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1 Analysis of HBT Behavior After Strong Electrothermal Stress

1.1 Introduction

The two-dimensional device simulator MINIMOS-NT [1] deals with different complex materials and

structures such as binary and ternary alloys with arbitrary material composition profiles. Various phys-

ical effects, like band gap narrowing, surface recombination, and self-heating, are taken into account.

The efficiency of the models was proven by hydrodynamic DC-simulations with self-heating of forward,

reverse and output characteristics of one-finger AlGaAs/GaAs and InGaP/GaAs-HBTs [2], furthermore,

by small-signal RF-simulation [3]. Simulation results are in very good agreement with measured data at

several ambient temperatures. For reliability reasons of high practical interest, a study on the particular

influence of the InGaP ledge on the device performance of InGaP/GaAs-HBTs is presented.

1.2 Impact of the InGaP Ledge

It is well known that GaAs-HBTs with InGaP emitter material can be improved with respect to reliability

if the emitter material covers the complete p-doped base layer [4]. Outside the active emitter area remains

the so-called InGaP ledge. Using MINIMOS-NT we investigate the impact of the ledge thickness d and

negative surface charges, which are known to exist at the ledge/nitride interface, on the device perfor-

mance. A schematic drawing of the simulated device structure is shown in Fig. 1. Because of symmetry,

the simulation domain covers only a half of the real device in order to save computational effort.

1.3 InGaP Ledge Thickness

In Fig. 2 we show the measured and simulated collector and base currents of a one-finger InGaP/GaAs

HBTs with different ledge thickness operating under forward Gummel plot conditions with V
BC

= 0 V.

Measurement refers to a device with a 40 nm thick ledge. Note the strong increase in the base current

at low bias with increasing ledge thickness. As can be seen from Fig. 2 simulated and measured base

currents differ significantly in the case of a 40 nm thick ledge. The reason is that insulator surface Fermi-

level pinning is not accounted for if surface charges are not considered in the simulation. Therefore, a non-

physical electron current path occurs in the upper ledge part as shown in Fig. 3. The corresponding electron

distribution in the ledge using vertical cross-sections at x = 1.6 �m, 2.0�m, and 2.4�m are shown in Fig. 4.

The hole distribution in the middle of the ledge (x = 2.0 �m) is also included. These concentrations shall

be compared to the ones in the case of surface charges in the next subsection.

1.4 Negative Surface Charges

The influence of fixed negative surface charges which are homogeneously distributed along the interface

between ledge and passivation was investigated. As can be seen from Fig. 5, where simulation refers to a

device with 40 nm ledge, the base current is reduced if more negative surface charges are introduced. The

upper part of the ledge is also depleted [5] and the leakage is reduced (Fig. 6). In Fig. 7 we present the

corresponding electron distribution in the ledge at x = 1.6 �m, 2.0�m, and 2.4�m, and the hole distribution

at x = 2.0 �m. Note that even in this case the ledge is not completely depleted. However, the electron

concentrations near the InGaP/SiN interface are significantly lower in comparison to the ones shown in

Fig. 4. Thus, with a surface charge density of 1012 cm�2 the measured base current can be simulated
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Figure 1: A schematic drawing of the simulated device structure of InGaP/GaAs HBT with an InGaP

ledge. Negative surface charges on the ledge/nitride interface exist.

very well. We have to note that in the case of negative surface charges the hole concentration in the ledge

increases and at higher values gives the opportunity a hole current path to occur.

1.5 Device Reliability

Based on these investigations it is possible to explain the base current degradation of an InGaP/GaAs HBT

which was strongly stressed under conditions far from normal operating conditions. In this case the base

current degradation in the middle voltage range can be explained by a decreasing surface charge density

along the interface between ledge and passivation from 10

12 cm�2 to 4:10

11 cm�2. This might be due

to compensation of the negative surface charges by H+ ions which are known to be present in the device

due to the epitaxial manufacturing processes [6, 7]. In Fig. 8 a comparison of measured and simulated

forward Gummel plots at V
CB

= 0 V is shown. Filled and open symbols denote measured characteristics of

the non-degraded and degraded device, respectively. The corresponding simulation results are shown with

lines. The good agreement also for stressed devices demonstrates the applicability of physics-based device

simulation to device reliability issues. In Fig. 9 we present the electron current density corresponding to

4:10

11 cm�2 surface charge density. In Fig. 10 we present the corresponding electron distribution in the

ledge at x = 1.6 �m, 2.0�m, and 2.4�m, and the hole distribution at x = 2.0 �m. Note that the upper part

of the ledge is now not completely depleted, thus again allowing a base leakage current.

Several other effects supposed to lead to strong increase in the base leakage current, e.g. spreading out

of the base contact at the metal/GaAs interface, increased recombination/generation in the InGaP layer,

degradation of the SiN/GaAs interface (see e.g. [8], [9] and references therein) were also analyzed. The

simulation results show such effects cannot be the dominant reason for beta-degradation. The decrease in

the collector current at high level injection is suggested to be due to increased emitter resistance which

could occur due to emitter contact detachment, indium segregation in the metal layer, or dislocations at
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on the InGaP ledge thickness compared to measurement.
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Figure 3: Electron current density [A/cm2] at V
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=1.2V. Simulation without surface charges.



1 ANALYSIS OF HBT BEHAVIOR AFTER STRONG ELECTROTHERMAL STRESS 4

0.09 0.10 0.11 0.12 0.13

y [µm]

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

n
, 

p
 [

cm
−

3
]

x = 1.6 µm

x = 2.0 µm

x = 2.4 µm

holes

Figure 4: Electron and hole distribution in the ledge. Simulation without surface charges.

the InGaAs/GaAs interface (see e.g. [9]). Our simulations show that in the case of contact detachment

there is an electron current crowding in the remaining contact area which leads to insignificant changes.

Only a slightly probable emitter contact detachment of more than 80% can explain the measured values

(see Fig. 11). We find indium segregation in the metal can be the reason by increasing the emitter contact

resistance while the decrease of the indium content in the cap has no significant influence on the emitter

resistance.
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on the charge density at the ledge/nitride interface. Charge density of

10

12 cm�2 is sufficient to get agreement with the measurements.
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(lines) before (filled) and after (open) HBT aging.
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Figure 10: Electron and hole distribution in the ledge. Simulation with a surface charge density of
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11 cm�2.
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Figure 11: Electron current density [A/cm2]. Simulation of emitter contact detachment.



2 INFLUENCE OF GENERATION/RECOMBINATION EFFECTS IN SOI MOSFETS 9

2 Influence of Generation/Recombination Effects in Simulations of

Partially Depleted SOI MOSFETs

2.1 Introduction

The small minimum feature size of todays devices makes it more and more difficult to get proper sim-

ulation results using the widely accepted drift-diffusion (DD) transport model. In particular the lack of

accounting for nonlocal effects like carrier heating and velocity overshoot makes it desirable to use more

sophisticated transport-models which are obtained by considering the first three or four moments of the

BOLTZMANN transport equation. However these so called hydro-dynamic transport models, which are

nowadays also quite common in simulations of bulk MOSFETs, lead to interesting problems when used

in conjunction with SOI MOSFETs.

2.2 Used Device

The simulated SOI device is depicted in Fig. 12. It has an effective gate-length of 130 nm, a gate-oxide

thickness of 3 nm, and a silicon-film thickness of 200 nm. With a p-doping of N
A

= 7:5 � 10

17

m

�3

the device is partially depleted. The Gaussian n-doping under the electrodes has a maximum of N
D

=

6� 10

20

m

�3.

Source Gate Drain

Body

Buried Oxide

n np

SRH II

50 nm

Figure 12: The geometry of the simulated SOI including the symbolic compact devices.

2.3 Simulation Results

2.3.1 Drift-Diffusion

Carrying out DD simulations shows a remarkable difference depending on whether impact-ionization (II)

is turned on or off (Fig. 13). The increase of the drain current can be partially explained by the kink-effect

[10]: Due to II in the pinch-off region, the holes are drawn into the floating body where they raise the

potential (Fig. 14). This increased body potential leads via the body effect to an increased drain current.
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Figure 13: Output characteristics of the SOI obtained by DD simulations.
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Figure 14: Distributed potential of the SOI obtained by DD simulations with II.

Simulating the device without II leads to a much smaller shift in the body potential (Fig. 15).

The kink effect alone cannot be responsible for such a big increase of the drain current. Another effect

happening here is the bipolar effect, which means that the increased body potential causes the source-body

diode being biased slightly forward, and thus makes it possible that more electrons can cross the lowered

barrier coming from the source (emitter). Because of the small body (base) width, they are able to diffuse

towards the drain (collector), where they are sucked off.
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Figure 15: Distributed potential of the SOI obtained by DD simulations without II.

2.3.2 Hydro-Dynamic

Carrying out HD simulations complicates the subject further. As can be seen in Fig. 16 and Fig. 17, the

output characteristics behave quite differently from those obtained by DD. Without II the drain current

SRH+II
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Figure 16: Output characteristics of the SOI obtained by HD simulations using MINIMOS-NT.

shows a negative differential output characteristic after the maximum at about V
DS

= 0:2V. This can be

explained by the difference in Shockley-Read-Hall generation/recombination (SRH): Using the DD trans-

port model it makes virtually no difference whether SRH is turned on or not, but with the HD transport

model the diffusion of the heated electrons near the pinch-off region is so significant, that they are trans-

ferred in the floating body where they recombine. This leads to an experimentally not observed decrease
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Figure 17: Output characteristics of the SOI obtained by HD simulations using DESSIS.

in the body potential which decreases via the body effect the drain current at a given drain-source voltage.

The interesting point is that this behavior is observed with two different device simulators. Fig. 16 shows

the results obtained from MINIMOS-NT [11], while Fig. 16 was produced using DESSIS [12]. In the

DESSIS simulation the kink is located even before V

DS

= 0:1V, a difference to DD which is not yet

understood and needs further analysis. The II model used in MINIMOS-NT is described in [13]. Further

analysis of the problem will be given in Section 2.4.

2.3.3 Body Contact

The order of magnitude of the involved currents can be estimated by looking at simulations of a device

with a body contact attached. Fig. 18 shows the output characteristics of this device and it is clear, that

because of the fixed (pinned) body potential the drain current is not much affected by II. The big difference

can be seen in the corresponding bulk (body) currents (Fig. 19): If SRH and II are used, one obtains the

expected result that there is a body current which flows out of the transistor and has therefore a negative

sign. But if in contrast only SRH without II is used, there is a body current of positive sign, which is

several orders of magnitude smaller.

To estimate if the resulting current obtained by simulations with II is really caused by the increased body

potential the simulations shown in Fig. 20 and Fig. 21 were made. In this case the source-body diode

(and at small V
DS

even the drain-body diode) is biased in forward direction using a body potential of

V

BS

= 0:93V. (This voltage is taken from Fig. 14, where the body potential is raised by this value.)

Accounting for the negative current offset at V
DS

= 0V total agreement with the SRH+II curve taken

from Fig. 13 is obtained at V
DS

= 1V.

The mentioned b-parameter depicted in several figures can be found in the formula of the II-coefficient

which is known as the Chynoweth law, �(F ) =  a e

�

 b

F . The default coefficients are taken from [14].

The factor  expresses the dependance with respect to the lattice temperature. A variation of b can be

interpreted as a scaling of the effective electric field F .
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Figure 18: Output characteristics of the SOI with a body contact obtained by HD simulations.
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Figure 19: Bulk currents of the SOI with body contact obtained by HD simulations.

2.4 Cause of the Effect

It is believed that the main difference between the DD and the HD transport model responsible for the

negative output conductance is the difference in the balance of the drift and diffusion currents:
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Figure 20: Comparison of the drain currents of the SOI and the device with body contact obtained by DD

simulations.
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Figure 21: Comparison of the bulk currents at different body potentials obtained by DD simulations.

Due to the high temperature in the pinch-off region, the electrons spread away from the interface and

diffuse into the body, where they recombine (Fig. 12). Removing holes there causes the body potential to

drop which decreases the drain current via the body effect.

The difference in the carrier concentration between DD and HD can be seen clearly in Fig. 22 and Fig. 23.
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Figure 22: Electron concentration in the SOI obtained by a DD simulation.
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Figure 23: Electron concentration in the SOI obtained by a HD simulation.
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3 Object-Oriented Design Patterns for Process Flow Simulations

3.1 Introduction

In a modern Technology CAD (TCAD) simulation environment like SIESTA or VISTA [15] data exchange

between different simulators often remains an unsolved challenge. One approach to attack this problem

is to use a file format common to all tools involved in the process flow. The PIF [16] (profile interchange

format) file format presents an implementation of such an approach. In a PIF file data are stored as a set

of lists. A powerful API for C, FORTRAN and LISP accounts for ease-of-use for various simulators and

applications like file converters or meshing tools. It turned out however, that the definition of the pure file

format is not sufficiently addressing all kinds of problems arising in a process flow. In order to illustrate

the difficulties the following section will briefly discuss of what data a wafer-state description actually

must consist of.

3.2 Wafer-State Description

Since a real-world wafer may consist of several million devices (transistors, diodes, capacitors) per die

only a small number1 of them can be treated in a process or device simulation. As a consequence a

suitable wafer-state description need not contain any circuit or macro-model information as it is used in

circuit simulators like SPICE [17]. Instead, the information required consists of:

� geometry description

� properties (e.g., material type)

� distributed quantities (e.g., dopants)

� and grids on which the quantities are stored

Depending on the type of simulation carried out only a certain subset of the available data may be requested

as input. Given that, one can already imagine the problems arising:

First, there is the need to ensure a consistent input-wafer for each individual simulator. This means that

one needs a strong definition of what a certain simulator must read (input) what it must deliver as a result

and also what (unhandled) quantities from previous simulation results are invalidated by the simulation

and thus need to be removed.

Second, depending on the type of process simulation, it must be possible for a simulator to operate only

on a subset of the whole data contained on a wafer. For instance, for a topography tool like an etching

simulator only the geometry and material properties are of concern, whereas data like impurity concentra-

tions and meshes are usually ignored. Problems arise once the etching simulation is finished and the tool

is storing the results into a file. Since the result of the tool consists only of a pure geometry, the question of

what happens to quantities stored on the (input) wafer arises. Such problems can only be solved by merg-

ing the newly generated geometry of the etch-step (Fig. 24(b)) with the original input-file (Fig. 24(a)), to

create a new consistent wafer-state (Fig. 24(c)). Note that the resulting geometry must be re-gridded (new

elements were inserted in this example), and all distributed quantities need to be interpolated onto the new

points.

1In case of a process simulation it is only one device or maybe even just a part of one device.
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(a) Original Wafer - contains

several distributed quantities

(b) Geometry as returned from the

etch-tool (no attribute

information)

(c) Final result of the merge

operation - contains all at-

tributes from the original wafer

Figure 24: Merge operation after an etch-step

3.3 Transparent Interpolation

Interpolating values of distributed quantities onto newly generated grid points leads to the need for an

automated mechanism. This is especially important since there are different attribute value types (scalar,

vector). In order to keep the introduced interpolation error as small as possible different interpolation

methods must be applied to the various attribute types. Some attributes (e.g., doping concentrations)

require a logarithmic interpolation (the values are logarithmized before a linear interpolation takes place),

others (e.g., stress components) need to be interpolated linearly.

3.4 Wafer-State Server

Our WAFER-STATE SERVER addresses this kind of problems and presents a standardized application pro-

gramming interface (API) common to all simulators and tools. This API defines a strong protocol the

simulators must adhere to. Tools must manipulate data in the wafer-state exclusively through this proto-

col. The WAFER-STATE SERVER also contains gridding and re-gridding capabilities. These are required

for repair steps as outlined in the above example and are invoked transparently. The strategy chosen for

interpolation allows different interpolation methods for each attribute without any reflection in the API.

The user simply requests the value of an attribute at a certain point. The WAFER-STATE SERVER chooses

the appropriate (configured) interpolation method for the attribute, and returns the interpolated value.

Prior to interpolating, the grid-element in which the point is contained has to be found (point-location).

This task is achieved with a binary tree, a finite-quad-tree and a finite-oct-tree [18] based data-structure

for one-dimensional, two-dimensional and three-dimensional applications, respectively. These tree based

data-structures support the WAFER-STATE SERVER in (a) performing efficient point-locations and (b) in

identifying the grid elements in the repair step for which intersections with the geometry have to be com-

puted.

3.5 Modularity

The WAFER-STATE SERVER is organized as a set of independent modules each dedicated to a certain task.

These modules are a direct reflection of the problems discussed in the previous section. These modules

are:

� READER module

The READER module takes care of reading data from a certain file-format or database.

� WRITER module

This module takes care of writing data to a certain file-format or database.
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� GRIDDER module

Handles all gridding problems. This is needed for repair steps.

� FINITE-OCT-TREE module

This module represents the internal data-structure of the WAFER-STATE SERVER. It is used for

point-location and to determine the grid elements which need to be repaired after a topography

change.

Since the modules are realized as independent libraries, it is possible to use only some of them in a

certain application. It is for example feasible to use the READER and WRITER modules to implement a

file converter. There is no need to link an application against all of these modules or against the whole

WAFER-STATE SERVER in case the provided services are not needed.

Each module is used by the WAFER-STATE SERVER via an interface class. Fig. 25 gives an overview of all

used interface classes.

READER WRITER GRIDDER

WAFER

OCT

Figure 25: Overview of class interfaces used from WAFER class

Note that the use of abstract interfaces rather than concrete classes keeps the implementation details away

from the WAFER-STATE SERVER’s core classes in a typical object-oriented way. This design allows future

extension of some of the capabilities like, e.g., supported file-formats, gridding algorithms or even of the

internal data-structures the elements are stored on.

3.6 Interfaces

The use of several individual modules (READER, GRIDDER, . . . ) as opposed to using only a single one

(WAFER) may seem complicated at first sight, however, it introduces two major advantages: On the one

hand details about the underlying file format and about the gridding algorithms are well hidden to the

WAFER-STATE SERVER’s core functions. As already mentioned above this ensures that reading support for

another file-format can be added later by implementing a READER module for this file-format. The same

holds true for supporting various WRITER and GRIDDER modules. In general, any class that implements

the interface to a certain module qualifies as a wafer-state module. On the other hand, settings specific to

a certain implementation of a GRIDDER module (e.g., quality constraints) can directly be accessed by the

simulator without the need for extra wafer-state functions.

Currently READER modules for PIF, DFISE [19] and the newly developed WSS file formats as well as sup-

port modules for the GRIDDER DELINK [20] (three dimensional) and TRIANGLE [21] (two dimensional)

are implemented. Note that the READER and WRITER interfaces are not restricted to file based data access.

It is also conceivable to implement READER/WRITER modules that directly connect to a certain database

engine.
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READER

+config: CONFIG
+next_segment(): RD_SEG
+name(): String
+dim(): int

RD_SEG

+next_attr(): RD_ATTR
+next_grid(): RD_GRID
+name(): String

RD_ATTR

+next_el(): GRID_EL
+name(): String
+grid(): String

RD_GRID

+next_el(): GRID_EL
+name(): String

GRID_EL

+nr: int
+points[4]: POINT

GRID_EL

+nr: int
+points[4]: POINT

Figure 26: Attributes and methods of READER interface

READER Interface

Fig. 26 shows classes with their attributes and methods of the READER interface. All depicted classes are

interface classes and are derived and implemented by a concrete class of the given file-format.

In order to read the file identified by a READER the WAFER-STATE SERVER first invokes the

next segment method. This will either return an instance of an implementation of a RDSEGinter-

face or indicate end-of-file in case no more segments are available. The methods next attr and

next grid of the RDSEGinterface allow iteration over all attributes and grids of a segment respec-

tively. Note that grids are allowed both at segment and attribute level. These methods return an imple-

mentation of a RDGRID or RDATTRinterface class, respectively. Again end-of-file indicates the

last grid or attribute of this segment was reached. Finally, to iterate over all grid elements of a grid, the

method next el of the RDGRID or RDATTRinterface is invoked. Note that the implementation of the

next el method must take care to instantiate the points of the grid element as well as thereon stored

quantities.

The READER interface contains a so called CONFIGobject. This object holds information about which

interpolation method must be applied to a certain attribute, about what fundamental data-type (scalar,

vector) an attribute has and also what attributes at all are supported. This object is needed to properly

instantiate the points of a GRID EL object.

WRITER Interface

In Fig. 27 the classes comprising the WRITER interface are shown. In a similar manner to the READER

several interfaces are used to transfer data to a certain file.
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WRITER

+config: CONFIG
+write_points(): WR_POINTS
+write_segments(): WR_SEGMENTS

WR_SEG

+next_grid(): WR_GRID
+write_attributes(): WR_ATTRIBUTES

WR_GRID

+next_el(el:): void

WR_POINTS

+next_point(): void

WR_SEGMENTS

+next_segment(): WR_SEG

WR_ATTRIBUTES

+next_grid(): WR_GRID
+next_attr(): WR_ATTR

WR_ATTR

+next_val(): void

WR_GRID

+next_el(el:): void

Figure 27: Attributes and methods of WRITER interface

First, the WAFER-STATE SERVER invokes the method write points to indicate that a list of all points is

following. The method returns an implementation of a WRPOINTS interface class. By using the method

next point all points are transferred to the WRITER module.

Next the segments and thereon stored data are created. For this purpose the method write segments is

called to retrieve an implementation of a WRSEGMENTSclass. This object is henceforth used to transfer

grids and attributes to the file. The method next segment of the WRSEGMENTSobject introduces a

new segment. It returns an object of type WRSEG. This object is used to define (a) stand-alone grids

(grids that are not used to store attributes on) and (b) distributed quantities. The stand-alone grids are

written using the next grid method. Attributes are stored via the WRATTRIBUTESobject by several

invocations of methods next grid and next attr . Note that several attributes can share one grid.

The method next attr receives the name of a prior defined grid as one of its arguments. This means

that a grid comprising a distributed quantity has to be defined before the definition of the quantity referring

to this grid. Each call to next grid or next attr returns an object of type WRGRID and WRATTR
respectively. The methods next el and next val must be used to add a grid element or a value of an

attribute.

GRIDDER Interface

In Fig. 28 the classes comprising the GRIDDER interface are shown. A gridding mechanism is invoked

by first defining the topography, second starting the actual gridding algorithm and, finally collecting the

generated elements.

The first step in the topography definition is to define all points of the geometry. The method add point
of the GRIDDERinterface class must be invoked once for every point. Next, all elements forming

the boundaries of the segments must be defined with the add boundary method. Now the elements

comprising the segments are defined using add segment . Once the topography has been defined the

method start triggers the actual meshing process. The elements are now ready to be collected. Method
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GRIDDER

+add_point(): void
+add_boundary(): void
+add_segment(): void
+start(): void
+next(): GRI_GRID_EL

GRI_GRID_EL

+nr: int
+points[4]: POINT
+seg: int

Figure 28: Attributes and methods of GRIDDER interface

next el is used to iterate over all generated elements. The method returns false after having delivered

the last element.

It is worthwhile mentioning that the above interface is used to access two-dimensional as well as three-

dimensional gridder modules.

3.7 Protocol between Application and Wafer-State Server

The first step in the protocol (Fig. 29) from an application’s point of view is to instantiate appropriate

READER and GRIDDER objects. The choice of what READER module to instantiate depends on the file-

format in which the data are stored. Next, the actual wafer object is instantiated by supplying the READER

and GRIDDER objects as well as a CONFIG object to the wafer class.

At this point the data in the WAFER-STATE SERVER are ready for the application to be requested.

In the next protocol step the simulator requests the geometry and thereon stored attributes. Geometries and

attributes are identified by names. These names are usually stored in a so called input-deck file (or they

are passed on the commandline) which is read by the simulator independently from the wafer definition.

This input-deck contains several settings for the simulator, among other details, it identifies which regions

are to be treated in the simulation.

All relevant data have now been transferred to the simulator. Once the simulator has finished its calcu-

lations the results must be merged with the wafer-state. This so called update operation is performed in

several individual steps. Each attribute which is configured as simulator output (c.f. Section 3.8) must now

be stored back onto the wafer. The WAFER-STATE SERVER checks whether all attributes were received.

Next the attributes which are invalidated by this process step are deleted.

Now the repairing mechanism is invoked. The newly added geometry is clipped with the one stored on

the wafer-state. Grid points are taken over from the old grid where possible. The regions are then meshed

using the supplied GRIDDER module. All attributes which were not treated by the simulator and which

are not configured to be invalidated are interpolated onto the new geometries. Attributes which lie on no

longer existing regions (e.g., a segment was altered by the simulator) are discarded.

After the repair operation the application instantiates the appropriate WRITER object and invokes the dump

method of the wafer class to permanently store the simulation results on a file or database.

3.8 Definition of Process Steps

Each class of process step is configured in a database. The necessity for such a classification is best

illustrated in an example. Take, for instance, a diffusion step: If the input wafer contains any stress com-

ponents, the diffusion simulator either must take them into account (use them in the simulation) and update

them when writing back the results, or the WAFER-STATE SERVER has to remove these components right
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Instantiate Reader,
Gridder and

Config Objects

Instantiate Wafer
Object

Read Data
from File

Perform merging
operation

Request Geometry
and Attributes

Update Wafer

Perform
Simulation

Remove unhandled
Attributes

Instantiate Writer, 
dump Wafer

Application Wafer State
Server

write Wafer
to File

Figure 29: Basic protocol between wafer-state server and application

after the diffusion step. All attributes which are modified either directly by the simulation or indirectly

(e.g., invalidated stress component) must be listed in the database.

Diffus
{

Invalidate
{

inv = "Stress"; // quantities to invalidate.
exc = ""; // qu. to exclude from invalidation

};

read = "Boron, Arsenic";
write = "Boron, Arsenic";

topography = false;
};

Figure 30: Configuration of a simple diffusion step

Fig. 30 shows a possible configuration of a simple diffusion step. The keywords inv and exc specify

quantities which are to be invalidated and excluded from invalidation respectively. The keyword read
lists all attributes which must be treated by the simulator (here: Boron, Arsenic ). Similarly write
specifies all attributes which must be supplied in the update operation. An asterisk (* ) can be used with

inv and exc to denote all contained attributes, however, attributes in the read and write statements

will overrule this notion. In this example the attribute named Stress will be removed upon update.
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The keyword topography is used to indicate whether the simulator changes the topography (true ) in

which case the WAFER-STATE SERVER must merge the new geometry with the existing one.

The types of the various attributes are also defined in the database. Fig. 31 depicts the configuration for

attributes of type Concentrations .

Concentrations
{

interpolation = "log";
unit = "1/cmˆ3";
members = "Donors, Acceptors, Boron,

Phosphorus, Arsenic, Indium,
Antimony, Nitrogen, Oxygen";

datatype = "Scalar";
};

Figure 31: Configuration of attribute type Concentrations

The definition of an attribute class consists of the unit ( m�3) the data-type (scalar, vector, ten-

sor), the name (Concentrations), a list of all possible instances (Arsenic, Phosphorus, Boron, Donors,

Acceptors, . . . ), and the interpolation method (linear, logarithmic).

ATT_CFG

+interpolation: IueString
+unit: IueString
+datatype: IueString

CONFIG

+[](name:IueString): ATT_CFG

Figure 32: CONFIG object passed to READER and WRITER modules

The attribute type definitions are read into a CONFIGclass (Fig. 32). An instance of such a class is passed

to the READER and WRITER objects. The READER module needs the configuration to (a) identify a certain

attribute by name and (b) to be able to properly instantiate the points of the grid elements. Since these

points hold the actual attribute values the READER module is the only place where an instantiation can

take place. The WRITER module uses the configuration to store attribute type information which is not

explicitly contained in the WAFER-STATE SERVER data-structures (interpolation method, data-type) onto

the file.

The actual configuration of a certain attribute is obtained via operator[] of the CONFIGclass. The

operator returns an ATT CFGobject of the named attribute or delivers an error if a configuration for an

attribute with the given name does not exist.

3.9 TCAD Analysis

Performing TCAD analysis tasks [22] like optimization of VLSI semiconductor devices [23, 24] or inverse

modeling of doping profiles [25] often results in an enormous number of individual simulation runs.

Frameworks like SIESTA or VISTA take care of aspects like describing an experiment and queuing jobs on

a cluster of workstations. Another aspect of TCAD analysis is how the input-data for the simulation runs

are generated. Thus, the need for a tool to generate a wafer based on a textual description arises.
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Input Wafer Creation

The wafer-state services contain a tool (MKWAFER) to create three-dimensional wafers suitable for a

process or device simulation. This tool uses a file as input which contains commands written in the input-

deck language as it is also used in our device simulator MINIMOS-NT [26, 1], and in the configuration

of the process steps and attribute types within the WAFER-STATE SERVER. Fig. 33 and Fig. 36 show the

input-deck description to generate the three-dimensional heterostructure bipolar transistor device depicted

in Fig. 34 and Fig. 35.

Cube
{

// coordinates are X/Y/Z
points =
[ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0],

[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 1.0],
[1.0, 1.0, 1.0], [0.0, 1.0, 1.0]

];

// positive orientation of faces identifies the inner
// region of the cube
solid =
[ [0, 1, 2, 3], // bottom face

[4, 7, 6, 5], // top face
[5, 6, 2, 1], // front face
[4, 0, 3, 7], // back face
[4, 5, 1, 0], // left face
[7, 3, 2, 6] // right face

];

Scaling { x = 1.0; y = 1.0; z = 1.0; };
Offset { x = 0.0; y = 0.0; z = 0.0; };

};

Figure 33: Description of a three-dimensional cube

For each section in the input-deck file (Bulk, Base, Emitter, Contacts,... ) a corresponding

segment is created. After having processed the last section of the input-deck the program computes the

boundary representation of the whole geometry. The computation is achieved by first transferring all sets

of coplanar faces into a two-dimensional representation. Second, a two-dimensional polygon clipping

software [27] based on an algorithm of Kevin Weiler [28] is used to determine the intersections. Finally

the resulting two-dimensional faces are transferred back into three-dimensional space and added to the

structure. The boundary representation is then passed on to a gridder module (DELINK [20]) in order to

generate a mesh of the whole structure. The final device is saved to a file using the WSS WRITER module.

3.10 Visualization

Another important aspect addressed in the WAFER-STATE SERVER is the visualization of attributes and

geometries. Due to the abstraction of the file access we only need to support one certain file format (WSS).

The chosen visualization environment is the Visualization Toolkit (VTK) [29]. To keep the visualization

platform independent the JAVA programming language is used for both parsing the WSS file and for the

actual visualization (JAVA-VTK binding). The parser generator used (ANTLR [30]) to generate the parser

code is capable of producing JAVA and C++ parsers from the same language description, which relieves

us from maintaining a separate JAVA and C++ version of the very same parser. The visualization runs on

Unix and Windows platforms.
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Figure 34: Three-dimensional HBT device Figure 35: Mesh of the three-dimensional HBT

device

#include "cube3d.ipd"

Geometry
{

Bulk: ˜Cube { Scaling { x = 4.0; y = 3.0; } };
CollectorContact1: ˜Cube
{ Scaling { x = 3.0; y = 0.4; z = 0.3; }

Offset { x = 0.5; y = 2.0; z = 1.0; }
};
CollectorContact2: ˜Cube
{ Scaling { x = 0.4; y = 2.0; z = 0.3; }

Offset { x = 0.5; z = 1.0; }
};

Base1: ˜Cube
{ Scaling { x = 2.0; y = 1.5; z = 0.3; }

Offset { x = 1.5; z = 1.0; }
};
Base2: ˜Cube
{ Scaling { x = 2.0; y = 1.5; z = 0.3; }

Offset { x = 1.5; z = 1.3; }
};
BaseContact: ˜Cube
{ Scaling { x = 0.8; y = 0.2; z = 0.3; }

Offset { x = 2.5; z = 1.6; }
};

Emitter1: ˜Cube
{ Scaling { x = 1.2; y = 0.3; z = 0.3; }

Offset { x = 2.0; y = 1.0; z = 1.6; }
};
Emitter2: ˜Cube
{ Scaling { x = 0.3; y = 1.0; z = 0.3; }

Offset { x = 2.0; z = 1.6; }
};
EmitterContact1: ˜Cube
{ Scaling { x = 1.2; y = 0.3; z = 0.3; }

Offset { x = 2.0; y = 1.0; z = 1.9; }
};
EmitterContact2: ˜Cube
{ Scaling { x = 0.3; y = 1.0; z = 0.3; }

Offset { x = 2.0; z = 1.9; }
};

epsilon = 1e-5;
};

Figure 36: Description of a three-dimensional HBT device
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3.11 Implementation

The chosen programming language for the implementation of the WAFER-STATE SERVER is C++. This

language facilitates a full object-oriented design as realized in the wafer-state servers’ core components

as well as an easy integration of existing programs (DELINK, TRIANGLE, DFISE-READER) thus ensuring

good overall code re-usability. During the implementation of the wafer-state server care was taken to

adhere to the ANSI C++ standard as close as possible. The WAFER-STATE SERVER is running on all

platforms that offer an ANSI C++ compiler. The code does not rely on any operating system dependent

features.
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4 An Extensible TCAD Optimization Framework Combining Gradient

Based and Genetic Optimizers

4.1 Introduction

Technology CAD (TCAD) tools like SIESTA[22, 24] have been successfully used for optimizing semi-

conductor devices[23] and for inverse modeling[25]. Although SIESTA proved to be a valuable tool and

several interesting results[31, 32] were achieved using it, it did not, at that time, provide any global opti-

mizer, but two gradient based optimizers[33]. The most recent advances include new, global optimizers,

combine these two approaches to optimization, and improve on the flexibility and extensibility.

Over the years, it has been recognized that a successful TCAD optimization framework has to meet the

following criteria.

1. The ability to execute simulation tools on a number of computers in the local network, and to

schedule the execution of these simulation tools in reaction to changes in this network. For example,

in a heterogeneous network that is not solely dedicated to executing simulation tools, the question

how the tasks have to be scheduled so that the overall execution time is minimized is not trivial.

Furthermore, software and hardware failures have to be taken into account.

2. Stability. This property is crucial for a program that usually runs for several days and has to deal

with all kinds of software failure.

3. Extensibility. A TCAD framework has to deal with various programs[34], various data formats[35]

and combinations thereof. Evaluating the goal function (i.e., the function to be optimized) often

entails several calls to simulation tools. Because of the abundance of possible goal functions, a

framework has to provide a flexible extension language which enables the user to succintly describe

the desired goal function.

4. Specialized Optimizers. The evaluation of the goal function is usually very expensive: times range

from about a minute to one hour or more for process simulations on current hardware. Strategies

for finding global extrema of computationally very expensive functions are needed. The respective

advantages and disadvantages of gradient based optimizers and evolutionary computation will be

discussed in Sect. 4.4.

5. Finding a suitable starting value is often the most difficult and time consuming task when using a

gradient based optimizer. Hence global optimizers which do not need a starting value sufficiently

near to the global extremum are called for.

It should be noted that the goal function of an optimization in TCAD analysis may not even be a function

in the mathematical sense. Simulation tools like MINIMOS [36, 26, 1] provide modes of operation which

are not deterministic, i.e., the same input may lead to slightly different results. In the case of MINIMOS

this is due to preconditioning which depends on the elapsed simulation time. Furthermore, it happens

in practice that simulation tools do not converge for certain inputs, or yield results only after consuming

exceptionally long computation time.

4.2 Design and Implementation

SIESTA was originally implemented in a dialect of Lisp[37, 38] called xlisp [39]. Because of new de-

velopments in language design and implementation since xlisp was written, the choice of a suitable base
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language for SIESTA was thought over. In order to meet the requirements described in Sect. 4.1, we posed

the following demands on a suitable base language.

1. It has to provide an interface to the underlying operating system and network.

2. There has to be one (preferably more) stable and well supported implementation.

3. It has to support multiprocessing (or multithreading).

4. An extension language is necessary in order to provide the required flexibility.

5. The implementation has to be able to load additional code at run time and to enable the user to

execute commands interactively.

6. It should be well designed and preferably standardized.

After evaluating several languages, namely C, C++, Common Lisp, Java, Perl, Python, Scheme, and Tcl,

we decided to use Common Lisp [40] with multiprocessing support. In addition to fulfilling all of our

requirements, it provides the following features which helped reducing the implementation time.

1. Common Lisp supports the paradigms of functional programming and of object oriented program-

ming.

2. All language constructs are available at run time.

3. Several implementations on all major platforms are available and all of these provide compilers and

interactive listeners.

4. A powerful macro system makes Common Lisp a very extensible programming language.

5. Its condition system and operators like unwind-protect and ignore-errors contribute to

stability and robustness.

6. Common Lisp is an ANSI standard.

SIESTA runs on UNIX platforms, since UNIX provides good support for executing commands on remote

computers and distributing files in a cluster of computers. Apart from these requirements, SIESTA is

platform independent.

The requirements on the software infrastructure installed on the cluster of computers to be used in an

experiment have been reduced to a minimum. Early versions of SIESTA required that the user’s home

directory is visible on all computers of the cluster and relied on NFS (network file system). NFS, however,

is a source of problems since it does not provide sufficient synchronization between the state of files on

different computers. Files are synchronized only after a pause which leads to problems when the result file

of a simulation tool exists on a client, but is not seen on the computer where SIESTA runs. Furthermore, it

is not possible to request a synchronization between two computers manually.

Several solutions for that problem were tried, yet none worked satisfactorily. One attempt was to wait a

certain amount of time (up to thirty seconds) after a simulation tool had finished. Because of this limitation

of NFS, we decided to dispense with it and use rcp or scp instead.

In order to run SIESTA, the following programs have to be installed on a cluster.
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� One of these possiblities for communication has to be chosen:

– rsh , rcp , and rshd . These are standard on UNIX, but not secure.

– ssh , scp , and sshd . These are not found on every UNIX system by default, but are secure.

Of course these programs have to be set up such that no password entry is needed for each individual

login, but only once per session.

� Standard UNIX commands like kill , mkdir , rm, top , and uptime .

� Finally it goes without saying that the simulation tools to be used have to be installed. Licenses are

managed as described in Sect. 4.3.6.

4.3 SEAL (Siesta Extension and Application Language)

To outline the capabilities of SIESTA, we give short summaries of some of the most important concepts of

its extension language. Some examples of its use are given in order to show what the building blocks of

more complex experiments look like.

4.3.1 Parallelization

Because of the need for parallelizing several evalutions of the goal function and thus the simulation tools,

we chose to extend the language with a macro called parallel . It takes an arbitrary number of expres-

sions as input and returns a list of results after the evalution of all the input forms (which is done in several

processes) has finished.

Example.

? (parallel (sleep 1) (sleep 1) (sleep 1))
! (NIL NIL NIL)

This took one second, not three.

? (parallel (sleep 1)
(parallel (sleep 1)

(parallel (sleep 1) (sleep 1))))
! (NIL (NIL (NIL NIL)))

This took one second as well.

The parallel macro and its sister function p-apply are an important building block of SIESTA and

may of course be called by the user.

4.3.2 Persistent Object Storage

In order to facilitate the configuration and exchange of data (e.g., optimization results, populations from

evolutionary algorithm optimizers) between different invocations of SIESTA, we implemented a simple

persistent object storage. Using two functions for writing objects to and reading objects from a file, all
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of SIESTA’s internal data-structures can be stored and retrieved in a text based format. A human readable

format was chosen in order to enable inspection and changes with ordinary text editors.

The question how to define equality for any two given objects is closely related to storing and copying

objects. Of course, the equality relation has to be reflexive, symmetric, and transitive. Furthermore, the

equality relation should not be affected by storing and retrieving objects. Since objects usually contain

references to other objects, there is no general copy operator which does the right thing in every application

(deep copy vs. shallow copy). Thus the copy operator and the question whether a copied object and the

original object should be considered equal depend on the problem at hand.

In SIESTA objects with id’s, named objects, and appropriate equality and copying operators are defined

and can be extended in an object oriented way. In addition to Common Lisp’s four equality operators,

we provide the equality operator samep and specialized copy operators. These operators work with the

persistant object storage and SIESTA’s data-structures as expected.

4.3.3 Setting Up Experiments

In this section we show how SIESTA is typically used. When starting up, it reads its initialization file in

which the hosts to be used are defined via define-all-hosts . The information about the hosts will

be used later by the task manager which schedules the execution of the various simulation tools. Hosts

may later be enabled and disabled interactively by the user. Furthermore, for every host a function can be

provided which decides if a host is usable right now; this is useful when certain hosts must not be used at

certain times of day.

Commands are entered in any number of interactive listeners. After loading a file containing the definition

of an experiment, the run command starts an optimization run. The value returned by run can be stored

in a file, although the automatically generated log file contains all the results and information about the

progress of the optimization. The result can also be used as a starting value for the next run.

Experiments are defined using define-experiment . The definition of an experiment consists of an

optional description, the list of the free variables, their interval and their default values, the list of user

variables which enable sophisticated customized setups, the goal function, the default value of the goal

function to be used when no attempt was successful, the constraint function, and the configuration of one

or more optimizers.

States correspond to points in the search space or to individuals of the population in the language of evo-

lutionary computation. A state consists of a list of all (free) variables and their respective values, the

experiment it belongs to and—after evaluation—the value of the goal function. States can be manipu-

lated with the make-state , copy-state , with-state-vars , setq-in-copied-state , and

show-state operators.

Setting up the evaluation function is usually the hardest part of defining an experiment. test-run can

be used to evaluate the goal function on the default values interactively and to see if it works satisfactorily.

The following simple example shows the important steps when setting up new experiments.

Example.

? (defun sum-of-all-free-vars (state)
(reduce #’+ (free-vars state) :key #’value))

! SUM-OF-ALL-FREE-VARS
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? (define-experiment :e1 (genetic-experiment)
:description "A simple test experiment. Optimizes the sum o f

all free variables."
:vars ’((var1 (interval 0 10) :default 5)

(var2 (interval 0 10) :default 5)
(var3 (interval 0 10) :default 5 :free nil))

:evaluation-function ’sum-of-all-free-vars
:last-resort 0
:optimizer-configuration (make-genopt-configuration : e1

:minimize-or-maximize :maximize
:algorithm "GASteadyStateGA"
:crossover "TwoPointCrossover"
:population-size 50
:number-of-generations 12))

! (#<GENETIC-EXPERIMENT :E1>)

? (test-run :e1)
! 10

? (sum-of-all-free-vars (setq-in-copied-state (make-sta te :e1) var1
1 var2 2))
! 3

? (run :e1)
Several lines deleted.

! ========== Generation 12 ==========
! Number of requests evaluated: 426
! Best: #<REQUEST (id 637) (score 20.0) (vars ((VAR1 10.0) (VA R2

10.0)))>
! #<REQUEST (id 637) (score 20.0) (vars ((VAR1 10.0) (VAR2 10. 0)))>

4.3.4 Calling Simulation Tools

Since several types of software (and hardware) failures may occur when running simulation tools,

especially in a networked environment, we extended the base language with a macro called

with-retries . Its calling signature is (number-of-tries &body default-forms)
&body body . with-retries executes its body until no error was raised, but at most

number-of-tries times. Upon success the result values are those of the last form in body , oth-

erwise the values returned by default-forms .

The first example tries to execute the body of the call three times and succeeds. The body in the second

example is tried three times as well, but call to error defeats any success. The same happens in the third

example; after three tries the default forms, here a call to p-norm , are executed and the resulting values

are returned.
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Example.

? (with-retries (3)
(p-norm (vector 1 2 3)))

! 3.7416575

? (with-retries (3)
(error "Foo!"))

! NIL

? (with-retries (3
(p-norm (vector 1 2 3)))

(error "Foo!"))
! 3.7416575

Among the inputs to the call of a simulation tool there is always one state. Calling simulation tools

through the preferred interface entails the construction of an instance of class task , or a subclass thereof.

Tasks contain all the information about calling a simulation tool and returning the required data. While

subclasses and methods specialized to certain simulation tools are provided, the class hierarchy starting

at task can also be specialized by the user, as well as the methods acting on tasks, e.g., the execute
method.

The task manager schedules the execution of the tasks. In order to execute a task, it looks for reachable

hosts (i.e., hosts whose load average can be retrieved) that are not disabled and that are not too busy.

If such a host is available, the task is run on the host which currently provides the most computational

resources. Otherwise, it waits until a host becomes available.

The following is an example of calling MINIMOS and extracting a certain vector from a result file. Here

tm-exec constructs an instance of minimos-task and executes it using the task manager. MINIMOS

is run at nice level 10 and it will consume at most 120 seconds of cpu time. The input state is constructed

from the default values for a certain experiment (we assume this experiment has already been set up).

Variables will be substituted in the given input deck (cf. Sect. 4.3.7) file. The input pif file[16] (containing

the device structure) is given as well, and the last option means we request a curve file as result. After

the task has finished, we parse the resulting curve file with parse-curve-file and return one of its

column vectors. Other simulation tools are called similarly.

Example.

? (with-scratch-directory (dir)
(find-column-vector-named

(parse-curve-file
(output-crv

(tm-exec ’minimos-task
:nice 10
:max-cpu-time 120
:input-state (make-state :e12)
:input-deck #f"˜/work/experiment-12/nmos.ipd"
:input-pif #f"˜/work/experiment-12/nmos.pif"
:output-crv (make-unique-file "crv" :directory dir

:pre "crv-"))))
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"Id"))
! #(-9.203809e-9)

4.3.5 Inverse Modeling

Many models in TCAD applications contain free parameters which depend on properties of the device

material and have to be calibrated using measurements. Usually vectors of measured values are fit to

characteric curves of the device in question.

It is not obvious which goal function should be used in an inverse modeling experiment where the distance

between two vectors (where one is constant) is to be minimized. To facilitate experimentation and allow

users to construct a suitable goal function, we provide the log10 , euclidean-norm , p-metric ,

p-norm , append-vectors and relative-error functions.

Example.

? (mapcar #’log10 (list 1e10 1e20 1e30))
! (10.0 20.0 30.0)

? (p-norm (list 1 2 3))
! 3.7416575

? (mapcar (lambda (p)
(p-norm (vector 1 2 3) p))

(list 1/4 1/3 1/2 1 2 3 4))
! (150.97025 50.7422 17.19151 6 3.7416575 3.3019273 3.14634 63)

? (append-vectors (vector) (vector 1) (vector 2 3) (vector 4 5 6))
! #(1 2 3 4 5 6)

4.3.6 License Management

When using commercial simulation tools, the number of available licenses for a certain program is often

limited. Thus we have to provide a way to ensure that at any point in time only a certain user prescribed

amount of licenses of such programs are in use. Users can call simulation tools not only by using the

predefined functions of the framework, but also from self written programs like shell scripts which are

in turn called from within the framework. A suitable license management scheme has to take this into

account.

In order to make our license management scheme meet these needs it works independently from the pre-

defined functions of the framework. The following steps are necessary to use it. Whenever the number

of requested licenses exceeds the number of available ones, certain processes have to wait until the re-

quired number becomes available. In order to show how many licenses are currently in use, the command

show-licenses can be used.
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1. Define the names of the licenses and how many of each may be used simultaneously. This is

accomplished with define-licenses and is usually done in your SIESTA configuration file.

2. When using a license, wrap the code into with-locked-licenses .

Example.

? (define-licenses
(:dios :total-number 5)
(:foo :total-number 7))

! (#<LICENSE :Dios> #<LICENSE :Foo>)

The following locks one license.

? (with-locked-licenses (:dios)
(show-licenses))

! Dios Total: 5 In use now: 1
Foo Total: 7 In use now: 0

The following locks four licenses total.

? (with-locked-licenses (:dios)
(with-locked-licenses (:foo 3)

(show-licenses)))
! Dios Total: 5 In use now: 1

Foo Total: 7 In use now: 3

Users expressed interest in varying the number of available licenses while an optimization is running. This

need frequently arises in a setting where people want to reserve one or two licenses for interactive work

at certain times, but want all of them to be used, e.g., at night time. For simply changing the number of

totally available licenses the function set-number-of-licenses can be used in an idle listener.

Example.

? (set-number-of-licenses :dios 3)
! 3

Later, increase the number of licenses to use again.

? (set-number-of-licenses :dios 5)
! 5

4.3.7 Input Deck Handling

Nearly all simulation tools use a text file for configuration. The configuration files of MINIMOS are called

input deck[1] files, and we will use this term for all simulation tools. SIESTA generates these files by

substituting the values of the variables of a state in template files. If a template file contains a string

<(foo)> and the value of foo in the current state is, e.g., 1.23 , the string will be replaced with 1.23 .

This applies to free and user variables of a state.
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In case the use of <( and )> leads to collisions in the input deck file of some simulation tool, the begin

and end marker can be changed.

4.4 Gradient Based Optimizers and Evolutionary Computation

During the last three or four decades there has been increasing interest in optimization algorithms which

work similar to processes found in nature. The methods of genetic algorithms[41, 42, 43] and evolutionary

strategies[44], although having different roots, have converged and are now commonly known under the

name of evolutionary computation. A journal of the same name[45] has been published since 1993.

A brief outline of evolutionary algorithms is as follows. They work with sets (or populations) of potential

solutions. Starting from a random population, each individual is assigned a score via a goal function.

In the selection step, certain individuals are chosen to proliferate and form a new population. Operators

(e.g., mutation) are applied to the individuals of the new population with prescribed probability, and the

population is evaluated again. New generations are formed in this way until a termination condition is

fulfilled. Obviously, many alternatives for every step in this algorithm exist and have been described and

discussed in many publications[43]. Although the Schema Theorem[43, page 53] and similar theorems

explain how evolutionary algorithms work in a quantifiable way, and many special algorithms have been

intensively studied, no consistent theory of evolutionary computation exists to date and the question of

which evolutionary algorithm to choose for a given problem can only be answered by experimentation

and experience. Nevertheless evolutionary algorithms proved to be very general and valuable tools. While

domain specific optimizers typically perform better than their general evolutionary algorithm counterpart,

evolutionary algorithms can easily be adapted to the problem at hand and are usable whenever the lack of

detailed knowledge about the goal function prohibits developing a domain specific optimization algorithm.

Although evolutionary computation is a well established optimization technique today, its application to

TCAD analysis has been limited. Reasons are certainly the need for lots of computational resources and

the requirements outlined in Sect. 4.1. While most research in evolutionary computation has been done

on relatively cheap to evaluate goal functions, the optimization of semiconductor devices has to cope with

a relatively limited number of evaluations.

The most important difference from the usual practice of evolutionary algorithm optimizers is that runs

are usually finished before a common termination condition like “95% of the population are identical” is

fulfilled.

In the following we discuss the advantages and disadvantages of gradient based and evolutionary algorithm

optimizers and show why the combination of both is worthwhile. An optimization run with an evolutionary

algorithm optimizer usually yields a set, or population, of nearly optimal solutions. The best of these is

used as the starting point for a run with a gradient based optimizer, thus bringing together global and local

optimization methods. Other combinations are also possible, for example: starting populations can be

constructed manually; other states than the best in a population may yield better final results because they

lie closer to the global optimum; the configuration of an optimizer can be changed and the computation

restarted with the latest population or starting point.

4.4.1 Advantages and Disadvantages of Gradient Based Optimizers

Most importantly, gradient based optimizers are hill climbing algorithms and therefore local optimization

techniques. Although very sophisticated algorithms[46] have been developed, they all depend on a suitable

starting point. In practice, finding this starting point has been found to be the major hurdle when trying
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to do unattended, automatic optimizations. Typically finding such a point and shortening the parameter

intervals so that the goal function can actually be evaluted requires several tries and can easily take several

days.

When increasing the number of variables, the number of evaluations increases as well. While goal func-

tions with few variables are feasible, optimizations with about 20 variables are usually impractical. Evo-

lutionary algorithms do not suffer as much from this effect.

4.4.2 Advantages and Disadvantages of Evolutionary Algorithm Optimizers

Evolutionary algorithm optimizers are global optimization methods and scale well to higher dimensional

problems. They are robust with respect to noisy evaluation functions, and the handling of evalution func-

tions which do not yield a sensible result in given period of time is straightforward.

The algorithms can easily be adjusted to the problem at hand. Almost any aspect of the algorithm may

be changed and customized. On the other hand, although lots of research has been done on which evo-

lutionary algorithm is best suited for a given problem, this question has not been answered satisfactorily.

Although the standard values usually provide reasonably good performance, different configurations may

give better results. Furthermore, premature convergence to a local extremum may result from adverse

configuration and not yield (a point near) the global extremum.

4.5 Available Optimizers

The following brief overview lists all optimizers currently available in SIESTA, namely two gradient

based[46] and two stochastic global ones.

4.5.1 Genopt

The interface to GAlib[47], a C++ library for genetic optimization, is called genopt. It provides standard

selection, crossover, mutation, scaling, and termination methods[43].

For our experiments we mainly use the following setup, because it provides good results in an acceptable

amount of computation time. Since all parameters are reals chosen from intervals, we represent them as

floating point numbers, and not as binary vectors as favoured in early genetic optimization. We use a

mutation operator which adds a random number from a normal distribution, more precisely, x 2 [a; b℄ is

changed to min(max(N(x; �); a); b), where � depends on the length of the interval.

As crossover operators we use two point and uniform crossover. Most populations consist of about 40

to 50 individuals. Some optimization tasks allow us to evaluate about 20 generations per hour, which

amounts to roughly 500 generations per day. Typical runs last for two or three days.

Constraints handling is done using the popular penalty method, i.e., the scores of states which do not fulfill

given constraints, which are defined as an arbitrary function, are increased by prescribed amounts.

4.5.2 Siman

Simulated annealing[48, 49] was invented by Kirkpatrick in 1982 and is a modified version of hill climb-

ing. Starting from a random point in the search space, a random move is made. If this move yields a
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better point, it is accepted. If it yields a worse point, it is accepted only with a certain probability p(t)

which depends on the time t. The function p(t) is initially close to 1, but gradually reduces towards 0 in

analogy to the cooling of a solid. Hence initially any moves are accepted, but as the temperature reduces,

the probability of accepting a negative move is lowered. Negative moves are essential sometimes if local

maxima are to be escaped, but obviously too many negative moves will simply lead away from an ex-

tremum. Versions like fast re-annealing, adaptive annealing and parallel annealing have been developed.

In our framework we provide an interface to an implementation[50] by Lester Ingber.

4.5.3 Donopt

This gradient based optimizer[22, 33] minimizes a scalar value and supports equality and inequality con-

straints. It is based on donlp2[51, 52] by Peter Spellucci.

4.5.4 Lmmin

The Levenberg-Marquardt algorithm[53] is an efficient method to solve nonlinear least squares problems,

and is therefore well suited for inverse modeling tasks. SIESTA provides an interface to the implementation

found in the MINPACK [54, 55] project.

The parameter values are chosen from prescribed intervals. However, arbitrary constraints are not sup-

ported by this optimizer. The step size used for the gradient computation and a tolerance value acting as

termination criterion can be adjusted.

4.6 Summary

SIESTA has been used for several optimizations of real world devices on a cluster of a dozen workstations

with 18 cpus and has proven to be very robust and to yield good results. The combination of gradient based

optimizers and evolutionary computation allows to take advantage of the benefits of both approaches.

While the default configurations of the optimizers provide reasonably good performance, lots of aspects

of an optimization run can be customized. The output of one or more optimization runs can be combined

and used as input for the next run. This interoperability allows for interesting combinations of optimizers,

comparisons of their performance, and specialization to the problem at hand.
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