculate a solution by

discretizing the equations on a suitable simulation grid. The data obtained from these simulations can be

used to extract the parameters of the compact model.

Altogether, this subsequent use of different simulators and extraction tools is cumbersome and error-

prone. To overcome these problems several solutions have been published where a device simulator

was coupled to Spice [?, ?]. This is again problematic when considering the communication between

two completely different simulators. On the other hand some solutions were presented where circuit

simulation capabilities were added to a device simulator [?]. However, the restrictions imposed are so

severe that circuits containing more than a few distributed devices cannot be properly dealt with.

The examples in this paper were simulated using MINIMOS-NT, a device simulator which has been

equipped with full circuit simulation capabilities with the only limitation being the amount of available

computer resources. MINIMOS-NT is a general purpose device simulator developed as the successor of

MINIMOS 6 [?].

2 1 MIXED-MODE DEVICE SIMULATION

Eletrial Ciruit Thermal Ciruit

Y

e

� ' = J
Y

th

� # = P

P=P(';J)

Y

e

=Y

e

(#)

Figure 1: Interaction of the coupled electrical and thermal circuits.

With mixed-mode capabilities at hand devices can be characterized by their performance in a circuit as

a function of transport models, doping profiles, mobility models, etc. This is of fundamental importance

when investigating the behavior of modern submicron devices and non-mainstream devices like Hetero-

structure-Bipolar-Transistors (HBTs) [?] or High-Electron-Mobility-Transistors (HEMTs) [?, ?] where

compact models are not so far developed. Furthermore, when the devices are scaled down, non-local

effects become more and more pronounced which can alter the device behavior significantly. This cannot

be handled by scaling the parameters of compact models.

1.2 Circuit Simulation

Several different methods have been published for the description of the circuit equations. However,

nearly all circuit simulators employ methods based either on the nodal approach (NA) [?, ?, ?] or the

tableau approach [?]. Methods based on the NA enjoy large popularity due to its ease of use. However, the

basic NA only allows for current-defined branches. Voltage-defined branches can be introduced without

extending the formulation by the use of gyrators [?, ?]. To properly account for voltage-defined branches

the modified nodal approach (MNA) has been proposed which allows for the introduction of arbitrary

branch currents [?].

1.3 Thermal Simulation

The standard way of treating temperature effects in semiconductor devices and circuits is based on the

assumption of a constant device temperature which can be obtained by a priori estimates on the dissipated

power or by measurements. However, in general this a priori assumed dissipated power is not in accor-

dance with the resulting dissipated power. Furthermore, devices may be thermally coupled resulting in

completely different temperatures than would be expected from individual self-heating effects alone. This

is of special importance as many circuit layouts rely on this effect, e.g., current mirrors and differential

pairs [?]. Therefore, the temperature must not be considered a constant parameter, but must be introduced

as an additional solution variable [?, ?, ?, ?].

Thermal coupling can be modeled by a thermal circuit [?, ?] (cf. Fig. ??). The topological equations

describing a thermal circuit are similar in form to Kirchhoff’s equations and the branch relations map

to familiar electrical branch relations. The electrical compact models have been extended to provide the

device temperature as an external node. For distributed devices MINIMOS-NT solves the lattice heat

flow equation [?] to account for self-heating effects. This is of course far more accurate than assuming a

spatially constant temperature in the device and estimating the dissipated power by Joule-heat terms alone

as is done for the compact models. To provide a connection to an external thermal circuit arbitrary thermal

contacts are defined.

1.4 Device Simulation 3

1.4 Device Simulation

The vast majority of todays routinely performed device simulations are based on a numerical solution

of the basic semiconductor equations which include drift-diffusion current relations [?, ?, ?, ?]. The

efficiency of this numerical device model allows its extensive use in device optimization.

A device of a modern ULSI circuit is characterized by large electric fields in conjunction with steep

gradients of the electric field and of the carrier concentrations. Under these conditions, the accuracy of

the widely used drift-diffusion model becomes questionable. More sophisticated device models, such as

the hydrodynamic transport model [?, ?, ?, ?, ?, ?, ?] overcome these limitations. However, the increased

physical rigor of a model comes at the expense of increased computation times. This fact prevented

wide spread application of the hydrodynamic model in the past, and probably in the near future. This

is especially true for mixed-mode simulations which inherently suffer from large simulation times and

poor convergence properties. Thus, the necessity of using the hydrodynamic model should be checked

by comparison with drift-diffusion simulation results. However, for this comparison to deliver useful

results, several prerequisites must be met, the most important of them being that both transport models

must deliver similar results under homogeneous situations [?, ?].

1.5 Mixed Mode Simulation

Several works dealing with circuit simulation using distributed devices have been published so far [?, ?,

?, ?]. Most publications deal with the coupling of device simulators to Spice. This results in a two-

level Newton algorithm since the device and circuit equations are handled subsequently. Each solution

of the circuit equations gives a new operating point for the distributed devices. The device simulator is

then invoked to calculate the resulting currents and the derivatives of these currents with respect to the

contact voltages. In [?] a method was proposed which was termed full-Newton algorithm. However,

this approach is very similar to the two-level method proposed in the same paper thus it will be termed

“quasi” full-Newton. The difference to the two-level Newton lies in the fact, that the device simulator

only performs the first step of the Newton iteration and returns the result to the circuit simulator. Both

approaches are easy to implement as only marginal changes in both simulators are required. The circuit

simulator acts as a server which controls the device simulator. At each Newton iteration of the circuit,

an input deck for the device simulator has to be generated and the device simulator has to be called to

calculate currents and conductances. The main advantage of this approach is that the device and circuit

simulator are decoupled and special device simulators may be used for different problems.

The other approach is called full-Newton algorithm as it combines the device and circuit equations within

one single equation system. This equation system is then solved applying Newton’s algorithm. In contrast

to the two-level Newton and the quasi full-Newton algorithm where the device and circuit unknowns

are solved in a decoupled manner, here the complete set of unknowns is solved simultaneously. In

MINIMOS-NT an approach similar to [?] is used. The capability to solve circuit equations was added

to the simulator kernel. This allowed for assembling the circuit and the device equations into one system

matrix which results in a real full-Newton method. There is no need to explicitly calculate the derivatives

of the contact currents with respect to the contact voltages as the contact currents are solution variables

which simply gives �1 as a derivative in the constitutive relations.

However, the benefits gained from using the numerous existing Spice compact models must not be ne-

glected. As Spice has a well defined and documented interface, it is, in principle, straight-forward to

implement a similar interface in the combined circuit-device simulator.

4 1 MIXED-MODE DEVICE SIMULATION

a) b)

Ciruit Sim: Parts

Ciruit Simulator
Devie Simulator

Devie Simulator

Controlling UnitControlling Unit

Simulator StateSimulator State

System MatrixSystem Matrix

Compat ModelsCompat Models

Devie Models

Devie Models

C1C1
CKCK D1D1

DNDN

::: :::::: :::

Figure 2: Comparison of the two different strategies: a) Device simulator as client.

b) Device simulator as server

A comparison of these different architectures is shown in Fig. ??. In Fig. ??a the device simulator acts as

a client to the circuit simulator whereas in Fig. ??b the device simulator is extended with circuit simulator

capabilities and can reuse circuit simulator models on demand.

1.6 Convergence

The system of equations which has to be solved for mixed-mode device simulation is non-linear and

extremely sensitive to small changes in the solution variables. While the semiconductor equations are dif-

ficult to solve themselves the situation becomes even worse when using dynamic mixed-mode boundary

conditions. To solve these equations the Newton method is used which is known to have quadratic conver-

gence properties for an initial-guess sufficiently close to the final solution. However, such an initial-guess

is hard to construct for both the distributed quantities inside the device and the circuit equations. Hence

methods have to be found to enlarge the region of convergence to succeed even with a poor initial-guess.

This is achieved by applying suitable damping schemes. One of the most popular damping schemes has

been published by Bank and Rose [?, ?]. In MINIMOS-NT a purely heuristic method is used which takes

the exponential relation between the potential and the carrier concentration into consideration [?]. This

method provides similar convergence properties to the method of Bank and Rose without costly evaluation

of damping parameters.

Especially important is a reliable method to obtain a DC operating point which is needed as a starting

point for a subsequent transient analysis or a static transfer characteristic. Transient simulations are far

better conditioned as the time derivatives provide main-diagonal entries and act as a natural damping. As

the solution of the last timestep provides a good initial-guess it is normally possible to obtain convergence

for a sufficiently small timestep. Although the conditioning of the equation system does not change for

DC transfer analysis the last solution again provides a good initial-guess. In case the system fails to

converge for a given step the step can normally be reduced in such a way to obtain convergence. Hence

the following discussion will focus solely on DC operating point calculation.

To the best knowledge of the authors no useful damping scheme for mixed-mode has been published so

far. Only in [?] it was stated that the change of the node voltages was limited to a user-specified value

which is in the range of 2 � V
T

. This is, as pointed out in the very same paper, far from being optimal as

1.7 Examples 5

it requires a large number of iterations for larger supply voltages. E.g., for the OpAmp circuit simulated

in the examples section the supply voltages are �15 V, hence it takes at least 15=0:05 = 300 iterations

to build up the supply voltages without even considering the effect of non-linearities. Furthermore it is

stated in [?] that a solution can only be obtained for an initial-guess as close to the solution as �0:2V for

forward-biased junctions.

These restrictions of mixed-mode simulations seem to be generally accepted nowadays. Experiments with

a new method delivered promising results for small circuits, the main field of application of mixed-mode

simulations. This method is based on the idea, that the distributed devices should be carefully embedded

into the rest of the circuit during evolution of the operating point. Similar observations were made by Ho et

al. [?] for FET circuits using compact models. They proposed to shunt a resistor of 3 k
 at the source and

drain during the first three Newton iterations to stabilize the coupled system and to slightly decouple the

device from the circuit equations. This approach has been extended by introducing an iteration dependent

conductance Gk
S

between each device node and ground. The following purely empirical expression for

G

k

S

delivered very satisfying results

G

0

= 10

�2

S (1)

G

min

= 10

�12

S (2)

G

k

S

= max

�

G

min

; G

0

� 10

�k=�

�

(3)

� = 1:0 : : : 4:0 (4)

with k being the iteration counter. It is worthwhile to note that the algorithm worked equally well with

G

min

= 0 for the simulated circuits. However, this expression is purely empirical but unfortunately any

attempt to use a more rigorous expression based on norms of the quantities did not work satisfactory.

Using this new technique, solutions could be found for several typical analog and digital circuits starting

from the zero initial-guess for the node voltages and charge neutrality assumptions for the semiconductor

devices within 20–50 iterations which is a comparable effort to Spice which uses compact models.

1.7 Examples

1.7.1 Five-Stage CMOS Ring Oscillator

A five-stage CMOS ring oscillator circuit is shown in Fig. ??. For both the NMOS and the PMOS tran-

sistors a device width of W = 1 �m was assumed. Normally, to achieve equal noise margins, a ratio of

W

p

=W

n

� 2:5 is used to compensate for the poorer performance of the PMOS transistor [?]. To model

the influence of the interconnect circuitry, an additional load capacity of 5 fF was used. To force the circuit

into a predefined initial state, the input voltage '
in

of the first inverter was set to zero during operating

point calculation.

Two different ring oscillators have been simulated, one with long-channel transistors (L
G

= 2 �m), the

other one with short-channel transistors (L
G

= 0:2 �m). For the long-channel transistors, the simulation

results obtained with the drift-diffusion and hydrodynamic transport models agree so closely, that in the

graph no differences are visible (cf. Fig. ??). The simulation results for the short-channel devices are

shown in Fig. ??. Here, the differences between the transport models are significant. This is due to the

larger currents resulting from the hydrodynamic transport model as the charging and discharging times of

an inverter chain are inversely proportional to the drain currents. The simulated inverter delay times are

�

DD

� 30 ns and �
HD

� 26 ns giving a difference of about 15 %. For single devices the hydrodynamic

currents are approximately 30 % and 5 % higher for the NMOS and the PMOS transistor, respectively.

The average of these values (17:5 %) closely corresponds to the simulated delay time difference of 15 %.

6 1 MIXED-MODE DEVICE SIMULATION

1.7.2 Five-Stage CML Ring Oscillator

A current mode logic (CML) gate is an emitter coupled logic (ECL) gate stripped of the emitter-follower

[?, ?]. The gain of a single stage without load can be approximated by assuming a simple Ebers-Moll

model for the transistors [?] to be approximately �5. When considering an inverter chain consisting of

5 CML inverters as shown in Fig. ?? the total gain occurring at the last output node is (�5)5 = 3125.

With such a high gain, the circuit is too sensitive to the voltage changes occurring during iteration such

that no solution can be found without a proper initial-guess using conventional techniques. However,

using the shunt conductance technique with � = 4 a DC operating point was easily obtained with only

34 iterations. As for the CMOS ring oscillator there is no unique operating point for the closed-loop and

one of the node voltages had to be fixed to force the circuit into an initial state from which oscillations

can start. Oscillations start immediately with a frequency f

DD

= 6:8 GHz for the drift-diffusion and

f

HD

= 10:6 GHz for the hydrodynamic model which gives a relative difference of 36% for the drift-

diffusion model (Fig. ??). This is due to the velocity overshoot which occurs in the base-collector space

charge region which cannot be modeled using a drift-diffusion transport model. The current levels are

approximately equal in both cases.

1.7.3 Electro-Thermal Analysis of a Complete OpAmp

Thermal effects are of fundamental importance for the chip design of integrated circuits. Typical opera-

tional amplifiers (OpAmps) can deliver powers of 50–100 mW to a load, and as the output stage inter-

nally dissipates similar power levels the temperature of the chip rises in proportion to the dissipated output

power [?, ?]. As the transistors are very densely packed, self-heating of the output stage will affect all

other transistors. This is especially true as silicon is a good thermal conductor, so the whole chip tends to

rise to the same temperature as the output stage. However, small temperature gradients develop across the

chip with the output stage being the heat source. The temperature coefficient of the junction voltage for

'

in

'

out

V

CC

V

CC

V

CC

V

CC

V

CC

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

C

L

C

L

C

L

C

L

C

L

'

1

'

2

'

3

'

4

'

5

Figure 3: Five-stage CMOS ring oscillator

1.7 Examples 7

'

1

'

2

'

3

'

4

'

5

0

0

0:5

1

1:5

2 4
6

8
10

'

[

V

℄

t [ns℄

Figure 4: Node voltages of the long-channel five-stage CMOS ring oscillator. Drift-diffusion and hydro-

dynamic simulation results match perfectly.

8 1 MIXED-MODE DEVICE SIMULATION

DD

HD

'

1

'

2

0

0

0:5

1

1:5

200
400

600
800

'

[

V

℄

t [ps℄

Figure 5: Node voltages '

1

and '

2

of the short-channel five-stage CMOS ring oscillator for drift-

diffusion and hydrodynamic simulation.

1.7 Examples 9

forward-biased pn-junctions is known to be approximately �2 mV=K, that is to obtain the same current a

smaller junction voltage is needed. These temperature gradients appear across the input components of the

OpAmp and induce an additional input voltage difference which is proportional to the output dissipated

power.

The complete �A709 [?, ?] as shown in Fig. ?? has been simulated considering thermal interaction be-

tween the input and the output stage. This circuit is of special interest as it is one of the Spice benchmark

circuits given in [?] (without thermal feedback). The DC transfer characteristic has been calculated with

and without thermal interaction. Consideration of thermal interaction was done by solving the lattice heat

flow equation for the transistors T
1

, T
2

, T
9

and T
15

and by assuming a thermal network which provides

for the thermal coupling of the devices as shown in Fig. ??. The thermal conductances were assumed to

be G
1

= G

2

= 2 mW=K and G
9

= G

15

= 10 mW=K while the coupling mismatch was modeled by

G

1;9

= G

1;15

= G

k

= 10 mW=K and G
2;9

= G

2;15

= G

k

� (1 ��) with � = 0:9 being the mismatch

parameter which is proportional to the temperature gradient across the input transistors [?].

The solution of the fully coupled equation system is possible with a proper iteration scheme. A small

change in the output voltage during iteration causes a large change in the collector current of the conduct-

ing output transistor. The dissipated power changes which influences the temperature distribution inside

the output transistor. This modified power alters the base-emitter voltages of the input transistors which

produces a change in the base-emitter voltages of the output transistors. As all these coupling mechanisms

are highly non-linear a special iteration scheme is used. In the first block the thermal quantities were ig-

nored until an electrical solution was found. In the second block, the lattice temperature was added to the

solution vector without considering the coupling effects caused by the node temperatures. This was also

found to be advantageous when stepping through the DC transfer curve hence this block was also used for

the consecutive steps.

I

t

I

t

I

t

I

t

I

t

V

EE

V

EE

V

EE

V

EE

V

EE

V

ref

V

ref

V

ref

V

ref

V

ref

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

'

1

'

2

'

3

'

4

'

5

R

E

R

E

R

E

R

E

R

E

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

Figure 6: Five-stage CML ring oscillator

10 1 MIXED-MODE DEVICE SIMULATION

DD

HD

'

1

'

2

'

3

'

4

'

5

0:1

0

�0:1

�0:2

�0:3

�0:4

�0:5

�0:6

0

100 200
300

400

'

1

[

V

℄

t [ps℄

Figure 7: Oscillation of node voltage '
1

of the five-stage CML ring oscillator. Large discrepancies be-

tween drift-diffusion and hydrodynamic simulations are observed.

1.7 Examples 11

'

in

'

out

V

CC

V

CC

V

CC

V

CC

V

CC

V

CC

V

EE

V

EE

V

EE

V

EE

R

1

R

2

R

3

R

4

R

5

R

6

R

7

R

8

R

9

R

10

R

11

R

12

R

13

R

14

R

15

R

S1

R

S2

R

R

F

C

C

1

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

T

11

T

12

T

13

T

14

T

15

Figure 8: Schematic of the �A709 OpAmp.

12 1 MIXED-MODE DEVICE SIMULATION

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

#

ref

G

1

G

9

G

2

G

15

G

1 ;9

G

1 ;15

G

2 ;15

G

2 ;9

#

1

#

9

#

2

#

15

P

1

P

9

P

2

P

15

Figure 9: Thermal equivalent circuit used to simulate thermal interaction for the �A709 OpAmp.

However, as the condition of the transient problem is much better, this block is not used for transient

simulation. Only after a proper temperature distribution inside the devices has been established for the

new voltage boundary conditions, can the complete equation system be used.

However, as the simulation failed very frequently for too large steps of the input voltage an additional

failure criterion was added. When the step of the input voltage was too large it caused oscillations in the

solution which, due to the strong non-linearities, blew up the lattice temperatures. This took approximately

30 iterations which were very expensive in computational terms as each iteration took approximately 20

–200 seconds depending on the condition of the system matrix. So this event had to be detected as soon

as possible. It was found that an abnormal behavior of the potential update norm E

1

(u

) was a good

indication of starting oscillations. Hence, whenever E
1

(u

) was larger than approximately 10

2

�V

T

after

10 iterations or whenever E
1

(u

) exceeded 105 �V
T

the iteration was canceled. Furthermore, the number

of iterations was limited to 30.

The DC transfer characteristic was calculated by stepping '
in

from�1 mV to 1 mV with �'
in

= 20 �V.

From Spice simulations the open-loop gain of the �A709 was known to be approximately 35000 so for

each step of �'
in

a step of 0:7 V could be expected for �'
out

which is quite large. However, no conver-

gence problems occurred until '
out

approached 0 V. This was the most critical part of the simulation and

several step reductions were necessary for both the pure electrical and the thermal simulation. The size

of the system matrix was 37177 and 40449 for constant temperature and thermal simulation, respectively,

and the simulation took 9 and 25 hours on a Linux Pentium II 350MHz workstation. For the thermal

simulation the conditioning of the system matrix was found to be very poor and several step reductions

were necessary.

1.7 Examples 13

oupled

T

L

= 300 K

�1000
�500

0

0 500

15

10

5

�15

�10

�5

'

o

u

t

[

V

℄

'

in

[�V℄

Figure 10: DC transfer characteristic of the �A709 for constant lattice temperature and considering ther-

mal coupling of the input and output stage.

The DC transfer characteristic is shown in Fig. ?? with the obvious humps resulting from thermal feedback

effects. In Fig. ?? the open-loop voltage gain A
v

is shown and the dramatic impact of thermal coupling.

The thermal conductances assumed in this simulation were very optimistic and an even stronger impact of

thermal coupling has been published [?, ?]. For stronger coupling, even the sign of the open-loop voltage

gain may change and cause the OpAmp to become unstable [?].

The maximum temperature and the contact temperature of the output stage are shown in Fig. ??. It is

obvious that the self-heating inside the transistor plays only a minor role at these current levels. However,

the power dissipated inside the device heats up the NPN transistor due to the resistive thermal boundary

condition which obstructs the heat flow out of the transistor. This is in accordance to the commonly used

assumption that the transistor can be modeled by a power source alone. The PNP transistor has only a �

of approximately 10 and comparable current levels have been obtained by increasing the emitter area of

the transistor (W
PNP

=W

NPN

= 5). Hence the locally generated heat density H is even smaller than for

the NPN transistor and the temperature drop inside the device is negligible.

A similar situation occurs for the input transistors T
1

and T
2

. As they are biased with I
C

= 20 �A only

self-heating is negligible and the contact temperature resembles the heat transfered from the output stage.

As unsymmetric thermal conductivities have been assumed the temperature of T
1

is always slightly higher

than the temperature of T
2

. The maximum temperature difference T
2

�T

1

was found to be only �22 mK.

Even this small temperature difference has a strong impact on the output characteristic due to the high

gain of the circuit.

14 1 MIXED-MODE DEVICE SIMULATION

oupled

T

L

= 300 K

�1000
�500

0

0
500

50000

40000

30000

20000

10000

j

A

v

j

'

in

[�V℄

Figure 11: Open-loop gain of the �A709 for constant lattice temperature and considering thermal cou-

pling of the input and output stage.

1.7 Examples 15

T

9

T

15

�1000
�500

0
500

306

305

304

303

302

301

300

299

T

C

;

T

m

a

x

[

K

℄

'

in

[�V℄

Figure 12: Maximum and contact temperature of the output transistors T
9

and T
15

during the DC transfer

characteristic.

16 2 CLOSED-LOOP CMOS GATE DELAY TIME OPTIMIZATION

2 Closed-Loop CMOS Gate Delay Time Optimization

2.1 Introduction

Increasing speed and reducing standby power are the key challenges of the ever growing portable elec-

tronics market. Reducing the average gate delay of a CMOS inverter chain, as shown in Fig. ??, while

keeping the leakage current low means increasing the speed of the whole technology without changing the

standby power.

. . .

Figure 13: Infinite CMOS inverter chain

Usually, the device geometry and the supply voltage are fixed for a given technology, therefore the key

challenge lies in an optimized doping profile which will be the scope of this work.

2.2 Optimization Procedure

In order to evaluate the average gate delay time of an infinite inverter chain, an adequate model for one

single stage has to be found (Fig. ??). It consists of a CMOS inverter and a capacitive load C
L

connected to

the output which accounts for the gate capacitance of the following stage. Since this capacitance changes

during transition, it is assumed to be voltage dependent. It can be calculated using the input current

information of the succeeding stage.

C

L

(V) =

I

in

(t)

dV

in

(t)=dt

�

�

�

�

�

V

in

(t) = V

(5)

An optimizer drives the closed-loop optimization procedure [?]. The optimization target which will be

minimized during optimization, is defined as the average inverter delay time for the on- and off-transitions:

target =

(t

d;on

+ t

d;o�

)

2

(6)

The optimization constraint which is kept above zero, guarantees that the average leakage current stays

below 1pA:

onstr: = � log

�

(I

l;on

+ I

l;o�

)=2

1 pA

�

(7)

The model for the inverter delay times and the static leakage currents is shown in Fig. ??. After reading a

given set of doping parameters, the device description of the NMOS and PMOS transistors are produced.

2.2 Optimization Procedure 17

I in
Vin Vout

outL VC ()

NMOST

PMOST

Figure 14: Single stage inverter model

Then the inverter model depicted in Fig. ?? is evaluated by transient simulations for both the on- and

off-transitions. Additional input data for the simulator, besides the device descriptions, are the input V(t)

curves and the C(V) curves of the capacitive load C

L

which are taken from a data container. Using

the resulting output V(t) and input I(t) curves of the inverter, the delay times and leakage currents are

calculated. The processed input V(t) and C(V) curves for following model evaluations are stored in the

data container.

simulator

post-processing

container

device generator

data

leakage
currents

parameters

doping

delay times

&

NMOS PMOS

Figure 15: Delay and leakage model

Fig. ?? shows the optimization sequence of this procedure. Any time a temporary minimum is found

after a number of evaluation steps, a gradients calculation is launched to find the Jacobian matrix for

the optimization parameters, and then the next temporary minimum is searched. After each temporary

minimum step, the output curves are stored in a wait-state and will be transferred into the data container

after the gradients calculation is finished. This permanent update of the data container provides a self-

contained emulation of an infinite inverter chain, since output voltage curves and input currents will be

used for input curves and load capacitance evaluations for the next steps, repeatedly.

18 2 CLOSED-LOOP CMOS GATE DELAY TIME OPTIMIZATION

.

.

.

. . .

.

.

.

.

.

.

.

data container

time

temporary minimum
gradient step
evaluation step

Figure 16: Optimization sequence

2.3 Doping Profile Optimization

The optimization procedure was performed on MOSFETs with 0.25�m gate length, 1�m gate width, and

5nm gate oxide thickness for 1.5V supply voltage. The source/drain doping profiles stayed fixed during

optimization with a maximum doping of 1020m�3 and about 50nm junction depth.

Two different methods were used to obtain a set of optimization parameters which define the doping

profiles in the active regions of the two transistors: A general two-dimensional approach using an opti-

mization grid, and an approach with implantation models. The simulator MINIMOS-NT [?] was used for

all simulation tasks since it supports the coupling between circuit simulation with compact models and

numerical device simulations consistently.

2.3.1 Two-Dimensional

An optimization grid was chosen with the shape of an inverted “T” to cover all regions which might influ-

ence the device behavior. Fig. ?? shows the optimization grid and the source/drain wells. The doping at

each grid point is defined by one optimization parameter, therefore 124 parameters, 62 for each device, are

required. Between the grid points, an interpolation method was used to provide a smooth two-dimensional

doping profile. Outside the optimization region the substrate doping was kept at 1015m�3.

µm)x (

µ
m

)
y

 (

-0
.1

0

0 0.2 0.4 0.6 0.8

S G D

Figure 17: Optimization grid and S/D wells

Fig. ?? shows the resulting doping profiles. The average gate delay time was reduced by 58%, from 82.1ps

to 34.8ps compared to the initial device with a uniformly doped “inverted-T” region.

2.3.2 Implantation Models

The use of Gaussian implantation models allows for a considerable reduction of the number of doping

parameters and, therefore, for a faster optimization procedure. Additionally, the results from the two-

2.3 Doping Profile Optimization 19

y
(

m
)

µ

co
n
c.

 (
cm

)

-3

x (
m)

µ -0
.0

5

0

-0
.1

0.9

0.3

0

1
0

1
5

1
0

1
8

0.6

S

D

y
(

m
)

µ

co
n
c.

 (
cm

)

-3

x (
m)

µ -0
.0

5

0

-0
.1

0.9

0.3

0

1
0

1
5

1
0

1
8

0.6

D

S

Figure 18: Two-dimensional optimization results, top: NMOST, bottom: PMOST

20 2 CLOSED-LOOP CMOS GATE DELAY TIME OPTIMIZATION

dimensional approach, which look quite complex due to the numeric origin of the optimization procedure,

can be tailored to more realistic profiles.

Three implantations were used for the channel region. The first one is located in the channel close to the

source well. It sets the threshold voltage of the device and reduces the effective gate length. The second

and third implants are located deeper, under the source and drain wells, respectively. They improve the

short channel effects and work as a shield against deep punchthrough. Fig. ?? shows the resulting doping

profiles. The delay-time reduction with this method is still 55%.

2.4 Discussion

The optimized doping profiles are similar to the results obtained by previous work where only the drive

current of a single NMOS transistor was optimized [?]. Now the regions under source/drain are of in-

creased importance because of the source/drain well capacitances.

Fig. ?? shows the inverter input/output curves before and after optimization for both transition cases. For

optimization, or rather simulation, reasons, the transition time point of the input curves, defined at 50%

of the supply voltage, was kept constant. The delay time for the output-on transition is higher than for

the output-off transition because the optimizer kept both leakage currents at about the same value of 1pA.

Therefore, the PMOS transistor delivers a lower drive current due to the lower majority carrier mobility.

2.4 Discussion 21

y
(

m
)

µx (
m)

µ

1
0

1
8

co
n
c.

 (
cm

)

-3

-0
.0

5

0

-0
.1

0.9

0.3

0

1
0

1
5

0.6

D

S

y
(

m
)

µx (
m)

µ

co
n
c.

 (
cm

)

-3

1
0

1
8

-0
.0

5

0

-0
.1

0.9

0.3

0

1
0

1
5

0.6

D

S

Figure 19: Implantation models optimization results, top: NMOST, bottom: PMOST

22 2 CLOSED-LOOP CMOS GATE DELAY TIME OPTIMIZATION

0 1e-10 2e-10

0

0.5

1

1.5

time (s)

b a

ab

in
p
u
t

/
o
u
tp

u
t

v
o
lt

ag
e

(V
)

Figure 20: Input (dashed) and output (solid) curves before (a) and after (b) optimization

23

3 Modeling of High-Pressure Chemical Vapour Deposition

This section describes a three-dimensional model for the simulation of continuum transport and reaction

determined high pressure CVD processes. Our approach allows simulations over arbitrary geometries

such as structures resulting from non-uniform underlying PVD films. This enables the examination of film

profile variations across the wafer for multi-step processes consisting of low and high pressure parts such

as Ti/TiN/W plug-fills. Additionally the model allows a very flexible formulation of the involved chemistry

and can easily be extended to arbitrary CVD processes including gas phase reactions of precursors as

observed in the deposition of silicon dioxide from tetraethylorthosilicate (TEOS).

3.1 Introduction

A variety of three-dimensional topography simulators provides facet motion, cellular, level-set or Monte-

Carlo algorithms in combination with macroscopic models for the simulation of low pressure deposition

processes determined by ballistic transport. However, for increasing process pressure leading to diffusion

determined mass transfer, up to now only two-dimensional simulations are available [1].

To close the gap of missing high pressure models in three-dimensional topography simulation we have ex-

tended the two-dimensional continuum transport and reaction model and present a fully three-dimensional

model for the simulation of arbitrary chemistry, multiple species high pressure chemical vapor deposition

(CVD) processes. Together with the low pressure models for our simulator presented in [2] all tools for

an integrated three-dimensional back-end process simulation including across wafer non uniformities of

ballistic transport and diffusion determined processes are now available.

Void Detection

Reaction Kinetics)

3D FEM Solver

(Diffusion Equations,

above the Feature

Surface Propagation

3D Meshing of the

M
e
s
h

Reactor Volume

Time Step Control

Geometry

S
im

u
la

ti
o

n

T
o

p
o

g
ra

p
h

y

Initial Geometry

Final Geometry

Surface

Rates

Surface Extraction

Figure 21: Flow diagram for the high pressure CVD model

3.2 CVD-Model

As shown in Fig. 1 the model consists of a combination of specialized tools which are called automatically

from a controlling instance. After extracting the surface of the initial geometry, a three-dimensional mesh

of the gas domain above the considered structure is generated. The differential equations describing the

mass transfer and the reaction kinetics are set up and evaluated with a general object-oriented solver which

operates on the previously generated unstructured mesh. The resulting deposition rates are transfered to

the topography simulator which works on a cellular material representation. The surface propagation for

each time step is deduced by applying structuring elements to the actual surface [3]. The size of the

structuring elements correspond to the deposition rates calculated with the continuum transport model.

24 3 MODELING OF HIGH-PRESSURE CHEMICAL VAPOUR DEPOSITION

Extraction

F
E

M

Surface

Surface Propagation

Surface Extraction

Final Geometry

Meshing

Figure 22: Results of the single modules composing the overall high pressure CVD model and informa-

tion transfered between the single modules: Initial structure consisting of a circular via with a

physical vapor deposition (PVD) barrier layer, extracted surface at an intermediate time step,

three-dimensional mesh, final geometry, propagated surface, and distribution of the reduced

gas species resulting from the continuum transport and reaction simulation.

The topography simulator also controls the time step, which is especially important, when features close

and voids are formed. To avoid the underestimation of the size of such a void by choosing a too large time

step, the topography simulator reduces the time step in such a case until the first closure of the void is

observed. Again the surface of the resulting geometry is extracted and the procedure is repeated for each

time step until the control instance observes the completion of the overall simulation time. Fig. 2 shows

the information transfered between the single modules for CVD into a circular shaped via.

The parameters for the meshing tool and the description of the rate model are set up in control files and

remain unchanged during all time steps. In this way the process runs fully automatic without any further

user interaction.

Several aspects have to be considered for the single modules: The topography simulation is based on a

cellular material representation. Therefore, the surface has to be extracted in a triangular format suitable

3.3 Applications and Results 25

as input for the meshing tool. For the tetrahedralization the dimensions of the gas space above the feature

have to be specified and additional points within the volume are inserted. The meshing tool uses a modified

advancing front algorithm to generate a three-dimensional unstructured tetrahedral mesh [4].

The chemistry model is set up with AMIGOS [5] which provides an analytic interface for discretizing

and solving differential equations. The governing principles for the CVD model are surface reactions

�D

i

�

i

�n

= R and diffusion of gas species in the plasma �

i

�t

= r(D

i

r

i

). For the CVD model we only

calculate the time independent steady state with �

i

�t

= 0. Transient calculations have revealed that the

steady state is reached after a few �s and that the steady state assumption for each single time step is

correct.

3.3 Applications and Results

As shown in Fig. 3 this model is applied to the simulation of tungsten CVD used for a Ti/TiN/W plug-fill

process [6]. The chemistry model used for the high pressure CVD process assumes that W is reduced

from WF

6

using H

2

and forming HF as by-product. The three gas species diffuse in the feature and the

reduction takes place at the feature surface. The assumed process conditions cause a depletion of WF

6

in

the feature and a characteristic overhang in the layer profile. The simulated structure is located at an off

center position of the wafer. Thus the TiN layer, formed by sputter deposition prior to the tungsten CVD

is strongly asymmetric requiring the rigorous three-dimensional simulation of the CVD film formation.

The required CPU time for this example, simulated with a DEC 600/333 workstation is approximately

10 min for each time step of the automatically controlled simulation sequence, including surface extrac-

tion, meshing, calculation of the deposition rates, time step control, void detection and surface propa-

gation. Depending on the size of the structure between 10.000 and 30.000 tetrahedra were used for the

continuum transport model.

26 3 MODELING OF HIGH-PRESSURE CHEMICAL VAPOUR DEPOSITION

Figure 23: The volume meshes used for the continuum transport model and the corresponding three-

dimensional film profiles for a sequence of time steps of a Ti/TiN/W plug-fill process. The

profiles in the lower row show from bottom to top the initial circular via, the TiN PVD layer

formed by sputter deposition and the growing W CVD layer.

27

4 Parallelization of a Monte-Carlo Ion Implantation Simulator for Three-

Dimensional Crystalline Structures

4.1 Introduction

When simulating semiconductor production processes, ion implantation is a very important, but also one

of the most critical steps, concerning the simulation time. Due to the complicated structures and the small

dimensions of modern semiconductor devices, Monte-Carlo simulation methods often have to be used

to describe non-planarity effects, phenomena resulting from ion channeling and large tilt angles, and to

provide accurate point-defect distributions for rapid thermal annealing processes. To reach the expected

accuracy, three-dimensional simulations have to be performed with sophisticated models [?][?], especially

for very shallow implantation conditions. By meeting all these requirements the simulation times exceed

one night or even more on high-end workstations for large structures. Therefore the parallelization of

the Monte-Carlo ion implantation simulation process step is desirable to avoid a bottleneck in the process

simulation flow, because normally a cluster of workstations is available to perform process simulation

and optimization. We present a parallelization method which allows a distributed simulation on a cluster

of single processor workstations. Our parallelization strategy is based on MPI and it allows to reuse all

sophisticated methods and models [?][?] developed for the single processor version without modification.

4.2 Parallelization Strategy

We use a master-slave strategy, where the master process provides all the I/O operations and controls and

synchronizes the behavior of all slaves which perform the actual simulation. The basic concept of the

Monte-Carlo ion implantation simulation method is that the trajectories through the simulation domain

are calculated for a large number of ions. The final positions of calculated particles and the number of

generated point-defects are stored in a histogram which is used to derive the particle and point-defect

distributions. The parallelization is achieved by splitting the simulation domain into several rectangular

CPU9CPU8CPU7

CPU6CPU5CPU4

CPU3CPU2CPU1

Figure 24: Schematic presentation of the split

of the simulation domain into sub-

domains and of the distribution of

the subdomains among several pro-

cessors.

prismatic subdomains (Fig. ??). Each available CPU is responsible for several of these subdomains. This

means that all particles moving through a certain region of the simulation domain are calculated by a

certain CPU and that all simulation results are stored in the memory belonging to a certain CPU. Thereby

28 4 PARALLELIZATION OF A MONTE-CARLO ION IMPLANTATION SIMULATOR

the trajectories calculated as well as the memory consumption are distributed among several worksta-

tions. When initializing the simulation the master process determines the distribution of the subdomains

according to the number and the speeds of the available CPUs, considering the following conditions.

V

i

CPU

i

' onst:;8i (8)

X

i

O

i

V

i

! max (9)

V

i

, O
i

are, respectively, the volume and the surface of a prismatic scope belonging to one processor, as

denoted in Fig. ?? by the thick lines. CPU
i

is the relative computing capability (e.g, floating point oper-

ations per second) of one processor. (??) ensures that every CPU gets a reasonable amount of trajectories

for calculation, because a faster CPU can calculate more trajectories than a slower CPU. Due to the fact

that the implanted ions are equally distributed over the device surface the number of trajectories that have

to be calculated by one CPU is proportional to the volume of the prismatic scope belonging to this CPU,

assuming that the same models are used throughout the whole simulation domain.

(??) guarantees a minimum of communication between the CPUs. It is possible that a particle moves to

the prismatic scope of another CPU during its motion through the simulation domain. In that case the

particle described by its physical and modeling properties has to be exchanged between two CPUs. Due

to the fact that such communication events always limit the performance gain of a parallelized application

it is desirable to minimize this communication. The probability that a particle leaves the scope of a CPU

is all the lower the larger the volume V
i

of the scope, and it is all the higher the larger the interface area

O

i

to other CPUs.

In order to take into account the influence of crystal damage on the trajectory of an ion a transient simula-

tion is explicitly introduced. This is not necessary for a single processor version, because in that case the

single trajectories are calculated one after the other while in the parallelized version the order of calcula-

tion is not deterministic. It is assumed that the ions belonging to the same time step do not influence each

other and therefore the order of calculation is of no relevance within one time step. This requirement is

met if the number of ions that are calculated per time step is significantly smaller then the total number of

calculated ions.

4.3 Simulation Flow

First the master parses the command-line, reads the input files and initializes the physical properties of the

simulation domain, the physical models and the implantation conditions. The initialization data are sent to

all slaves. Then the master creates the subdomains and evaluates a distribution scheme. The subdomains

and the distribution scheme are sent to all slaves. Thereby all processes are informed about the scope of

responsibility of all other processes too. Whenever a particle trajectory leaves the scope of responsibility

of a slave, this slave knows where to send the particle.

After this initialization the master process calculates the initial conditions of the implanted ions and pre-

pares them for being sent to the slaves. When all ions in all subdomains belonging to one time step are

prepared one package of ions is sent to each slave. Then the initial conditions of the ions of the next time

step are prepared for sending before the master process enters a wait-loop where it determines if all slaves

have finished the last time step. The sending, packing and waiting is repeated until the total number of

simulated ions is calculated. Afterwards the master process sends a ’Simulation Finished’ request to all

slaves, collects the information about all simulated ion trajectories, performs the statistical analysis for the

resulting doping and point-defect distributions, prepares the generation of the output and writes the output

files.

4.4 Results 29

The slaves enter a wait-loop immediately after the initialization process, where they are waiting for a

request either from the master or from a slave. Five types of requests are managed.

(a) Ion Package Request:

The trajectories of the ions in the ion package which is sent either from the master or from another

slave are calculated. During the trajectory calculation simulation data can be stored in or received

from the area of responsibility of another slave. Moreover a simulated particle can be moved to

another slave by sending an appropriate request.

(b) Store Simulation Data Request:

Simulation data that have to be stored in the local memory are received from another slave. Infor-

mation about the type and the position of the data is received before storing the data.

(c) Send Simulation Data Request:

Information about the type and the position of required data is received, and the corresponding

simulation data are sent to another slave.

(d) New Time Step Request:

The initialization procedure for a new time step is called.

(e) Simulation Finished Request:

While the slave returns to the wait-loop when he has finished one of the above requests he leaves the

loop in case of a ’Simulation Finished’ request. All simulation results are sent to the master before

the slave terminates his operation.

4.4 Results

By measuring the performance gain on a network of workstations it has turned out that this parallelization

strategy delivers an almost linear performance gain (Fig. ??), but only if the processor load is constant on

all CPUs throughout the simulation. In case of varying processor loads the performance gain can decrease

dramatically, because the calculation time for all trajectories at one time step is not constant anymore on

all CPUs. Thereby one slave always holds up all other slaves due to synchronization at the end of each

time step. Additionally it has to be mentioned that the size of one subdomain must be larger than the

lateral range of the implanted ions to keep the communication overhead low. This limits the number of

available subdomains and thereby the number of CPUs that can be used for a parallel simulation. However

for three-dimensional application the number of subdomains is larger than 1000 which normally exceeds

the number of available processors.

1 2 3 4 5 6
1

2

3

4

5

6

measured speed-up (constant loads)

measured speed-up (varying loads)

ideal speed-up

S
p
ee

d
-u

p

Number of CPUs

Figure 25: Measured speed-up compared to the

ideal speed-up for two different load

situations.

30 4 PARALLELIZATION OF A MONTE-CARLO ION IMPLANTATION SIMULATOR

4.5 Conclusion

We have presented a method for parallelizing a Monte-Carlo ion implantation simulator with a minimum

of communication overhead and therefore an almost linear speed-up. For strongly varying processor loads

a dynamic load balancing should be implemented. Besides a tremendous reduction of the simulation time

a splitting of the memory requirement is achieved, which allows to utilize several small workstations for

the simulation of large three-dimensional problems.

4.6 Acknowledgment

This work has been carried out within the SFB project AURORA, funded by the Austrian Science

Fund (FWF).

31

5 PROMIS-NT

PROMIS-NT is a two-dimensional diffusion simulator which is designed to serve as a development plat-

form for diffusion models in the field of TCAD process simulations. The simulator is derived from the

diffusion simulator DIFFUS [?] by replacing all previously hard coded functions concerning the diffusion

modeling by interfaces to the Algorithm Library. Thereby an external user interface to diffusion modeling

within a simulator which is fully integrated into the VISTA TCAD environment [?, ?] has been generated.

5.1 Features of PROMIS-NT

Diffusion simulation can be done on arbitrary two-dimensional geometries by using orthogonal or un-

structured triangular simulation grids. Orthogonal grids are restricted to geometries with Manhattan type

geometries. Built-in grid refinement algorithms are applied to the input data grids to form the initial sim-

ulation grids ensuring that some numerical quality criteria for the grids are fulfilled. With user defined

algorithms one can induce additional quality criteria when needed.

The geometry of the simulated device can be partitioned into several segments connected by

one-dimensional boundaries. The number of segments and boundaries is only limited by the memory

resources of the computer used for the simulation. For each of the segments and boundaries different

diffusion models can be defined.

The simulator is fully integrated into the VISTA TCAD environment. The input and output format of the

device descriptions is the Profile Interchange Format PIF [?, ?]. Therefore simulations with PROMIS-NT

can be integrated into a chain of other two-dimensional process simulations within the VISTA environ-

ment, or by using the tifwrap program [?], also into TMA Suprem-4 [?, ?] process simulation flows.

The predefined set of quantities available for the diffusion simulation which is compatible to the standard

set of quantities available within TMA Suprem-4 or VISTA process simulations, can be replaced or

extended by an arbitrary number of user defined quantities.

Algorithms determining the initial distribution of each quantity can be defined for each segment of the ge-

ometry. Analogously there is the possibility to define algorithms to postprocess the quantity distributions

before writing the simulation results into the resulting PIF file.

The profile of the process temperature can be controlled by user defined MDL functions.

5.2 Supported Model Structures

To liberate the developer of the physical diffusion model from the task to discretize the corresponding par-

tial differential equation system, PROMIS-NT has been equipped with built-in algorithms to discretize the

transport equations (??) and (??) and boundary models (??) and (??), respectively. Thereby the task of im-

plementing new diffusion models is reduced to the development of algorithms which compute appropriate

values and derivatives for the needed coefficients of (??) – (??).

5.2.1 Volume Models

Equation (??) shows the structure of the partial differential equation system describing the transport of N

quantities W
j

within a segment of the device geometry.

32 5 PROMIS-NT

N

X

j=1

�

ij

�

�W

j

�t

+ div

~

J

i

+

i

= 0; i = 1: : :N (10)

~

J

i

=

N

X

j=1

(a

ij

� gradW

j

+ b

ij

�W

j

� grad + ~

ij

�W

j

) +

~

d

i

(11)

W

j

denotes the dependent variables which are the values of the affected quantities and N is the number

of equations. is either the electrostatic potential resulting from (??) or can be chosen to be one of the

dependent variables W
j

by a corresponding statement in the input deck.

For a system of N impurities the total net concentration C
net

of all impurities is given by equation (??).

z

i

denotes the charge state of the impurity C
i

(0 for neutral impurities, +1 for singly ionized acceptors,

and �1 for singly ionized donors).

C

net

=

N

X

i=1

z

i

�C

i

(12)

The electrostatic potential is determined by the Poisson equation (??)

div(grad) =

q

�

� (n� p� C

net

) (13)

By assuming vanishing space charge and the applicability of Boltzmann statistics the Poisson equation

can be solved explicitly (??).

 =

k�T

q

� asinh

�

C

net

2�n

i

�

(14)

5.2.2 Boundary Models

Analogously to the situation for the volume model equations, a generalized formulation of models de-

scribing the flux of quantities across the interface between two adjacent segments has been discretized,

leaving the user the possibility to provide models determining the coefficients of the underlying equation

system. In the following equations J1
j

denotes the flux of the quantity j leaving segment 1 whereas J2
j

gives the flux of quantity j entering segment 2 (Fig. ??).

The default boundary condition (??) for all quantities is a homogeneous Neumann type condition which

defines a zero flux over the boundary.

J

1

j

= J

2

j

= 0 (15)

These default boundary conditions can be replaced for any combination and number of quantities on both

of the adjoining segments by either defining the flux over the interface (Section ??) or defining the actual

concentration of the respective quantities by adding Dirichlet type boundary equations as described in

Section ??.

5.2 Supported Model Structures 33

Boundary Flux Equation System Under the assumption of N
1

and N
2

quantities on the segments 1

and 2, respectively, (??) and (??) represent a linear equation system for the partial current densities of all

involved quantities crossing the interface in normal direction. In these equations

I
1
1

....
I
1
N1

....

Segment 1 Segment 2

I1

I

2

2
N2

Figure 26: PROMIS-NT interface model scheme

N

1

X

j=1

(�

11

i;j

�J

1

j

) +

N

2

X

j=1

(�

12

i;j

�J

2

j

) + �

1

i

= 0; i = 1: : :N

1

(16)

N

1

X

j=1

(�

21

i;j

�J

1

j

) +

N

2

X

j=1

(�

u22

i;j

�J

2

j

) + �

2

i

= 0; i = 1: : :N

2

(17)

All coefficients �11, �12, �21, and �22 are functions of the simulation time t, the process temperature

T , and the spatial coordinates x and y. The coefficients �1 and �2 may depend on the concentrations

of the quantities on both sides of the interface. The model developer has to provide MDL classes which

determine the actual values of the coefficients and their derivatives to the quantity concentrations which

are the dependent variables in the PROMIS-NT internal equation system.

Dirichlet Type Boundary Conditions Dirichlet type boundary conditions (??) – (??) can be specified

for quantities which are not contained in the equation system (??) – (??). The resulting values of the

quantity on both sides of the interface can be functions of the simulation time t, the process temperature

T , the spatial coordinates x and y and the values of all available quantities on both sides of the interface.

C

1

i1

= f(x; y; t; T; C

1

j1

; C

2

j2

); i1; j1 = 1: : :N

1

(18)

C

2

i2

= f(x; y; t; T; C

1

j1

; C

2

j2

); i2; j2 = 1: : :N

2

(19)

5.2.3 Process Temperature Modeling

PROMIS-NT supports the arbitrary user defined functions for the definition of the lattice temperature T

(??). The process temperature can be a function of the simulation time t, the simulation start time t
s

and

the simulation end time t
e

. The function is evaluated at discrete dates resulting from the built-in time step

control algorithms.

T = f(t; t

s

; t

e

) (20)

34 5 PROMIS-NT

5.3 Quantity Management and VISTA Integration

PROMIS-NT provides a default set of quantities available for diffusion simulations which is coordinated

with other process simulators within the VISTA TCAD environment. It is supported to define any number

of additional quantities including their charge states in different materials and their representation within

PIF files. Table ?? depicts an excerpt of the quantities contained in the PROMIS-NT default quantity

set. The complete and up-to-date list can be examined by looking into the PROMIS-NT default setup file

promis-defaults.mdlwhich is part or the PROMIS-NT distribution.

quantity MDL name description

Boron B substitutional boron

Boron B active interstitial boron

Boron B gb grain boundary boron (poly silicon)

Arsenic As substitutional arsenic

Arsenic As active interstitial arsenic

Phosphorus P substitutional phosphorus

Phosphorus P active interstitial phosphorus

Silicon Si silicon

Silicon Si interstitial interstitial silicon

Silicon Si clustered clustered silicon

Silicon Si vacancy silicon atom vacancy

Grain Size Grain Size poly silicon grain size

Grain Orientation Grain Orientation poly silicon grain orientation

Stress Sxx stress tensor element xx

Stress Sxy stress tensor element xy

Stress Syy stress tensor element yy

Velocity vx velocity lateral component

Velocity vy velocity vertical component

Table 1: PROMIS-NT quantities

It is recommended to leave these default definitions unchanged if input or output files of PROMIS-NT

should be exchanged with other simulators of the VISTA framework.

5.3.1 Charge States

For the computation of the built-in potential (??) it is required that the charge states of quantities in the

surrounding material segments are defined. Again PROMIS-NT provides a set of predefined materials

(Table ??) for which the charge states of the default quantities Table ?? are properly defined.

The explicit computation of the built-in potential in other materials can be ensured by adding charge state

definitions for the required quantities.

5.4 The Structure of PROMIS-NT

The diffusion modeling framework PROMIS-NT has been built on top of the basic input/output, equa-

tion solving and transient time step control modules of the diffusion simulator DIFFUS. Therefore the

5.5 The PROMIS-NT Input Deck 35

material MDL name

silicon Si

germanium Ge

silicon-germanium SiGe

gallium arsenide GaAs

silicon dioxide SiO2

Nitride Si3N4

resist Resist

aluminum oxide Al2O3

poly crystalline silicon Poly

Table 2: PROMIS-NT segment materials

discretization function of a number of built-in diffusion models were replaced by the discretization func-

tions for the differential equation systems (??) – (??). Interface structures to the Algorithm Library have

been introduced within these discretization functions as well as for the initialization and post-processing

of quantities, the process temperatures modeling, quantity definition and other strategic algorithms for the

diffusion modeling. A set of PROMIS-NT specific MDL Parameter classes, operators, functions, and

Model classes forms the development platform for user defined diffusion models collected in external

libraries of MDL extension libraries and MDL input decks (Fig. ??).

5.5 The PROMIS-NT Input Deck

The simulation flow of PROMIS-NT is completely controlled by statements given on the input deck.

These are responsible for the general simulator setup including information about input and output files,

the simulation time, and process temperature progression as well as for the definition of the entire set of

diffusion modeling equations (??) – (??).

PROMIS-NT is designed to allow for the development of new diffusion models by solely understanding

the structure and the sequence of Model evaluations defined on this input deck. Therefore the following

sections provide a detailed description of this interface both for the purpose of documentation and for

demonstrating the extent of application specific knowledge still required for extending a simulator to such

a degree.

It should be noted in advance that within the input deck all indices contained in (??) – (??) are replaced

by the according MDL names of the regarding materials and quantities placed inside the MDL array sub-

scription operator ’[]’. Furthermore the contents of the following tables reflect the documentation and

default values associated with the regarding Parameters and Models, which will be forwarded to the

user by the Algorithm Library in case that missing or erroneous definitions are found on the input deck.

5.5.1 Logical Structure of the PROMIS-NT Input Deck

As depicted in Fig. ?? a PROMIS-NT input deck forms a hierarchically organized tree of MDL model

instances. Starting from the root by iterating to the outer leaves these model instances are responsible for

the more and more detailed description of the diffusion simulation to be computed.

The optional Model instances StartUp and ShutDown build the flanks of the entire input deck struc-

ture both in terms of the logical structure and in terms of the simulation flow as they give the user the

possibility to define MDL classes which will be evaluated upon startup and shut down of PROMIS-NT.

3
6

5
P

R
O

M
IS

-N
T

Direct Iterative

Equation System

Assembler

Solver Library

Vienna C++

Class Library

Model &

Promis-NT

Parameter

Classes

MDL Compiler

MDL Interpreter

Model &
Parameter Server

V
M

A
K

E
-In

teg
ratio

n

Quantity Management

Geometry

Support

Grid

Support

Application

Layer

PIF -

PDE Discretization

Segment & Boundary Model Setup

Transient Integration, Pre- & Post Processing

Promis-NT

MDL Files

Equation Assembly

Algorithm Library

User Defined MDL Classes

Shared
Libraries

VISTA Virtual Operating System Library

F
ig

u
re

2
7
:

S
tru

ctu
re

o
f

P
R

O
M

IS
-N

T

T
h
e

ro
o
t

o
f

th
is

tree
is

g
iv

en
b
y

th
e

d
efi

n
itio

n
o
f

th
e
P
r
o
m
i
s
N
T
S
e
t
u
p

M
o
d
el

In
stan

ce
resp

o
n
sib

le
fo

r

th
e

g
en

eral
setu

p
o
f

th
e

sim
u
latio

n
m

o
d
els

an
d

p
aram

eters
co

n
cern

in
g

v
ario

u
s

d
etails

o
f

th
e

sim
u
latio

n

co
n
tro

l.

I
n
s
t
a
n
c
e
P
r
o
m
i
s
N
T
S
e
t
u
p
=
I
n
s
t
a
n
c
e
N
a
m
e
;

5.5 The PROMIS-NT Input Deck 37

processTemperature

devicePostProcessing

devicePreProcessing

quantityList

chargeStateTable

deviceSetup

gridAdaption

PromisNTSetupModel Model Model

ProcessTemperatureModel

DevicePreProcessingModel

DevicePostProcessingModel

GridAdaptionModel

QuantityListModel

ChargeStateTableModel
DeviceSetupModel

PromisNTSetup StartUp ShutDown

global Scope

Segment Scope

segmentCoefficientSetup

boundaryCoefficientSetup

segmentPreProcessingSetup

segmentPostProcessingSetup

PotentialQuantity

Quantity/Index Scope

quantityPostprocessing

SegmentPostProcessingSetupModel

alpha

a

...

SegmentCoefficientSetupModel

...

BoundaryCoefficientSetupModel

beta11

beta12

SegmentPreProcessingSetupModel

quantityInitialization
QuantityInitializationModel

CoeffModel_alpha

CoeffModel_a

QuantityPostprocessingModel

CoeffModel_beta11

CoeffModel_beta12

Figure 28: Structure of the PROMIS-NT input deck

The second task for the PromisNTSetup Model Instance is to specify MDL classes which are respon-

sible for

38 5 PROMIS-NT

� the process temperature modeling

� optional algorithms which have to be evaluated after all quantities have been initialized to their

starting conditions

� optional algorithms which have to be evaluated after the post processing of all quantities

� the optional grid adaption algorithm

� the setup of the quantity list

� the setup of the charge states of the quantities

� the setup of MDL models which in turn are responsible to determine all information associated with

the whole device.

The above mentioned DeviceSetupModel instance associates with each material segment MDL Mo-

del classes which are used to setup all segment specific information:

� The segmentPreProcessingSetup Model instances are responsible for the specification

of Model classes which in term are used to initialize all quantity distributions contained in their

dedicated segments.

� Likewise the segmentPostProcessingSetup Model instances determine the Model

classes responsible for the quantity distribution post processing.

� The segmentCoefficientSetupModels administer associative lists and arrays determining

the Model classes which will be employed to compute the coefficient values of the volume models

(??) – (??).

� Analogously the boundaryCoefficientSetup Models contain information about the Mo-

del classes determining the values of the various boundary model coefficients in (??) – (??).

� The optional string value PotentialQuantity can be used to specify the MDL name of the

quantity which computes the value of the built-in potential used in (??), thus replacing (??).

The next hierarchy level of the input deck is formed by Model instances dedicated to single segments or

boundaries between them. All Model instances on this level contain associative lists or arrays containing

information about which Model instances to use for the computation of the various quantity concentra-

tions and coefficient values on that segment. For each segment which is subject to the diffusion simulation

modeling an own set of segment level Models has to be defined.

On the last hierarchy level of Models contained in PROMIS-NT input decks the quantity specific ini-

tialization, coefficient and post processing Models can be found. Opposed to the task of all other models

discussed so far, these Model instances are not used for the further distribution of information about the

model structure but for the actual computation of coefficients or quantity values found in (??) – (??).

5.5.2 PROMIS-NT Process Flow

Besides the knowledge of the input deck structure, the hierarchical information flow, the model developer

has also to be aware of the program flow and sequence of Model evaluations to allow for the successful

development of diffusion models. The PROMIS-NT process flow can be divided into three major phases:

5.5 The PROMIS-NT Input Deck 39

1. The initialization phase (Fig. ??) starts by parsing the complete input deck. In case the optional

StartUp Model instance is defined the concerning Model class is immediately instantiated and

evaluated. No type requirements or input parameters are defined or demanded for these Model in-

stances. The typical application of a StartUp Model is to prepare input PIF files or to eventually

compile external Model libraries.

eval. ChargeStateTableModel

eval. QuantityListModel

eval. DeviceSetupModel

ProcessTemperatureModel(t_s)eval.

initial Grid Adaption

initialize Device Structures

Parse Input Deck
init. ALIB (MDL-Types, Functions, Models)

StartupModel? StartupModeleval.

"active" Segments

eval. SegmentSetupPreprocessingModels

SegmentCoefficientSetupModels

BoundaryCoefficientSetupModels

SegmentPostProcessingSetupModels

QuantityInitializationModeleval. Grid Nodes "active" SegmentsQuantities

DevicePreProcessingModel? DevicePreProcessingModeleval.

eval. PromisNTSetup

yes

no

yes

no

Figure 29: Program flow of the PROMIS-NT initialization phase from the users point of view

The next step is the instantiation and evaluation of the PromisNTSetup Model instance, fol-

lowed by the definition of all quantities resulting from the evaluation of the QuantityList-

Model and ChargeStateTableModel instances. After evaluating the ProcessTempera-

40 5 PROMIS-NT

tureModel to obtain the process temperature value for the start time of the simulation and the

evaluation of the DeviceSetupModel, the PROMIS-NT process flow continues with the setup

of the segment specific Model instances.

All SegmentPreProcessingSetupModel, SegmentCoefficientSetupModel,

BoundaryCoefficientSetupModel, and SegmentPostProcessingSetupModel

instances will be evaluated by iteration over all “active” segments. In this context “active” means

that within the PromisNTSetup model instance the associative list diffusionModel assigns

the Promis model structure to the according segmen.

The subsequent program loops determine the initial conditions of the differential equation system

(??) – (??). All QuantityInitializationModel instances are evaluated by iterating in the

innermost loop over the points of the simulation grid, then over all quantities contained on a single

segment. In the outermost loop is performed by iterating over all “active” segments.

The initialization phase is concluded by the evaluation of the optional DevicePreProcessing-

Model instance defined by using the PromisNTSetupModel instance. The purpose of this mo-

del is to offer the possibility for interaction with the user in between the quantity initialization and

the actual transient simulation such as providing some information about the initial quantity distri-

butions resulting from the setup procedure so far described.

2. The transient simulation (Fig. ??) is performed by iterating over all coefficient models defined

during the previous initialization phase to compute the coefficient values in (??) – (??). Again

looping is done by first evaluating any model for all points of the simulation grid, repeating this

innermost loop for all coefficient models and with the lowest frequency for all “active” segments

and boundaries. These loops in turn are repeated for all time steps t k. Due to the time step control

mechanisms of the simulator no ordering of subsequent time steps is possible.

evaluate

Coefficient Model
Grid Nodes specified

Coefficents

all "active"

Segments &

Boundaries

ProcessTemperatureModel(t_k)eval.

Figure 30: Program flow of PROMIS-NT during the transient simulation phase from the users point of

view

3. The post processing phase (Fig. ??) shows some similarities to the initialization phase and is used to

determine the final values of all quantities which will be written to the resulting PIF file. Therefore

a triple loop over all QuantityPostProcessingModel instances is performed analogously

to the QuantityPreProcessingModel evaluation loop during the initialization phase. Again

5.6 PROMIS-NT Application Examples 41

an optional DevicePostProcessingModel instance can be used for interacting with the user

before the resulting PIF file is generated.

The last possibility to intervene the program flow of PROMIS-NT is to define the optional Shut-

DownModel instance. Similar to the StartUpModel instance it can for example be used for user

defined conversions of the resulting PIF file.

Grid Nodes "active" SegmentsQuantities

DevicePostProcessingModel?

eval. QuantityPostProcessingModel

Write PBF

ShutDownModeleval.ShutDownModel?

DevicePostProcessingModeleval.
yes

yes

no

no

Figure 31: Program flow of the PROMIS-NT post processing phase from the users point of view

5.6 PROMIS-NT Application Examples

The following sections present examples for the implementation of diffusion modeling approaches by us-

ing the MDL input deck of PROMIS-NT. Their purpose is first to provide an introduction and templates

for the usage of the PROMIS-NT diffusion modeling environment. Second these examples shall demon-

strate the usability of the Algorithm Library concepts and the MDL extension language for the creation of

highly customizable and extensible simulators on the basis of an existing traditional simulator application.

5.6.1 Five Species Phosphorus Pair-Diffusion Model

Richardson, Carey, and Mulvaney formulated the five species phosphorus diffusion model[?, ?] described

by the differential equation system in (??) – (??). In these equations P , I , V , E, and F represent the

concentrations of substitutional phosphorus, the silicon interstitials, vacancies, phosphorus-vacancy, and

phosphorus-interstitial pairs, respectively.

42 5 PROMIS-NT

�V

�t

= D

V

r

2

V � k

E

for

P V + k

E

rev

E � k

bi

(V I � V

eq

I

eq

) (21)

�I

�t

= D

I

r

2

I � k

F

for

P I + k

F

rev

F � k

bi

(V I � V

eq

I

eq

) (22)

�E

�t

= D

E

r

2

E + k

E

for

P V � k

E

rev

E (23)

�F

�t

= D

F

r

2

F + k

F

for

P I � k

E

rev

F (24)

�P

�t

= �k

E

for

P V + k

E

rev

E � k

F

for

P I + k

F

rev

F (25)

The according MDL input deck can be structured into

� the definition of global Parameters containing the values of the coefficients

k

E

for

; k

F

for

; : : : (Example ??),

� the global simulation setup for the two affected material segments (Example ??). To allow for

series of subsequent simulation experiments the names of input and output device descriptions and

the simulation times are forwarded to the simulator by using environment variables.

� the definition of the required quantities P; V; I; E; and F (Example ??). Since the electrostatic

potential is not taken into consideration within (??) – (??) the definition of charge states can be

omitted.

� The diffusion modeling setup depicted in Example ??

� the setup of initialization and post processing models for all affected quantities (Example ?? and

Example ??), responsible for the initialization of the quantities I and V to their initial values of

1:0e14m

�3 .

� and finally the definition of the required coefficients of the pair diffusion model (Example ?? and

Example ??).

// Parameters

Parameter<double> k_for_e = 1.0e-14; // [cmˆ3/s]

Parameter<double> k_for_f = 1.0e-14;

Parameter<double> k_bi = 1.0e-10;

Parameter<double> k_rev_e = 10.; // [1/s]

Parameter<double> k_rev_f = 12.;

Parameter<double> Dv = - 1.0e-10; // [cmˆ2/s]

Parameter<double> Di = - 1.0e-09;

Parameter<double> De = - 1.0e-13;

Parameter<double> Df = - 2.0e-13;

Parameter<double> Veq = 1.0e14; // [1/cmˆ3]

Parameter<double> Ieq = 1.0e14;

Parameter<double> VIeq = 1.0e14 * 1.0e14;

Example 5.1: Global parameter declarations

5.6 PROMIS-NT Application Examples 43

Instance PromisNTSetup = PairDiffInitModel;

NewModel PairDiffInitModel : PromisNTSetupModel f

evaluate f

:inputPBF = "$COMPILE";

:outputPBF = "$OUTPUT";

:endTime = "$ENDTIME";

:stepTime = "$STEPTIME";

:quantityList = "P_Pair_Quantities";

:chargeStateTable = "P_Pair_Charge_States";

:processTemperature = "PairDiffTemperatureModel";

:deviceSetup = "P_Pair_Diff_DeviceSetup";

:diffusionModel["Si"] = "Promis";

:diffusionModel["Ambient"] = "Promis";

:boundaryModel["Ambient"]["Si"] = "Promis";

g

g

NewModel PairDiffTemperatureModel : ProcessTemperatureModel f

evaluate f

:temp = 1173.0;

g

g

Example 5.2: Simulator setup for the five species pair diffusion model

NewModel P_Pair_Quantities : QuantityListModel f

evaluate f

:quantity["P"] = ff P gg;

:quantity["V"] = ff V gg;

:quantity["I"] = ff I gg;

:quantity["E"] = ff E gg;

:quantity["F"] = ff F gg;

g

g

NewModel P_Pair_Charge_States : ChargeStateTableModel f

evaluate fg

g

Example 5.3: Quantity setup for the five species pair diffusion model

NewModel P_Pair_Diff_DeviceSetup : DeviceSetupModel f

evaluate f

:segmentPreProcessingSetup ["Si"] = "SiSegmentPreProcessingSetup";

:segmentCoefficientSetup ["Si"] = "SiCoefficient";

:segmentPostProcessingSetup["Si"] = "SiSegmentPostProcessingSetup";

:segmentPreProcessingSetup ["Ambient"] = "AmbientPreprocessingSetup";

:segmentCoefficientSetup ["Ambient"] = "AmbientCoefficient";

:segmentPostProcessingSetup["Ambient"] = "AmbientPostprocessingSetup";

:boundaryCoefficientSetup["Ambient"]["Si"] = "P_Pair_BoundarySetup";

g

g

Example 5.4: Device setup for the five species pair diffusion model

44 5 PROMIS-NT

NewModel SiSegmentPreProcessingSetup : SegmentPreProcessingSetupModel f

basicSetup f

:quantityInitialization["P"] = "Zero_Init";

:quantityInitialization["V"] = "Zero_Init";

:quantityInitialization["I"] = "Zero_Init";

:quantityInitialization["E"] = "Zero_Init";

:quantityInitialization["F"] = "Zero_Init";

g

evaluate f

call basicSetup;

:quantityInitialization["V"] = "VI_Init";

:quantityInitialization["I"] = "VI_Init";

g

g

NewModel AmbientPreprocessingSetup : SegmentPreProcessingSetupModel f

evaluate f call basicSetup; g

g

NewModel SiSegmentPostProcessingSetup : SegmentPostProcessingSetupModel f

setup f

:quantityPostprocessing["P"] = "No_Post";

:quantityPostprocessing["V"] = "No_Post";

:quantityPostprocessing["I"] = "No_Post";

:quantityPostprocessing["E"] = "No_Post";

:quantityPostprocessing["F"] = "No_Post";

g

evaluate f call setup; g

g

NewModel AmbientPostprocessingSetup : SiSegmentPostProcessingSetup f

evaluate f call setup; g

g

Example 5.5: Pre- and postprocessing setup

The simulation results depicted in Fig. ??, Fig. ??, and Fig. ?? show the expected formation of the flat

point defect profiles in the inner device regions determined by their reaction term (V I � V

eq

I

eq

) in

the according equations (??) and (??). The formation of the sharp gradients of the defect concentrations

near the surface induced by the Dirichlet boundary conditions and the coupling with the equations for the

phosphorus, phosphorus-interstitial, and phosphorus-vacancy pair profiles in term is responsible for the

creation of the phosphorus plateau, kink, and tail. The resulting profiles perfectly coincide with the results

obtained by the authors of this pair diffusion model.

5.6.2 Performance Considerations

Benchmarking a number of simulators to obtain reliable performance numbers is due to different imple-

mentations of gridding and discretization schemes a difficult task. In most situations it is impossible to

force two different simulators to compute their results with exactly the same models on exactly the same

simulation grids. The most interesting performance numbers of the Algorithm Library can be obtained

somewhat more easily.

Since the Algorithm Library was put on the PROMIS-NT simulator kernel after the initial release of the

first version of the PROMIS-NT simulator, benchmarks with diffusion models which were

� implemented by “hard coded” C++ functions in the original PROMIS-NT application,

5.6 PROMIS-NT Application Examples 45

E

I

V

P

F

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

L
og

 o
f

C
on

ce
nt

ra
tio

n
[c

m
^-

3]

Distance to Interface [um]

Figure 32: Dopant distribution after 6 seconds

E

I

V

P

F

E

I

V

P

F

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

L
og

 o
f

C
on

ce
nt

ra
tio

n
[c

m
^-

3]

Distance to Interface [um]

Figure 33: Dopant distribution after 60 seconds

E

I

V

P

F

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

lo
g

dist

Figure 34: Dopant distribution after 600 seconds

46 5 PROMIS-NT

� implemented by using the Algorithm Library interfaces and manually written C++ classes,

� implemented by using MDL definitions on the input deck of the simulator,

� and implemented by utilizing the MDL just in time compiler mechanism

could easily be implemented and delivered comparable results with the following characteristics:

No measurable differences were found between model implementations with “hard

coded” C++ functions and “manually written” C++ classes managed by the Algorithm Library.

NewModel SiCoefficient : CoefficientSetupModel f

evaluate f

:alpha["P"]["P"] = "Uno_alpha"; :alpha["V"]["V"] = "Uno_alpha";

:alpha["I"]["I"] = "Uno_alpha"; :alpha["E"]["E"] = "Uno_alpha";

:alpha["F"]["F"] = "Uno_alpha";

:a["V"]["V"] = "V_a"; :a["I"]["I"] = "I_a";

:a["E"]["E"] = "E_a"; :a["F"]["F"] = "F_a";

:gamma["P"] = "P_gamma"; :gamma["V"] = "V_gamma";

:gamma["I"] = "I_gamma"; :gamma["E"] = "E_gamma";

:gamma["F"] = "F_gamma";

g

g

NewModel AmbientCoefficient : CoefficientSetupModel f

evaluate f

:alpha["P"]["P"] = "Uno_alpha"; :alpha["V"]["V"] = "Uno_alpha";

:alpha["I"]["I"] = "Uno_alpha"; :alpha["E"]["E"] = "Uno_alpha";

:alpha["F"]["F"] = "Uno_alpha";

g

g

NewModel P_Pair_BoundarySetup : BoundaryCoefficientSetupModel f

evaluate f

:dirichlet2["V"] = 1.0e14; :dirichlet2["I"] = 1.0e14;

:dirichlet2["P"] = 5.0e20; :dirichlet2["E"] = 5.0e19;

:dirichlet2["F"] = 4.16666e19;

g

g

Example 5.6: Coefficient setup

NewModel Zero_Init : QuantityInitializationModel f

evaluate f

:Cown = 0.0;

g

g

NewModel VI_Init : QuantityInitializationModel f

evaluate f

:Cown = 1.0e14;

g

g

NewModel No_Post : QuantityPostprocessingModel fg

Example 5.7: Quantity initialization and postprocessing

5.6 PROMIS-NT Application Examples 47

NewModel Uno_alpha : CoeffModel_alpha f

evaluate f :Coeff = 1.; g

g

// Coefficients for P related equation

NewModel P_gamma : CoeffModel_gamma f

evaluate f

:Coeff = - ::k_for_e * :P * :V + ::k_rev_e * :E -

::k_for_f * :P * :I + ::k_rev_f * :F;

:dCoeffnd_P = - ::k_for_e * :V - ::k_for_f * :I;

:dCoeffnd_V = - ::k_for_e * :P;

:dCoeffnd_I = - ::k_for_f * :P;

:dCoeffnd_E = ::k_rev_e;

:dCoeffnd_F = ::k_rev_f;

g

g

// Coefficients for V related equation

NewModel V_a : CoeffModel_a f

evaluate f :Coeff = ::Dv; g

g

NewModel V_gamma : CoeffModel_gamma f

evaluate f

:Coeff = - ::k_for_e * :P * :V + ::k_rev_e * :E -

::k_bi * (:V * :I - ::VIeq);

:dCoeffnd_P = - ::k_for_e * :V;

:dCoeffnd_V = - ::k_for_e * :P - ::k_bi * :I;

:dCoeffnd_I = - ::k_bi * :V;

:dCoeffnd_E = ::k_rev_e;

g

g

// Coefficients for I related equation

NewModel I_a : CoeffModel_a f

evaluate f :Coeff = ::Di; g

g

NewModel I_gamma : CoeffModel_gamma f

evaluate f

:Coeff = - ::k_for_f * :P * :I + ::k_rev_f * :F -

::k_bi * (:V * :I - ::VIeq);

:dCoeffnd_P = - ::k_for_f * :I;

:dCoeffnd_V = - ::k_bi * :I;

:dCoeffnd_I = - ::k_for_f * :P - ::k_bi * :V;

:dCoeffnd_F = + ::k_rev_f;

g

g

Example 5.8: Coefficient Models (part 1)

The apparently required indirection for the evaluation of Algorithm Library based models and the

initialization of the Algorithm Library structures caused only minimal overhead which was covered by

the inaccuracy of the system timers.

The usage of MDL Model definitions caused runtime overheads in the range of 50 to 200 percent. Using

just in time compiled MDL Models normally decreased this overhead to 5 to 10 percent depending on

the amount of optimization effort spent on the hand written Models.

48 5 PROMIS-NT

// Coefficients for E related equation

NewModel E_a : CoeffModel_a f

evaluate f :Coeff = ::De; g

g

NewModel E_gamma : CoeffModel_gamma f

evaluate f

:Coeff = ::k_for_e * :P * :V - ::k_rev_e * :E;

:dCoeffnd_P = ::k_for_e * :V;

:dCoeffnd_V = ::k_for_e * :P;

:dCoeffnd_E = - ::k_rev_e;

g

g

// Coefficients for F related equation

NewModel F_a : CoeffModel_a f

evaluate f :Coeff = ::Df; g

g

NewModel F_gamma : CoeffModel_gamma f

evaluate f

:Coeff = ::k_for_f * :P * :I - ::k_rev_f * :F;

:dCoeffnd_P = ::k_for_f * :I;

:dCoeffnd_I = ::k_for_f * :P;

:dCoeffnd_F = - ::k_for_f;

g

g

Example 5.9: Coefficient Models (part 2)

Similar results were obtained by benchmarking the MINIMOS-NT device simulator. Also no significant

differences between different CPUs and compilers could be measured.

49

6 Comparison of Finite Element and Finite Box Discretization for Three-

Dimensional Diffusion Modeling Using AMIGOS

6.1 Introduction

The maximum principle is the most important property of solutions to convection-diffusion equations. In

its simplest form it states that both the maximum and the minimum concentrations occur on the boundary

or at the initial time. This implies that if the boundary and initial values are positive, then the solution is

positive everywhere and the concentration never reaches negative values. It is desirable that the employed

discretization also satisfies a maximum principle. As is well known, this is guaranteed, if the system

matrix resulting from the discretization is an M-matrix [?].

6.2 Discretization using AMIGOS

We compare the results of two different spatial discretizations for diffusion in three dimensions using

AMIGOS [?] which is especially designed for simple but efficient model development. Through its pow-

erful analytical model interface (AMI) it was possible to implement the Finite Volume (FV) as well as the

Finite Element (FE) method. This allows the comparison of the solutions on identical meshes with the

same linear solver in a very simple and straightforward manner.

Both for FV and FE we use the well known standard approaches with backwards Euler time discretization.

For FV (see e.g. [?]) we calculate the Voronoi boxes and the corresponding interface areas for each ele-

ment. In the case of FE we use the Galerkin weighted residual approach with linear form functions.

Then the system matrix K is of the form

K =

M

4t

+ �S

where M denotes the mass matrix, S is the stiffness matrix, and � denotes the diffusion constant (ho-

mogeneous case). To make K an M-matrix, the mass matrix has to be lumped, and S also has to be an

M-matrix. Since S depends on the mesh, this condition translates to a constraint on the mesh.

In two dimensions Delaunay meshes guarantee that the maximum principle is satisfied for FV as well as

for FE. In three dimensions Delaunay meshes are still sufficient and necessary for FV, as shown in [?].

However, for FE this does not hold anymore [?]: When applying FE on a Delaunay mesh in three dimen-

sions negative concentrations emerge, which implies that the M-matrix property is lost. Until recently this

phenomenon was not fully understood. But by using results from [?] and [?] it is possible to grasp what

is going on: The constraints on the mesh for FE and FV are two different purely geometric notions which

are equivalent only in two dimensions. Each of them generalizes naturally to higher dimensions, and it

can be proved that neither of them implies the other any more. This is an essential discovery with heavy

impact on the development of meshing strategies.

50 6 COMPARISON OF FINITE ELEMENT AND FINITE BOX DISCRETIZATION

6.3 Numerical Experiments

To illustrate some of the consequences we solve the pure diffusion equation on one and the same three

dimensional Delaunay mesh using FE and FV. We used an ortho-product point distribution on the cubic

simulation domain. Every sub-cube was tetrahedralized into six tetrahedra. 1

In both cases a Gaussian profile (offset 1012) is used as the initial three-dimensional distribution. As

expected FV gives qualitatively correct results. Fig. ?? is a one-dimensional cut, showing the initial

distribution and the FE and the FV solution after 120 time-steps. Even for this simple test problem the FE

solution strongly violates the maximum principle.

Fig. ?? gives a two-dimensional cut and shows the bad quality of the FE solution. On the black areas the

solution becomes negative. Note that the mesh has translational symmetries, which spoil the rotational

symmetry of the initial distribution. These areas spread out in time, as shown in Fig. ??. The absolute value

of the emerging negative concentrations is much larger than the minimal initial concentration. Finally,

Fig. ?? depicts the corresponding relative error between the FE and the FV solution. The error oscillates

strongly and is large on the regions, where the concentration is negative. But since mass is conserved the

negative concentrations are compensated by additional erroneous mass in the positive areas.

The negative concentrations are a particularly serious problem in diffusion in process simulation, because

in typical applications the concentration varies in many orders of magnitude within a small area. For

a more complicated transient problem like the pair diffusion model the negative concentrations lead to

severe instabilities.

6.4 Impact on Meshing Strategies

The obvious cure for these FE-troubles would be to use a mesh which gives an M-Matrix. However, as

long as the available meshing tools concentrate on the Delaunay criterion, there is little hope of achieving

this.

We want to stress that from a Delaunay point of view these meshes can look really bad, but they are

especially tuned to the FE-discretization and give qualitatively correct results.

Otherwise mesh refinement has to be employed. In practice this greatly increases the computational costs

and only mitigates the observed effects. It will depend on the application, if one can live with negative

concentrations and unphysical flows. As alternative one must decide for FV.

6.5 Conclusion

Using AMIGOS, we investigated the constraints which must be imposed on the mesh to avoid the

occurrence of negative concentrations in diffusion simulation.

1. In two dimensions a Delaunay triangulation will result in an M-Matrix both for the FE and the FV

discretization.

1Note that in this simple case the usage of a T5 tessellation for the sub-cubes will result in a Delaunay mesh which fulfills the

newly introduced criterion by Xu and Zikatanov.

6.6 Acknowledgments 51

2. In three dimensions Delaunay is the proper constraint on the mesh for FV. But for FE we get a constraint

which may be fulfilled by non-Delaunay grids and not fulfilled by Delaunay triangulations. In short:

Delaunay is the wrong criterion (neither necessary nor sufficient) for FE grids in three dimensions.

3. Using currently available meshing tools the preferable approach to diffusion modeling is finite volumes.

6.6 Acknowledgments

We want to give a special thank to Professor Paula Pietra, Institute of Mathematics of the University of

Vienna, for her generous support during the numerical investigations of this work. We also acknowledge

support from the “Christian Doppler Forschungsgesellschaft”, Vienna, Austria and Austria Mikrosysteme

International AG, Unterpremstätten, Austria.

52 6 COMPARISON OF FINITE ELEMENT AND FINITE BOX DISCRETIZATION

1e+11

1e+12

1e+13

1e+14

1e+15

1e+16

1e+17

1e+18

1e+19

-10 -8 -6 -4 -2 0 2 4 6 8 10

initial condition
finite boxes

finite elements

Figure 35: Comparison FE versus FV. FE vio-

lates the maximum principle.

-10

-5

0

5

10

x [
um]

-10
-5

0

5

10

y [um]
0
e
+
1
8

2
e
+
1
8

4
e
+
1
8

6
e
+
1
8

8
e
+
1
8

[
1
/
c
m
^
3
]

Figure 36: 2D-cut after 5500 seconds. Con-

centration is negative on black ar-

eas.

-10

-5

0

5

10

x [
um]

-10
-5

0

5

10

y [um]

0
.
0
e
+
1
8
2
.
5
e
+
1
8
5
.
0
e
+
1
8
7
.
5
e
+
1
8

[
1
/
c
m
^
3
]

Figure 37: 2D-cut after 8500 seconds. Nega-

tive concentrations spread out.

-10

-5

0

5

10

x [
um]

-10
-5

0

5

10

y [um]

-
2
0
0

0
2
0
0

4
0
0

[
%
]

Figure 38: Relative error between FE and FV.

REFERENCES 53

References

[1] IBM. Advanced Statistical Analysis Program (ASTAP), Program Reference Manual. Technical

Report SH20-1118-0, IBM, 1973.

[2] L.W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. Technical Report

UCB/ERL M520, University of California, Berkeley, 1975.

[3] Y. Cheng, M.-C. Jeng, Z. Liu, J. Huang, M. Chan, K. Chen, P.K. Ko, and C. Hu. A Physical

and Scalable I-V Model in BSIM3v3 for Analog/Digital Circuit Simulation. IEEE Trans.Electron

Devices, 44(2):277–287, 1997.

[4] Ch.C. Enz. The EKV Model: a MOST Model Dedicated to Low-Current and Low-Voltage Analogue

Circuit Design and Simulation. In G.A.S. Machado, editor, Low-Power HF Microelectronics A

Unified Approach, chapter 7, pp 247–300. IEE London, 1996.

[5] B. Meinerzhagen and W.L. Engl. The Influence of the Thermal Equilibrium Approximation on

the Accuracy of Classical Two-Dimensional Numerical Modeling of Silicon Submicrometer MOS

Transistors. IEEE Trans.Electron Devices, ED-35(5):689–697, 1988.

[6] Technology Modeling Associates, Inc., Palo Alto, CA. TMA MEDICI, Two-Dimensional Device

Simulation Program, Version 2.0, 1994.

[7] S. Selberherr, A. Schütz, and H.W. Pötzl. MINIMOS—A Two-Dimensional MOS Transistor Ana-

lyzer. IEEE Trans.Electron Devices, ED-27(8):1540–1550, 1980.

[8] M.R. Pinto. PISCES IIB. Stanford University, 1985.

[9] J.R.F. McMacken and S.G. Chamberlain. CHORD: A Modular Semiconductor Device Simulation

Development Tool Incorporating External Network Models. IEEE Trans.Computer-Aided Design,

8(8):826–836, 1989.

[10] T. Grasser, V. Palankovski, G. Schrom, and S. Selberherr. Hydrodynamic Mixed-Mode Simulation.

In K. De Meyer and S. Biesemans, editors, Simulation of Semiconductor Processes and Devices, pp

247–250. Springer, Leuven, Belgium, 1998.

[11] T. Simlinger. Simulation von Heterostruktur-Feldeffekttransistoren. Dissertation, Technische Uni-

versität Wien, 1996.

[12] H. Brech, T. Grave, T. Simlinger, and S. Selberherr. Optimization of Pseudomorphic HEMT’s Sup-

ported by Numerical Simulations. IEEE Trans.Electron Devices, 44(11):1822–1828, 1997.

[13] L.W. Nagel and R.A. Rohrer. Computer Analysis of Nonlinear Circuits, Excluding Radiation (CAN-

CER). IEEE J.Solid-State Circuits, SC-6(4):166–182, 1971.

[14] F.H. Branin, G.R. Hogsett, R.L. Lunde, and L.E. Kugel. ECAP II – A New Electronic Circuit

Analysis Program. IEEE J.Solid-State Circuits, SC-6(4):146–166, 1971.

[15] W.J. McCalla and W.G. Howard. BIAS-3 – A Program for the Nonlinear DC Analysis of Bipolar

Transistor Circuits. IEEE J.Solid-State Circuits, SC-6(1):14–19, 1971.

[16] W.T. Weeks, A.J. Jimenez, G.W. Mahoney, and D. Mehta. Algorithms for ASTAP – A Network-

Analysis Program. IEEE Trans.Circuit Theory, CT-20(4):628–634, 1973.

[17] A. Stach. Simulation von MOSFET-Schaltungen. Diplomarbeit, Technische Universität Wien, 1995.

[18] U. Tietze and C. Schenk. Halbleiter-Schaltungstechnik. Springer, Berlin, 1971.

54 REFERENCES

[19] C.W. Ho, A.E. Ruehli, and P.A. Brennan. The Modified Nodal Approach to Network Analysis. IEEE

Trans.Circuits and Systems, CAS-22(6):504–509, 1975.

[20] W. Van Petegem, B. Geeraerts, W. Sansen, and B. Graindourze. Electrothermal Simulation and

Design of Integrated Circuits. IEEE J.Solid-State Circuits, 29(2):143–146, 1994.

[21] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, 1984.

[22] R.E. Bank, D.J. Rose, and W. Fichtner. Numerical Methods for Semiconductor Device Simulation.

IEEE Trans.Electron Devices, ED-30(9):1031–1041, 1983.

[23] W. Fichtner, D.J. Rose, and R.E. Bank. Semiconductor Device Simulation. IEEE Trans.Electron

Devices, ED-30(9):1018–1028, 1983.

[24] F. Assad, K. Banoo, and M. Lundstrom. The Drift-Diffusion Equation Revisited. Solid-State Elec-

tron., 42(3):283–295, 1998.

[25] K. Blotekjaer. Transport Equations for Electrons in Two-Valley Semiconductors. IEEE

Trans.Electron Devices, ED-17(1):38–47, 1970.

[26] P.T. Landsberg and S.A. Hope. Two Formulations of Semiconductor Transport Equations. Solid-

State Electron., 20:421–429, 1977.

[27] G. Baccarani and M.R. Wordeman. An Investigation of Steady-State Velocity Overshoot in Silicon.

Solid-State Electron., 28(4):407–416, 1985.

[28] M. Rudan and F. Odeh. Multi-Dimensional Discretization Scheme for the Hydrodynamic Model of

Semiconductor Devices. COMPEL, 5(3):149–183, 1986.

[29] D. Chen, E.C. Kan, U. Ravaioli, C.-W. Shu, and R.W. Dutton. An Improved Energy Transport Model

Including Nonparabolicity and Non-Maxwellian Distribution Effects. IEEE Electron Device Lett.,

13(1):26–28, 1992.

[30] C. Lab and Ph. Caussignac. An Energy-Transport Model for Semiconductor Heterostructure De-

vices: Application to AlGaAs/GaAs MODFETs. COMPEL, 18(1):61–76, 1999.

[31] N.R. Aluru, K.H. Law, P.M. Pinsky, and R.W. Dutton. An Analysis of the Hydrodynamic Semicon-

ductor Device Model – Boundary Conditions and Simulations. COMPEL, 14(2/3):157–185, 1995.

[32] R.E. Bank and D.J. Rose. Global Approximate Newton Methods. Numer.Math., 37:279–295, 1981.

[33] R.E. Bank and D.J. Rose. Parameter Selection for Newton-like Methods Applicable to Nonlinear

Partial Differential Equations. SIAM J.Numer.Anal., 17(6):806–822, 1980.

[34] C. Fischer. Bauelementsimulation in einer computergestützten Entwurfsumgebung. Dissertation,

Technische Universität Wien, 1994.

[35] C.W. Ho, D.A. Zein, A.E. Ruehli, and P.A. Brennan. An Algorithm for DC Solutions in an Ex-

perimental General Purpose Interactive Circuit Design Program. IEEE Trans.Circuits and Systems,

CAS-24(8):416–421, 1971.

[36] S.H.K. Embabi. Digital BiCMOS Integrated Circuit Design. Kluwer, 1993.

[37] P. Antognetti and G. Massobrio. Semiconductor Device Modeling with SPICE. McGraw-Hill, 1988.

[38] R. Plasun, M. Stockinger, and S. Selberherr. Integrated Optimization Capabilities in the VISTA Tech-

nology CAD Framework. IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems,

17(12):1244–1251, 1998.

REFERENCES 55

[39] M. Stockinger, A. Wild, and S. Selberherr. Closed-Loop MOSFET Doping Profile Optimization

for Portable Systems. In Proc. 2nd Int. Conf. on Modeling and Simulation of Microsystems [?], pp

411–414.

[40] W. Pyka and S. Selberherr. Three-Dimensional Simulation of TiN Magnetron Sputter Deposition.

In A. Touboul, Y. Danto, J.-P. Klein, and H. Grünbacher, editors, 28th European Solid-State Device

Research Conference, pp 324–327, Bordeaux, France, 1998. Editions Frontieres.

[41] E. Strasser and S. Selberherr. Algorithms and Models for Cellular Based Topography Simulation.

IEEE Trans.Computer-Aided Design, 14(9):1104–1114, 1995.

[42] P. Fleischmann, W. Pyka, and S. Selberherr. Mesh Generation for Application in Technology CAD.

IEICE Trans.Electron., E82-C(6):937–947, 1999.

[43] A. Hössinger and S. Selberherr. Accurate Three-Dimensional Simulation of Damage Caused by Ion

Implantation. In Proc. 2nd Int. Conf. on Modeling and Simulation of Microsystems [?], pp 363–366.

[44] A. Hössinger, S. Selberherr, M. Kimura, I. Nomachi, and S. Kusanagi. Three-Dimensional Monte-

Carlo Ion Implantation Simulation for Molecular Ions. In Electrochemical Society Proceedings,

volume 99-2, pp 18–25, 1999.

[45] W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, and S. Selberherr. Trajectory Split Method for

Monte Carlo Simulation of Ion Implantation. IEEE Trans.Semiconductor Manufacturing, 8(4):402–

407, 1995.

[46] H. Puchner. Advanced Process Modeling for VLSI Technology. Dissertation, Technische Universität

Wien, 1996.

[47] S. Halama. The Viennese Integrated System for Technology CAD Applications–Architecture and

Critical Software Components. Dissertation, Technische Universität Wien, 1994.

[48] F. Fasching. The Viennese Integrated System for Technology CAD Applications–Data Level Design

and Implementation. Dissertation, Technische Universität Wien, 1994.

[49] A.S. Wong and A.R. Neureuther. The Intertool Profile Interchange Format: A Technology CAD

Environment Approach. IEEE Trans.Computer-Aided Design, 10(9):1157–1162, 1991.

[50] G. Mayer. Anwendung des PIF (Profile Interchange Format) in der Prozeß-und Device-Simulation.

Diplomarbeit, Technische Universität Wien, 1990.

[51] Technology Modeling Associates, Inc., Sunnyvale, California. TMA TSUPREM-4, Two-Dimensional

Process Simulation Program, Version 6.5 User’s Manual, 1997.

[52] Technology Modeling Associates, Inc., Palo Alto, CA. TMA TSUPREM-4, Two-Dimensional Pro-

cess Simulation Program, Version 6.2, 1995.

[53] W.B. Richardson, G.F. Carey, and B.J. Mulvaney. Modeling Phosphorus Diffusion in Three Dimen-

sions. IEEE Trans.Computer-Aided Design, 11(4):487–496, 1992.

[54] B.J. Mulvaney, W.B. Richardson, and T.L. Crandle. PEPPER - A Process Simulator for VLSI. IEEE

Trans.Computer-Aided Design, 8(4):336–349, 1989.

[55] M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr. AMIGOS: Analytical Model Interface &

General Object-Oriented Solver. In Simulation of Semiconductor Processes and Devices, pp 331–

334, Cambridge, Massachusetts, 1997.

56 REFERENCES

[56] M. Putti and Ch. Cordes. Finite Element Approximation of the Diffusion Operator on Tetrahedra.

SIAM J.Sci.Comput., 19(4):1154–1168, 1998.

[57] F.W. Letniowski. Three-Dimensional Delaunay Triangulations for Finite Element Approximations

to a Second-Order Diffusion Operator. SIAM J.Sci.Stat.Comput., 13(3):765–770, 1992.

[58] 2nd Int. Conf. on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, USA, 1999.

