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1 A Comparative Study of Two Numerical Techniques for Inductance

Calculation in Interconnect Structures

1.1 Introduction

One consequence of technology scaling by shrinking feature sizes and increasing clock frequencies is

the growing importance of interconnect lines. The performance of interconnects is limited by various

parasitic effects (eg. signal delay, capacitive and inductive crosstalk, attenuation). The utilization of new

materials (Copper and low-k dielectrics) reduces the RC time constant. Thereby decreased resistance

and capacitance bring out inductive effects more intensively, requiring consideration in circuit simulation.

Thus, inductance extraction becomes necessary for critical nets.

1.2 Physical approach

We compare two stationary inductance calculation methods both based on a numerical solution of Neu-

mann’s formula [1] for a precalculated current density distribution:
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The integration is carried out numerically, where special attention has to be paid on the singularities

of the integrand, or with the Monte Carlo method. For both methods the stationary current density is

calculated with the finite element method. The first method [2] employs a summation of the contributions

of all pairs of finite elements to solve the integral (Eq. 1), where different kinds of approximation are

used, depending on the term j~r � ~r

0

j. For a large distance (compared to the tetrahedron diameter) simple

integration formulae are sufficient. The evaluation for small distances demand special formulae with

certain integration points, published by Stroud [3] who presented various integration formulae which are

applicable for various n-simplexes (e.g. the unit triangle, the unit tetrahedron) as integration region. If ~r

and ~r 0 are in the same tetrahedron, a partially analytic integration scheme is used to increase the accuracy

of the integration.

1.3 The Program Package

The SMART ANALYSIS PROGRAMS [4] uses the finite element method, because of it’s advantages, as

numerical robustness, the ability to solve nonlinear systems, high obtained accuracy, and general applica-

bility.

The geometry can be defined either directly from the layout by specifying layer thicknesses, or by a

rigorous topography simulation [5, 6]. The layout of the interconnect structure can also be imported from

CIF or GDSII files, or created interactively with a graphical layout editor [7]. Furthermore, the program

package includes three preprocessors, one for two-dimensional applications (CUTGRID) the other for

three-dimensional applications. The preprocessor LAYGRID allows a layer-based input of the simulation

geometry and the specification of the boundary conditions on the borders of each subdomain. The fully

unstructured three-dimensional Delaunay grid generator DELINK [8] utilize an advanced-front algorithm,

whereby the mesh generation starts from the initial front to fill up the solids with tetrahedrons.
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A preconditioned conjugate gradient solver (ICCG), which has been optimized specifically for the dis-

cretized Laplace operator, is used to solve the linear systems for domains of conducting materials [9].

By applying Ohm’s law to the derivative of the electrostatic potential the distribution of the electric cur-

rent density is obtained. The simulation is performed with the module STAP (Smart Thermal Analysis

Program), where both inductance extraction methods have been implemented.

Two postprocessors complete the program package, whereby the visualization tool SV is based on

VTK [10], a flexible and powerful visualization library. Both postprocessors can be used to verify the

grid quality, and for the visualization of several distributions (e.g. electric potential, temperature, current

density), whereby SV provides numerous features, as eg. cutting plains, volume rendering and contour

faces representation of distributions. Fig. 1 gives an overview about the SMART ANALYSIS PROGRAMS.

preprocessing and grid generation

2D solid modeler and

grid generator

CUTGRID

3D layer based solid modeler

and grid generator

LAYGRID

3D grid generator

fully unstructered

DELINK

FEM solvers

SCAP STAP

capacitance extraction

resistance extraction

postprocessing and visualization

FEMPOST/SV

2D/3D visualization

inductance extraction

electrical/thermal simulator

solid model/

layer based

language

geometry−

description− output from

layout−editor

output from

topography−

simulator

Figure 1: The SMART ANALYSIS PROGRAMS: tools and dataflow

1.4 The Monte Carlo Implementation

A well-known choice for the evaluation of multiple integrals is to apply the Monte Carlo method. As-

sociated with this method, where by random the point coordinates are chosen, is a fairly high effort on

CPU-time, because of the time consuming search for the associated element of the random point coor-

dinates. To reduce the error a high number of function evaluations has to be carried out, whereby for

each evaluation the aligned element with the precalculated current density must be found. To improve

the convergence during the Monte Carlo sampling several variance reduction schemes (e.g. importance

sampling, control variates) are known to accelerate the computation procedure [11].

One big advantage of our implementation is to bypass the high computational effort for the element loca-

tion. We first determine the associated element to the evaluated probability function, and then locate the

point inside the tetrahedron. For this purpose we take two arrays for every conductive segment. In the

first one is the volume of each element, whereby the sum of all entries is scaled to one. In the second one

is the probability function already evaluated for each conductor element by adding up all entries from the

beginning to the current index of the first array. Then the random generator chooses a number between

zero and one. The associated element complying to the probability function is found by a binary search.
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To ensure a uniform probability the local coordinates of the integration points are found by shooting into

the unit cube. The first point inside the registered unit tetrahedron is taken. For the interpolation of the

current density inside each element quadratic shape functions are used.

1.5 Application Example

Fig. 2 and Fig. 3 show the current density of two planar transformers. These transformers are build of two

interwound spirals each of 3, respectively, 5-turns metal with 5 �m width, a spacing of 15 �m, and an

inner length of 54 �m.

Figure 2: Current density distribution of the pla-

nar transformer with 3-turns metal

Figure 3: Current density distribution of the pla-

nar transformer with 5-turns metal

By utilizing the preprocessor LAYGRID three different grids were made. In Table 1 the simulation times

for the current density and the Monte Carlo method, respectively, the first numeric method as accom-

plished above, and the calculated inductances are listed. The simulations were performed on a Digital

Alpha workstation (DEC600/333 MHz). The number of samples for the Monte Carlo method was 1 mil-

lion. The first column of Table 1 implies all elements of the conductive segments, whereby tetrahedral

grid elements with quadratic shape functions were used. The analysis time for the Monte Carlo method is

not so strongly influenced by the number of elements (n), because the computational effort for the binary

search grows with ln(n). The simple integration formulae for the mutual inductances demand with in-

creasing n almost the same time. Table 1 emphasize the advantages of the Monte Carlo method explicitly.

3-turns

5-turns

Time [s] Results [nH]

MC Method [2] MC Method [2]Number of

Elements M L M L M L M L

1800 17 33 1 327 0.67 1.04 0.67 1.06

1968 17 34 1 627 0.67 1.05 0.67 1.06

2648 18 34 3 1764 0.67 1.06 0.67 1.06

4383 18 35 7 1945 2.71 3.58 2.70 3.62

4653 19 35 8 2088 2.71 3.60 2.70 3.62

5697 19 36 15 7885 2.70 3.60 2.69 3.63

Table 1: Analysis time and results of the planar transformers
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1.6 Conclusion

We have presented a comparative study of two numerical techniques for inductance calculation in in-

terconnect structures. Both methods are implemented into the package SMART ANALYSIS PROGRAMS,

which allows simultaneous extraction of three-dimensional effective parameters of VLSI circuits.
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2 Optimization of Industrial High Voltage Structures by

Three-Dimensional Diffusion Simulation

2.1 Introduction

The requirement for a low switch on resistance (R
on

) is to design a single device as small as possible. The

reduction of space charge regions is limited by the dopand surface concentration of the wells which may

result in impact ionization effects in case of too high doping concentrations. On the other hand, lowering

the doping concentrations is limited by the required punch-through voltage. To fulfill these conflicting

criterions the doping concentrations must be optimized.

2.2 Simulated structure

The investigated device is the tip of a drain finger of a high voltage PMOS transistor. To optimize the

two-dimensional PMOS transistor it is necessary to ensure that no three-dimensional effects dominate the

device behavior. The drain finger is implanted using a PTUB mask. To obtain proper electrical isola-

tion from the wafer substrate, the PTUB is located in a shallow NWell (SNTUB) deep NWell (DNTUB)

combination (SDNTUB). The PTUB, SDNTUB and the substrate form a pnp structure and under normal

operation the PTUB/SDNTUB junction is biased in reverse direction. The optimal drain finger layout

ensures that when applying maximal V
dd

no punch-through between PTUB and substrate happens and no

avalanche breakdown occurs at the surface of the wells. The complete device is embedded in the SNTUB

so that there is no direct connection between PTUB and substrate. Only in the area of the PTUB, the

DNTUB determines the distance between the pn- and the np-junctions. The PTUB/DNTUB mask layout

is given in Fig. 4, which shows that the DNTUB mask is enclosed by the PTUB mask. To enlarge the

distance between the two junctions it is necessary to use a long DNTUB diffusion time so that at the tip of

the drain finger the DNTUB dopands nearly diffuse spherically. This long DNTUB diffusion finally leads

to a DNTUB formation which starts outside of the PTUB mask. The three-dimensional consideration is

necessary because the spherical diffusion of the DNTUB dilutes the DNTUB concentration in the area of

the finger’s tip and thus reduces the punch-through voltage of the PMOS device.

2.3

2.7

2.7

cut for 2D simulation

NTUB mask

PTUB mask

2.7

mask for boron implantation

mask for phosphorus implantation

Figure 4: Well mask layout, units in �m
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2.3 Comparison of simulating approaches

The conventional procedure is to simulate the whole ion implantation process first [12] and then the three-

dimensional transient diffusion [13]. Thereby both steps require a particularly refined grid to achieve

appropriate accuracy [14] and, therefore, the vast amount of memory and huge calculation times constitute

prohibitive demands in practice.

Alternatively we have chosen a method, specially adapted to this problem. Because of the long diffusion

ranges, the exact simulation of the ion implantation process can be neglected and the implanted ions

were assumed as Dirac impulses only located at the wafer top. With this simplification the final diffusion

profile inside the wafer can be calculated as the sum of some partial diffusion processes, represented by

the Green’s function of the diffusion equation [15].

2.4 Calibration and evaluation

Attention must be put to preserve the dose of the implanted ions and therefore a dose integration after

implantation and after simulation must be carried out. In addition these models have to be calibrated by

the two-dimensional simulation results which are available far away from the tip of the finger. For the

full three-dimensional simulation a sufficiently fine grid in the areas of high diffusion gradients must be

granted and therefore the simulation time was enormous, whereas for the simplified algorithm a grid is

only necessary at the surface of the wafer and the resulting doping distribution can be calculated at any

point of interest. It is to note that a limitation of this method is obviously given, if the ranges of the

implantation depth and diffusion width get in the same size.

The assessment criterion of the new layout parameters is the fact that the dopant concentration of the

PTUB/SDNTUB junction at the surface of the wells is the same for the two-dimensional case and the

three-dimensional finger case. This ensures that the breakdown at the surface in the three-dimensional

structure takes place in the same voltage range as compared with the two-dimensional structure.

2.5 Results

The simulation results show that the spherical out-diffusion of the DNTUB is larger than expected because

of the large NTUB depth. This depth is about 7.5 micron in the two-dimensional simulation. The spherical

diffusion length is also in the same size from the top of the DNTUB finger to the direction of the two-

dimensional case. In fact the two-dimensional situation is given when the DNTUB mask is enlarged by

about 7 micron as compared to Fig. 4. This means that the DNTUB mask even can exceed the PTUB

mask. However an enlargement of 7 microns would cause impact ionization near the surface’s PTUB

top. So the limiting case of the DNTUB enlargement is the dopant concentration of the two-dimensional

simulation at the surface of the junction. This critical concentration is given when the DNTUB mask is

shifted by 2 microns towards the PTUB mask (see Fig. 2.5).

The simulation results are validated by a set of test devices. Figure 5 shows the punch current dependence

of the finger elongation starting with the initial layout (Fig. 4).

Another interesting effect is that the punch-through in the three-dimensional case does not occur directly

under the symmetry line of the finger (see Fig. 7). The explanation is that the DNTUB dopands diffuse

spherically while the PTUB dopands diffuse cylindrically coordinates. The punch current therefore has its

maximum density near the edge of the PTUB mask.
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Figure 5: Measured punch current of four test devices, depending on the finger enlargement, substrate

connected to -90V

With these careful considerations the device has been optimized to fulfill electrical strength, particularly

with regard to punch-through between the junctions and breakdown by impact ionization. Without the

outlined simulation methodology it would not have been possible to fully optimize the structure.
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    simulation
cut for 2D

2um

pn-junction, where the upper one also represents a boron iso-surface

phosphorus iso-surface

Figure 6: Relevant iso-surfaces of the junctions and the phosphorus doping with a simulation domain of

15.7�m x 10�m x 10�m

Figure 7: Surface surrounding the space charge region between both pn-junctions
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3 TCAD Analysis of Gain Cell Retention Time for SRAM Applications

3.1 Introduction

To meet the demand for fast, nonvolatile memory, a further increase in the density of SRAM cells is

inevitable. However, common SRAM technology still relies on the conventional six transistor cell, where

downsizing is difficult. Recent papers present new approaches to increase the packing density of SRAM

cells using advanced cell layouts.

An example is found in [16] where a MOS capacitance is used as storage node and two access transistors

serve for independent read and write operations. The schematics of such a cell is shown in Fig. 8. The

contacts are denoted by WWL (write word line), WBL (write bit line), RBL (read bit line) and RWL (read

word line), respectively. While it is not a real SRAM circuit because of the volatility of the charge on the

storage node, it offers the possibility of non-destructive read out due to capacitive coupling of the read

transistor: when the storage node is charged, a positive voltage at the RWL contact suffices to open the

read transistor, leading to a high current at the sense contact RBL. The sensing current is thus delivered

by the RWL contact and does not reduce the charge on the storage node.

The cell can be fabricated with standard process steps and consumes much less die area as compared to a

six transistor SRAM.

Read transistorWrite transistor

WWL

WBL

RWL RBL

Bulk

Storage node

Figure 8: Schematic of the proposed gain

cell.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Figure 9: Doping profile of the memory cell.
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For device simulation a complete three-dimensional doping profile of the cell is not necessary. Using

standard process simulation tools, single MOSFET device profiles can be used for the creation of the

doping profile of the whole cell. The two-dimensional doping profile of the simulated cell is shown in

Fig. 9. The doping profile was produced using the doping profile of a standard 0.2�m gate length n-type

MOSFET and the process simulation tool PROST2d. For such a memory cell two effects can be identified

to affect the retention time: the leakage current through the access transistors and the gate tunneling

current through the large gate area of the storage node.
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3.2 Inverse Modeling

We used the optimization tool SIESTA [17] and the device simulator MINIMOS-NT [18] to fit the simu-

lation models for measured transfer characteristics at different bulk biases of the NMOS device. We chose

the following parameters for inverse modeling: the bulk doping for accurate modeling of the bulk voltage

induced shift of the threshold voltage, the band-to-band tunneling and Shockley-Read-Hall parameters to

model the drain current increase for negative gate voltages, and the work function difference. The transfer

characteristics is shown in Fig. 10 for different bulk voltages, the obtained agreement to measurement data

is perfect. We tried several optimization schemes (genetic optimization, gradient based optimization and

simulated annealing) and achieved the best fit using simulated annealing.

3.3 Modeling Tunneling Currents

Due to the large size of the MOS capacitor, the storage node is de-charged by gate tunneling currents.

To give some order-of-magnitude estimations, we made use of a simple non-local, electric-field based

tunneling model. For low gate voltages, the SiO
2

barrier is of trapezoidal shape. Using the standard WKB

approximation, the tunneling current density evaluates as

J =

q
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where V
ox

is the oxide voltage, t
ox

the gate oxide thickness and �

b

the barrier height. The other symbols

have their usual meanings. The derivation of this equation can be found in [19], a similar equation is used

in [20].
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Figure 12: Tunneling barrier for the case of direct tunneling (left) and Fowler-Nordheim tunneling (right).

As shown in Fig. 12, (2) applies for qV
ox

< �

b

>. Otherwise, the barrier is triangular, giving rise to

Fowler-Nordheim tunneling causing a gate current density of

J =

q
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which is the expression usually found in literature. We used literature data to calibrate the model, with the

electron mass in the oxide m
ox

as fitting parameter and �

b

set to 3.1 eV. In the simulation we extracted the

potential values at the oxide interfaces at equidistant lateral positions beneath the gate contacts. In Fig. 11

the tunneling current densities are plotted for an oxide mass of m
ox

= 0:47m

0

. It shows that the model,

despite of its simplicity, is accurate enough to estimate the order of magnitude of the tunneling current

density over a wide range of gate voltages. The measurement values were taken from [20], [21], and [22].

3.4 Contact Voltage Optimization

In addition to the gate tunneling current also the voltages at the contacts in the off-region have some

influence on the retention time which is caused by the leakage current of the write transistor. The leakage

current of the read transistor plays a minor role since only its gate is connected to the storage node.

The write transistor leakage current shows no clear dependence on the contact voltages, as shown in

Fig. 13. Also the transfer characteristics in Fig. 10 justifies the assumption that there exists a minimum

of the leakage current. However, since there are five independent contact voltages (WWL, WBL, RWL,

RBL and the bulk contact), optimization ’by hand’ becomes difficult. Thus, we again used SIESTA for

optimization, employing different optimization strategies. One constraint was that all voltages in the off-

region had to stay below 0.5V. The default and optimum values for the contact voltages are shown in

Tab. 2. For the read transistor, it turned out that positive voltages at the turned-off contacts can increase

the retention time. Also, a positive bias on the bulk contact leads to a higher retention time.
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WWL WBL RWL RBL Bulk

Default -0.2V 0V 0V 0V -0.2V

Optimized -0.398V 0.417V 0.249V 0.400V 0.417V

Table 2: Contact voltages

3.5 Transient Simulation

Finally, we show results of transient simulations using the gate current model and the optimized contact

voltages. In Fig. 14 the cell de-charging curves are shown for the case of optimized and not optimized

contact voltages and different gate oxide thicknesses. Only with gate oxides thinner than 2nm, a significant

reduction in retention time can be seen. For optimized contact voltages, the retention time can be increased

by nearly three orders of magnitude. This emphasizes the need for proper chosen contact voltages when

using such devices.
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3.6 Conclusion

We presented simulations of a new SRAM cell consisting of two transistors and one capacitor. We used

inverse modeling and optimization techniques together with rigorous device simulation to analyze the

retention time of the device. We showed that, even with a very simple gate current model, measured

data can be fitted to some accuracy, valuable for first estimations. However, gate current induced charge

loss is crucial only for gate oxides thinner than 2nm. Of higher importance is the right choice of the

contact voltages, which can increase the retention time by orders of magnitude. Without TCAD based

optimization it would have been cumbersome, if possible at all, to find the right optima.
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4 A Qualitative Study on Global and Local Optimization Techniques for

TCAD Analysis Tasks

4.1 Introduction

We compare the two well-known global optimization methods, simulated annealing and genetic optimiza-

tion, to a local gradient-based optimization technique. We rate the applicability of each method in terms

of the minimal achievable target value for a given number of simulation runs in an inverse modeling

application.

The gradient-based optimizer used in the experiment is based on the Levenberg-Marquardt algorithm. The

actual implementation (lmmin) was taken from MINPACK [23]. The genetic optimizer (genopt) is based

on GALIB [24]. For the simulated annealing [25] optimizer (siman) an implementation by L. Ingber was

taken. All optimizers are capable of evaluating several targets in parallel.

In our inverse modeling experiment the dopant concentration profile of an NMOS transistor should be

identified. We use the deviation of computed I

D

V

D

and I

D

V

G

curves from measured ones as a target

for optimization. The target function as delivered to the optimizer is determined by
p

(~x � ~x) =N where

~x is the N -dimensional error vector. The error vector is computed as a modified relative error: 100 �

(1� I




=I

m

) for I



< I

m

and 100 � (I

m

=I




� 1) otherwise [26], where I



and I

m

denote the computed

and measured currents, respectively. The dopant profiles are approximated by Pearson Type IV functions

as described in [27]. Fig. 15
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Figure 15: Two-dimensional device model with

analytical doping peaks
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Figure 16: Plot of device with donors and

acceptors

shows the two-dimensional model of the device under consideration. The elliptically shaped regions

denote the analytical dopant concentrations. Fig. 16 shows a plot of the donor and acceptor concentrations

and the geometry of a typical device.

A total of 27 free parameters was optimized. In order to utilize a cluster of workstations we used our

simulation environment SIESTA [28, 29] to distribute the computational load. For the extraction of the

curves the device simulator MINIMOS-NT [30, 31] was used.
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4.2 Optimizers

4.2.1 Gradient-Based Optimizer

A gradient-based optimizer approximates the target function by a terminated Taylor series expansion:

f(~x

0

+ ~x) � f(~x

0

) + (rf(~x

0

))

T

~x+

1

2

~x

T

r

2

f(~x

0

)~x (4)

The actual optimization is performed iteratively. The direction and step width are determined by nu-

merically computing the JACOBIAN and HESSIAN matrices of the target function. Our optimizer uses a

finite-difference approximation of the first derivatives thus two evaluations for each parameter are neces-

sary. The second derivatives are computed by using the gradient of the recent and of the last step and the

HESSIAN of the last step (Broyden-Fletcher-Goldfarb-Shanno update [32]). The evaluations are indepen-

dent from each other which means they can be carried out in parallel. The dependence of the number of

evaluations on the number of free parameters limits the scalability of the optimizer and thus the utilization

of the workstation cluster (for a small number of parameters).

The performance of the gradient-based methods strongly depends on the initial values supplied. Several

optimization runs with different initial guesses might be necessary if no a priori knowledge (e.g., the result

of a process simulation) about the dopant concentration profile is applied. Fig. 17

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

T
a
r
g
e
t
 
V
a
l
u
e

Nr of Evaluation

min: ~15

Figure 17: Progress of the gradient-based

optimizer
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Figure 18: Crossover Operator

shows the evolution of the target values for a certain initial guess. In this example the optimizer was

stopped at a local minimum. Care must be taken to provide physically sound bounds for all parameters to

avoid simulation failures.

4.2.2 Genetic Algorithms

Genetic algorithms go back to [33]. A genetic algorithm (GA) is a so called population based search strat-

egy. GA’s maintain a set of points (genomes) in a function space. When the optimizer is started an initial

population of genomes is chosen. The parameters of the genomes are initialized randomly but within

given bounds. The fitness of the individuals in the population is then computed (in our case by means

of a device simulation). The simulation result i.e. the target value is used for selecting individuals for

reproduction. The library (GALIB) we used supports four different flavors of genetic algorithms namely
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SIMPLE (as described in [34]), STEADY-STATE, INCREMENTAL and DEME. They differ in the way in-

dividuals are selected for mating, dying and for surviving. In case of the SIMPLE genetic algorithm the

whole population is replaced each generation. The STEADY-STATE algorithm replaces only a part of the

population. Some of the individuals survive into the next generation. The replacement percentage defines

how many individuals are replaced. In the INCREMENTAL algorithm each generation consists of only

one or two children. Finally, the DEME algorithm evolves several populations independently each with a

STEADY-STATE algorithm. Each generation some individuals are migrated across the populations.

Genetic Reproduction

Reproduction is controlled by mutation and crossover operators. Crossover defines the procedure for

generating a child from two parents. The crossover probability (P

ross

) is used to decide whether the

parents or their children are taken over into the next generation. Fig. 18 shows the one-point-crossover

method, where a point is chosen randomly to determine which part of the genome to take from mother

and father respectively. GALIB supports several crossover methods. For our experiments we used the one-

point-crossover and two-point-crossover algorithms. For the optimization task crossover is the attempt to

find better individuals by combining the parameters of the best individuals so far.

Mutation introduces new genetic material into a population. Mutation occurs with the probability P

mut

.

One parameter in a genome is replaced by a randomly chosen value (within the allowed range).

Genopt

Our genetic optimizer (genopt) is written using GALIB. For our application we obtained the best results

with the STEADY-STATE algorithm. We used a replacement percentage of P
repla
e

= 0:7 and a population

size of 40. Since GALIB does not support parallel target evaluation our optimizer takes care of evaluating

several jobs in parallel.

The parameters of genopt with the most impact are the crossover probability P


ross

and the mutation

probability P

mut

. Several experiments with different crossover and mutation probabilities were carried

out. Fig. 19 and Fig. 20 depict the evolution of the genetic algorithm for two different combinations of

crossover and mutation probability and crossover method. The solid line is a plot of the best individual of

each generation. Note that the best individual within a population sometimes occurs at a lower evaluation

number thus appearing below the solid line.

The parameter combination depicted in Fig. 19 leads to the best result for our application.
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4.2.3 Simulated Annealing

Simulated Annealing is an optimization technique which was first introduced by Kirkpatrick in 1983 [35].

It is comprised of three functional relationships: The generation function g(~x), where ~x = fx

i

; i = 1;Dg

with dimension D, the acceptance function h(~x) and the annealing schedule function T (k) with the time

step k. The optimization itself takes place iteratively. Initially, the algorithm starts from a randomly chosen

point from which the fitness is computed. Next a new point is chosen using g(~x). In case the fitness of

this point is better than the fitness of the other one, the new point is taken over. In case the fitness is worse

the point is accepted by a probability h(~x). Another point is always chosen based on the best point so far.

With each iteration the probabilities for large deviations from the best point and for acceptance decrease.

This results in a behavior where distant points are explored at the beginning (high temperature) but not

generated or rejected respectively as the temperature cools down.

For the standard Boltzmann Annealing g(~x), h(~x) and T (k) are given by:

g(~x) = (2�T )

�

D

2

exp

�

�

�~x

2

2T

�

; (5)

h(~x) =

1

1 + exp

�

E

k+1

�E

k

T

�

; (6)

T (k) =

T

0

lnk

(7)

with the deviation �~x = ~x � ~x

0

of the new state from the previous one. It was shown

[36] that a global minimum will be found if the temperature is decreased no faster as given

by (7).

Siman

Our simulator (siman) is based on the VERY FAST SIMULATED RE-ANNEALING [25] algorithm by

L. Ingber. The algorithm defines a generation rate which allows for an exponentially decreasing time step

function:

T

i

(k) = T

0i

exp

�

�


i

k

1

D

�

(8)

with 

i

= m

i

exp

�

�

n

i

D

�

, where m
i

and n
i

are tuning parameters. The values T
0i

are the initial annealing

temperatures.

To account for different sensibilities of the parameters the algorithm periodically re-scales the annealing

time k. The range over which the more insensitive parameters are searched is stretched out with respect

to the more sensitive parameters (RE-ANNEALING).

Fig. 21 shows the progress of siman. Standard parameter settings were used. Compared to genopt this

optimizer reaches the same target value within approximately one third of evaluations.

4.3 Conclusion

We conclude that among the global optimization strategies we evaluated, simulated annealing seems to

be best suited for the case of our inverse modeling application. We observed that for a larger number of
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Figure 21: Evolution of the simulated annealing optimizer

evaluations (several thousands) siman delivered nearly optimal target values, whereas genopt’s optima

did not drop below a certain value. This calls for further experimenting with P


ross

and P

mut

and other

parameters during the evolution. However, the optimal settings for these parameters are difficult to extract.

We found that the VERY FAST SIMULATED RE-ANNEALING algorithm is faster than the STEADY-STATE

genetic algorithm by at least a factor of three. This conforms to the experiments done by L. Ingber [37]

who reports a speed difference of about one magnitude.

The local gradient-based method is the fastest if the initial guess is chosen appropriately but stops in a

local minimum or even fails to converge. In this case the whole optimization must be restarted with a

different initial guess.

Compared to a local optimizer the presented global optimization techniques demonstrate robust optimiza-

tion strategies which are essential in cases where an appropriate initial guess is not available.

Further investigations will combine the advantages of global and local optimization techniques. One could

imagine a scenario where for each globally found target value below a certain limit (e.g. 15), a separate

local optimizer is tried for a certain time period. This combines the robustness of the global technique

with the speed of the local one.
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5 Optimization for TCAD Purposes Using Bernstein Polynomials

5.1 Introduction

The optimization of computationally expensive objective functions requires approximations that preserve

the global properties of the function under investigation. The RSM approach of using multivariate poly-

nomials of degree two can only preserve the local properties of a given function and is therefore not

well-suited for global optimization tasks. In this paper we discuss generalized Bernstein polynomials that

provide faithful approximations by converging uniformly to the given function. Apart from being useful

for optimization tasks, they can also be used for solving design for manufacturability problems.

Automated TCAD optimization is difficult since the evaluation of the objective function is usually very

computationally expensive. There are two main approaches: the first is to optimize the given objective

function, and the second is to optimize an approximation of the objective function. Both approaches are

implemented in the SIESTA(Simulation Environment for Semiconductor Technology Analysis) framework

[17, 28]. The second approach relies on how good an approximation was chosen, and that it can be

evaluated much faster than the original objective function so that conventional optimization algorithms

requiring many more evaluations can be applied.

In the RSM (response surface methodology) [38] almost exclusively polynomials of degree two (or less)

are used. This method, however, suffers from the fact that there is no reason why such an approximation

should preserve the global properties of the given function: the set of of all polynomials of degree two or

less is not dense in C(X), X � R

p compact. Moreover, evaluating the objective function at more and

more points does generally not improve the RSM approximation – these evaluations are wasted. A simple

example for this fact are the functions e
�

: x 7! e

�x which are ubiquitious in TCAD applications. Other

examples are functions containing transitions from exponential to linear behavior.

Although the RSM approach can be improved by transforming the variables before fitting the polynomials,

it has to be known a priori which transformations are useful and should be considered. If this knowledge

is available, it can of course be applied to other optimization approaches as well.

To overcome the shortcoming of the RSM approach, we propose using generalized Bernstein polynomials

for approximating objective functions.

We also note that a good approximation resembling the global properties of the objective function can

be used for solving design for manufacturability problems. Furthermore, this method of computing ap-

proximations evidently gives rise to a recursive optimization algorithm. After a first approximation either

further approximations of interesting areas are computed, or – if needed – the first approximation is refined

using additional points.

5.2 Properties of Bernstein Polynomials

In this section we discuss some important properties of (generalized) Bernstein polynomials. In order

to keep the formulas simple we will concern ourselves with functions defined on the (multidimensional)

intervals [0; 1℄ � � � � � [0; 1℄. Using affine transformations it is straightforward to apply the results to

arbitrary intervals.

The following theorem is due to Sergei N. Bernstein.
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5.1 Theorem Let f : [0; 1℄! R be a continuous function. Then the Bernstein polynomials

B

f;n

(x) :=

n

X

k=0

f

�

k

n

��

n

k

�

x

k

(1� x)

n�k

converge uniformly to f for n!1.

A proof can be found in [39, p. 339]. If f even satisfies a Lipschitz condition, a stronger result can be

shown giving an error bound.

5.2 Theorem If f additionally satisfies a Lipschitz condition jf(x)�f(y)j < Ljx�yj, then the inequality

jB

f;n

(x)� f(x)j <

L

2

p

n

holds.

Additional to uniform convergence, also the derivatives of the approximation converge to those of the

given function.

5.3 Theorem If f has a continuous i-th order derivative f

(i)

(x) on (0; 1), then B

(i)

f;n

(x) converges uni-

formly to f (i)(x) on (0; 1).

The proof for this theorem is still elementary but requires more careful analysis.

The generalization for a function of two variables is obtained by first approximating one variable and then

the second. But using this straightforward method we can only prove pointwise convergence.

5.4 Theorem Let f : [0; 1℄ � [0; 1℄ ! R be a continuous function. Then the two-dimensional Bernstein

polynomials

B

f;n

(x; y) :=

n

X

k=0

n

X

`=0

f

�

k

n

;

`

n

��

n

k

��

n

`

�

x

k

(1� x)

n�k

y

`

(1� y)

n�`

converge pointwise to f for n!1.

This method can of course be applied recursively.

5.5 Theorem Let f : [0; 1℄ � � � � � [0; 1℄ ! R be a continuous function of m variables x
1

,. . . ,x
m

. Then

the multi-dimensional Bernstein polynomials

B

f;n

(x

1

; : : : ; x

n

) :=

n

X

k

1

;:::;k

m

=0

f

�

k

1

n

; : : : ;

k

m

n

�

m

Y

j=1

��

n

k

j

�

x

k

j

j

(1� x

j

)

n�k

j

�

converge pointwise to f for n!1.
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5.3 Examples

In this section we discuss two examples illustrating the properties of Bernstein polynomials, namely an

analytical function and a two-dimensional inverse modeling example.

The example of the function f : [0; 1℄ � [0; 1℄! R,

f(x; y) := (1=2)e

�10((x�1=2)

2

+(y�1=2)

2

)

+ e

�50((x�1)

2

+(y�1)

2

)

shows that approximation using generalized Bernstein polynomials resembles the global properties of a

given function better than using multivariate polynomials of degree 2 or less, even when using a small

number of lattice points. The two approaches are compared in Fig. 22. In the left hand figure, f is plotted

at the 11 � 11 lattice points that were used for calculating the two-dimensional Bernstein polynomial

B

f;10

(x; y) and the least squares fit rsm(x; y) of degree 2. f and B
f;10

have two local maxima on [0; 1℄�

[0; 1℄, whereas rsm has only one. Their respective values are (up to six digits): f(0:5; 0:5) = 0:5,

f(0:999661; 0:999661) = 1:00338; B
f;10

(0:500674; 0:500674) = 0:331634, B
f;10

(1; 1) = 1:00337;

rsm(0:696706; 0:696706) = 0:283076.
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Figure 22: Comparison of 11 � 11 lattice points of f (left), the Bernstein approximation B

f;10

(middle,

the variables have been scaled to the interval [0; 1℄), and the RSM approximation rsm (right)

as found by MATHEMATICA’s Fit function.
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Figure 23: Comparison of the computed lattice points (left), the Bernstein approximation (middle), and

the RSM approximation (right) as found by MATHEMATICA’s Fit function.

The second, real world example stems from minimizing the leakage current of a novel SRAM storage cell

[40]. First, we extracted seven parameters from the drain currents of the select transistor of the storage cell

and tried to fit two transfer characteristics (two bulk voltages, two times 27 points). The seven variables
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were ew, the work function of the gate material, sr, the source resistance, f, a parameter controlling the

doping, and four variables pertaining to the Shockley–Read–Hall model [31, page 71]. In the second step

the extracted values were used when minimizing the leakage current.

In the course of the inverse modeling task it was found that two variables, namely the parameter of the

gate material (ew) and the parameter controlling the doping (f), have a major influence on the result. For

further investigations, these remaining variables were then fixed at the values of the minimum found, and

the objective function was evaluated at 11 � 11 lattice points with these two most sensitive parameters (cf.

Fig. 23, left). Using these points, two approximations were calculated: the two-dimensional Bernstein

polynomial (where the variables were scaled to the interval [0; 1℄), and the least squares approximation

from the set of all polynomials of degree two or less (cf. Fig. 23). Again the RSM approximation is

misleading.

5.4 Conclusion

For optimization tasks involving computationally expensive functions, we propose using multivariate

Bernstein polynomials for approximating objective functions instead of the conventional RSM approach

of using polynomials of degree two or less. We show that this approach is mathematically sound and

present two examples illustrating its advantages.
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