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1 3D Modeling of Thermal Oxidation with the Finite Element Method

A numerical model which is suitable to describe three-dimensional thermal oxidation of silicon is pro-
posed. By oxidation the three material components silicon, silicon dioxide and oxidant molecules are
involved. The model takes into account that the diffusion of oxidants, the chemical reaction, and the vol-
ume increase occur simultaneously in a so-called reactive layer. This reactive layer has a spatial finite
width, in contrast to the sharp interface between silicon and dioxide in the convential formulation. The
oxidation process is numerically described with a coupled system of equations for reaction, diffusion,
and displacement. In order to solve the numerical formulation of the oxidation process the finite element
scheme is applied.

1.1 Introduction

Thermal oxidation of silicon is one of the most important steps in fabrication of highly integrated elec-
tronic circuits, being mainly used for efficient isolation of adjacent devices from each other.
If a surface of a silicon body has contact with an oxiding atmosphere, the chemical reaction of the oxidant
(oxygen or steam) with silicon results in silicon dioxide. This reaction consumes silicon and the newly
formed silicon dioxide has more than twice the volume of the original silicon. If a silicon dioxide domain
is already existing, the oxidants diffuse through the oxide domain and react at the interface of oxide and
silicon to form new oxide so that the dioxide domain is penetrated.
Thermal oxidation is a complex process where the three subprocesses oxidant diffusion, chemical reac-
tion, and volume increase occur simultaneously. The volume increase is the main source of mechanical
stress and strain, and these cause displacement [1].
From the mathematical point of view the problem can be described by a coupled system of partial differ-
ential equations, one for the diffusion of the oxidant through the oxide, the second for the conversion of
silicon into silicon dioxide at the interface, and a third for the mechanical problem of the Si–SiO

2

–body,
which can be modeled as an elastic, viscoelastic, or viscous body.
All published approaches can be classified essentially into three groups. The first type of method [2] maps
the silicon dioxide domain in each time step onto a a simple numerical domain. The second approach uses
the boundary element method for diffusion and displacement [3]. The third one [4] models the domain of
computation by finite elements.
For a realistic and accurate oxidation simulation the three subproblems should be coupled, however, most
oxidation models decouple them into a sequence of quasi-stationary steps. In our model all subprocesses
are coupled simultaneously and the oxidation process can be simulated in three dimensions.
We will restrict the following explanation to the most simple physical model of linear oxidant diffusion
and linear elastic displacement of the Si–SiO

2

–body.

1.2 Model

We define a normalized silicon concentration

�(~x; t) =

C

Si

(~x; t)

C

0Si

(1)

where C
Si

(~x; t) is the silicon concentration at time t and point ~x (x; y; z) and C
0Si

is the concentration in
pure silicon. So � is 1 in pure silicon and 0 in pure silicon dioxide.
The oxidant diffusion is described by

D�C(~x; t) = k(�)C(~x; t) : (2)
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Here D is the diffusion coefficient and k(�) is the strength of a spatial sink and not just a reaction coeffi-
cient at a sharp interface like in the standard model [5]. k(�)C(~x; t) defines how many particles of oxygen
per unit volume react in a unit time interval to silicon dioxide.
The change of � is described by

��(~x; t)

�t

= �

1

�

k(�)C(~x; t)=N

1

(3)

where � is the volume expansion factor (=2.25) for the reaction from silicon to silicon dioxide, and N
1

is
the number of oxidant molecules incorporated into one unit volume of silicon dioxide.
Furthermore, we define in (4) that k(�) is linear proportional to �.

k = �(~x; t)k

max

(4)

The chemical reaction of silicon and oxygen causes a volume increase. The additional volume in a refer-
ence volume silicon �V , where we assume that the oxidant concentration C is constant, is given by

V

add

=

�� 1

�

� t�V k(�)C(~x; t)=N

1

: (5)

We define the normalized additional volume V add

rel

as

V

add

rel

=

V

add

�V

: (6)

For our model we assume, that the Si–SiO
2

–body deforms elastically. In the theory of linear elasticity
with small displacements ~�(x; y; z) = fu(x; y; z) v(x; y; z)w(x; y; z)g and strains "

ij

(i; j stands for x, y
or z), the strain tensor ~" is defined as

~" = L

D

~

� (7)

where ~� is the displacement vector and L

D

is a differential operator, so that for example "
xx

=

�u

�x

and

"

xy

=

1

2

(

�u

�y

+

�v

�x

).
Assuming a linear material, the stress tensor ~� is given by

~� = D~" (8)

where D is a (6x6) material matrix of elastic constants. The elastic constants are linear functions of
Young’s Modulus E and Poisson’s ratio � of the materials.
The force vector ~f(x; y; z) = ff

x

; f

y

; f

z

g is the gradient of the stress tensor ~�.

~

f = r~� (9)

The most important part is that the volume expansion causes displacement. The normalized additional
volume from (6) can be written as

V

add

rel

= "

x

+ "

y

+ "

z

: (10)

For an isotropic material the strain components are equal so that

"

x

= "

y

= "

z

=

1

3

V

add

rel

: (11)

With (7) and (11) the relationship between the volume expansion and the displacement is fully determined.
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1.3 Discretization

1.3.1 Weak Formulation

Before we start with the discretization we apply the weak formulation on (2) and (3).
So we apply the Galerkin method with linear test functions N

k

(~x) on the diffusion equation from (2) and
apply Green’s theorem to remove the Laplace operator � as follows

k

max

Z

V

� C N

k

dV = D

Z

V

�C N

k

dV =

D

Z

�

�C

�~n

N

k

d��D

Z

V

rCrN

k

dV

(12)

where �C

�~n

= 0 and so the term
R

�

�C

�~n

N

k

d� is also zero, and so (12) is simplified to

k

max

Z

V

� C N

k

dV = �D

Z

V

rCrN

k

dV : (13)

The application of the Galerkin method with the same linear test functions N

k

(~x) to the distribution
function from (3) leads to

Z

V

��

�t

N

k

dV = k

max

Z

V

� C N

k

dV : (14)

1.3.2 Oxidant Diffusion

In order to solve (2) and (3) on a three-dimensional domain with the volume V
global

, we split the domain
up into tetrahedral elements with the volume V and perform a finite element discretization. The spatial
discretization for C(~x) on a single tetrahedral element is

C(~x; t = t

n

) =

4

X

i=1




(t

n

)

i

N

i

(~x) (15)

where 

(t

n

)

i

is the oxidant concentration at node i and discrete time t
n

. N
i

(~x) is the form function on node
i.
The spatial discretization for �(~x) on a single tetrahedral element is

�(~x; t = t

n

) =

4

X

i=1

�

(t

n

)

i

N

i

(~x) (16)

where �
(t

n

)

i

is the normalized silicon concentration at node i and discrete time t
n

. N
i

(~x) is the linear form
function on a node i.
If we replace C(~x; t) and �(~x; t) in (13) with (15) and (16) we obtain

�D

Z

V

�

4

X

i=1




(t

n

)

i

rN

i

rN

k

�

dV =
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k

max

Z

V

�

�

4

X

i=1

�

(t

n

)

i

N

i

4

X

i=1




(t

n

)

i

N

i

�

N

k

�

dV =

k

max

Z

V

�

�

4

X

i=1

�

(t

n

)

i




(t

n

)

i

N

i

�

N

k

�

dV :

(17)

With the following substitution

M

ki

=

Z

V

N

k

(~x)N

i

(~x)dV (18)

K

ki

=

Z

V

rN

k

(~x)rN

i

(~x)dV (19)

(17) is simplified to
4

X

i=1

�

DK

ki




(t

n

)

i

+ k

max

M

ki




(t

n

)

i

�

(t

n

)

i

�

= 0 (20)

which is a non-linear equation system (k is the equation index) with the constants D, K
ki

, k
max

and M
ki

and with the unknown variables 

(t

n

)

i

and �
(t

n

)

i

for one finite element.

1.3.3 Change of �

The spatial discretization for C(~x) and �(~x) is the same like in the last subsection and is already described
by (15) and (16). Because of the time dependence of (3) an additional time discretization of the partial

differential term ��(~x;t)

�t

is necessary. The time discretization is performed with the simple Backward-Euler
method as

��(~x; t = t

n

)

�t

=

�(~x; t

n

)� �(~x; t

n�1

)

�t

(21)

where t
n

and t
n�1

are two successive discrete times.

If we replace C(~x; t), �(~x; t) and ��(~x;t)

�t

in (14) with the discrete expressions (15), (16) and (21), we
obtain

1

�t

Z

V

�

4

X

i=1

�

�

(t

n

)

i

� �

(t

n�1

)

i

�

N

i

N

k

�

dV =

k

max

Z

V

�

(

4

X

i=1

�

�

(t

n

)

i




(t

n

)

i

�

N

i

N

k

�

dV:

(22)

With the substitution (18) the last equation is simplified to a non-linear equations system (k is the equation
index)

4

X

i=1

�

M

ki

�

�

(t

n

)

i

� �

(t

n�1

)

i

� k

max




(t

n

)

i

�

(t

n

)

i

�

1

�t

�

= 0 (23)

with the unknown variables 

(t

n

)

i

and �
(t

n

)

i

and with the constants M
ki

, k
max

and 1

�t

for one finite element.

The values for �
(t

n�1

)

i

are already determined at the previous time step.

If we combine the two equation systems (20) and (23), we obtain a non-linear equations system for one
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finite element (with eight equations and the eight unknows 

(t

n

)

1::4

and �

(t

n

)

1::4

). Now we are able to solve the

system (for example with the Newton method) at each time point t
n

and the values for 

(t

n

)

i

and �
(t

n

)

i

can
be determined.

1.3.4 Mechanics

The finite element discretization for a mechnical system has been already often described, for example by
[6]. Because of this fact we will restrict this subsection only to some steps which are important for the
oxidation simulation.
After discretization of the continuum, the relationship between strain and displacement (7) can be written
as

~"

e

= B

~

d

e

= [B

i

;B

j

;B

m

;B

p

℄ (24)

in which ~"

e is the strain tensor, ~de is the displacement vector and i, j, m and p are the four nodes on a
single thetrahedron.
The element displacement is defined by the 12 displacement components of the nodes as

~

d

e

=

8

>

>

>

<

>

>

>

:

~

d

i

~

d

j

~

d

m

~

d

p

9

>

>

>

=

>

>

>

;

with ~

d

i

=

8

<

:

u

i

v

i

w

i

9

=

;

etc. (25)

The submatrix B
i

for the node i is

B

i

=

2

6

6

6

6

6

6

6

4

�N

i

�x

; 0; 0

0;

�N

i

�y

; 0

0; 0;

�N

i

�z

�N

i

�y

;

�N

i

�x

; 0

0;

�N

i

�z

;

�N

i

�y

�N

i

�z

; 0;

�N

i

�x

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

b

i

; 0; 0

0; 


i

; 0

0; 0; d

i




i

; b

i

; 0

0; d

i

; 


i

d

i

; 0; b

i

3

7

7

7

7

7

7

5

(26)

with the linear form function N

i

(~x) defined as

N

i

(~x) = a

i

+ b

i

x+ 


i

y + d

i

z (27)

in which a
i

, b
i

, 

i

and d
i

are constant geometrical coefficients for the finite element. For example b
i

is

b

i

= �det

�

�

�

�

�

�

1; y

j

; z

j

1; y

m

; z

m

1; y

p

; z

p

�

�

�

�

�

�

: (28)

The entire inner virtual work on a finite element is

W

inner

=

Z

V

f~"

e

g

T

�

e

dV (29)

in which the transposed strain tensor is

f~"

e

g

T

=

~

d

e

T

B

T (30)
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and the stress tensor (8) can be written as

�

e

= D ~"

e

= DB

~

d

e

: (31)

That leads us to the following equation for W
inner

.

W

inner

=

~

d

e

T

Z

V

B

T

DB

~

d

e

dV (32)

The outer virtual work on a finite element, caused by the node forces is

W

outer

=

~

d

e

T

~

f

e

: (33)

On a element the inner work must be equal with the outer work.

W

inner

=

~

d

e

T

Z

V

B

T

DB

~

d

e

dV =

~

d

e

T

~

f

e

=W

outer

(34)

With the substituation

K

e

=

Z

V

B

T

DBdV (35)

whereKe is the so-called stiffnes matrix, we obtain a linear equation system for the mechanical problem.

K

e

~

d

e

=

~

f

e (36)

The most important part is, how the volume increase (5), caused by the chemical reaction of silicon to
silicon dioxide, loads the displacement problem.
Due to (11) we obtain the components "e

x

, "e
y

and "e
y

for the strain tensor ~"e and with

~

f

e

i

= �B

T

i

D~"

e

V

e (37)

the relationship between the volume expansion and the node forces is given, and with (36) and (37) the
displacements on the nodes is fully determined.

By coupling (20), (23) and (36), a local equation system for one finite element is given, which is a complete
numerical formulation of the oxidation process with its oxidant diffusion, chemical reaction and volume
increase at any time.

1.4 Simulation Procedure

In the first step of the simulation procedure, we perform a finite element discretization. With this aim in
view we split up the Si–SiO

2

–body into tetrahedral elements and that results in a tetrahedral grid on the
domain. The size of the tetrahedrons and, as a result of that, the number of the finite elements can be
influenced by the meshing module.
In the next step we set the initial values for the oxidant concentration C and the normalized silicon con-
centration � on the grid nodes. For example � must be 1 in a pure silicon domain.
Since the oxidation process is time dependent, the actual simulation time must be reset at the beginning of
the simulation.
As shown in Fig. 2, we iterate over all finite elements and build the local equation system for one element
for every actual discrete time.
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Start simulation

Create a tetrahedral grid

Initialize the values for C and � on
the grid nodes

set actual simulation time = 0
b

time = time + timestep

b

Make the local equation system for
one finite element

Assemble the components form the
local equation system to the global

equation system

all finite
elements ?

No

Yes

Solve the global equation system

Update the values for C, � and
displacement on the grid nodes

time = max.
simulat. time ?

No

Yes

End simulation

Figure 1: Simulation procedure

The local system describes the oxidation process
numerically for one element with the coupled
system for diffusion, chemical reaction and
the displacement problem. Note, that it would
be wrong to solve the relative simple local
equation system for one element. The finite
element method includes the superpostition
principle but not in the way to add up locally
calculated results in order to determine the
global results. In our case ”global” has a spatial
meaning and stands for the whole discretized
domain.
In order to describe the global oxidation
process we need a global coupled equation
system. The components of the global equation
system are assembled from the local equation
system by using the superpostition princi-
ple.
After the iteration over all elements is finished,
the global assembled equation system is also
finished. Now the global non-linear equation
system can be solved and we obtain the results for
the C , � and displacement values for the global
discretized oxdidation process for the actual time
step.
With these results we update the values for
C , � and displacement on the grid nodes
by adding up the new results to the already
existing values on the grid nodes and so
the values for C , � and displacement al-
ways keep pace with the actual simulation
time.
If the above described procedure is finished, we
increase the actual simulation time and start
with the assembling loop again as long as the ac-
tual time is equal to the maximum simulation time.

1.5 A Demonstrative Example

As example a silicon body with the initial dimension ( 0.5 x 0.4 x 0.5 ) �m as shown in Fig. 2 is oxidized.

For the simulation the parameters C� = 3 � 10

7

[

part:

�m

3

℄, D = 0:08 [

�m

2

s

℄, k
max

= 40 [

1

s

℄ were chosen, where
C

� is the surface oxidant concentration.
In this example only the upper surface of the body has contact with the oxiding atmosphere. As shown in
Figs. 2 – 5 the bottom surface is fixed and on the rest of the surfaces there are free mechanical boundary
conditions applied.
In the Figs. 2 – 5 the angel of view is always the same and the proportions of the body geometry are also
true, so that the displacement effects caused by the volume increase can be watched correct.
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Figure 2: Initial silicon body before oxidation.
Figure 3: Deformation and silicon dioxide distribu-

tion (upper region) at some time 3 � t
1

.

Figure 4: Deformation and silicon dioxide distribu-
tion (upper region) at time 7 � t

1

.
Figure 5: Deformation and silicon dioxide distribu-

tion (upper region) at time 13 � t
1

.

1.6 Conclusion

A three-dimensional oxidation model which is based on the finite element technique has been proposed.
In this model it is assumed that the interface beween the silicon and oxide is a reaction layer with finite
width instead of a sharp interface. In this layer there is a mixture of the three components silicon, oxidants,
and oxide.
One of the advantages of this model is that the numerical formulation, consisting of a coupled differential
equation system, describes the complete physical oxidation process in a very realistic way.
As demonstrated on a numerical example, this model is a powerful tool to simulate the whole oxidation
process on three-dimensional semiconductor structures.
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2 Generating Structurally Aligned Grids Using a Level Set Approach

We describe a technique to generate structurally aligned triangular grids. The main advantage of this
method is the adjustable propagating speed of the front in different parts of the simulation domain in order
to achieve different densities of triangles in each part of the simulation domain. This feature is usually
needed in semiconductor device simulation. Other advantages of this technique are twofold: firstly, the
grid can be very well adapted to the structures, and secondly, the grid elements fulfill desirable require-
ments like Delaunay triangulation and the minimum angle criterion. The technique is based on viewing
the boundary of the simulation domain as a front which is propagated structurally at different speeds. A
smooth propagation is achieved by the level set method by viewing the front as the zero level set of a
higher dimensional function whose equation of motion is described by a partial differential equation.

2.1 Introduction

We describe a method to generate structurally aligned triangular grids and illustrate it in two examples.
We use the level set method to propagate the boundary of the simulation domain as a front by viewing
it as the zero level set of a higher dimensional function with an adjustable speed depending on how
fine the triangular grid should be. The equation of motion of this higher dimensional function is given
by a partial differential equation, which is approximated by techniques borrowed from the numerical
solution of hyperbolic conservation laws which guarantee that the correct entropy satisfying solution will
be produced. The evolving front is thus a hypersurface, e.g., a curve in two space dimensions and a surface
in three space dimensions. The resulting algorithm can be used to generate two and three dimensional
grids around complex bodies containing sharp corners and significant variations in curvatures. We use this
technique to generate different grids around a variety of shapes for different device structures.
The most important advantage of this method is the adjustable propagating speed of the front which
provides an automatic way for generating grids with different densities of grid cells in particular parts of
its domain. The history of two-dimensional process and device simulation leads to the observation that
a stable triangulation engine is one of the most important prerequisites for simulation purposes. In the
second part of our algorithm the final grid elements are produced using the TRIANGLE program [7, 8].
Furthermore, thereby grids are very well adapted to the structures and are of high quality because we
can enforce minimum angle criterion which guarantees that the triangles have angles which are equal or
greater than a certain minimum angle and therefor we can well control the shape of the triangles.
Although the level set method has been used for generating structurally aligned grids [9], the method
presented there cannot generate anisotropic grids and no condition concerning the quality of the grid, e.g.,
minimum angles, can be enforced.
The outline of this paper is as follows. Firstly, the basic ideas of the level set method are shortly explained.
Secondly, the grid generation algorithm as a combination of the level set method and triangulation is
presented. Thirdly, an algorithm for equalizing the length of segments is presented. Finally, examples for
two simple initial structures and a real device structure are given.

2.2 The Level Set Method

The level set method [10] provides means for describing boundaries, i.e., curves, surfaces or hypersurfaces
in arbitrary dimension, and their evolution in time, which is caused by forces or fluxes normal to the
surface. The basic idea is to view the curve or surface in question at a certain time t as the zero level set
(with respect to the space variables) of a certain function u(t;x), the so called level set function. Thus the
initial surface is the set fx j u(0;x) = 0g.
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Figure 6: The extracted boundaries at 10 time steps.

Each point on the surface is moved with a certain speed normal to the surface which determines the time
evolution of the surface. The speed function F (t;x) generally depends on the time and space variables and
we assume for now that it is defined on the whole simulation domain and for the time interval considered.
The surface at a later time t

1

shall also be considered as the zero level set of the function u(t;x), namely
fx j u(t

1

;x) = 0g. This leads to the level set equation

u

t

+ F (t;x)kr

x

uk = 0;

u(0;x) given

in the unknown variable u, where u(0;x) determines the initial surface. Having solved this equation the
zero level set of the solution is the seeked curve or surface at all later times.
Although in the numerical application the level set function is eventually calculated on a grid, the resolu-
tion achieved is in fact much higher than the resolution of the grid, and hence higher than the resolution
achieved using a cellular format on a grid of same size.
In summary, first the initial level set grid is calculated as the signed distance function from a given initial
surface. Then the speed function values on the whole grid are used to update the level set grid in a finite
difference or finite element scheme. Usually the values of the speed function are not determined on the
whole domain by the physical models and therefore have to extrapolated suitably from the values pro-
vided on the boundary, i.e., the zero level set. A fast and efficient level set algorithm combining extending
the speed function and narrow banding was presented in [11, 12]. There a surface coarsening algorithm
similar to the one used in this work was described as well.

2.3 Generating the Level Set Structured Triangulated Grid

Our basic philosophy is to advance the front through the simulation domain using different speed func-
tions. Throughout this section we restrict ourselves to two-dimensional grids. At discrete chosen time
intervals, zero level set functions are constructed using a boundary extraction algorithm. In our example
we have assumed a constant speed for the first 6 time steps and 8/3 times this speed for the next 4 time
steps. This is shown in Fig. 6. We can see that the whole simulation domain is now divided into three
different parts according to three different grid resolutions depending on the application. An arbitrary
number of segments and speed functions can be used if desired.
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Based on the edges constructed in the first step the grid generator TRIANGLE is used to obtain a Delaunay
triangulation. In this example we demanded that the produced triangles have no angles smaller than 20
degrees. Requiring minimum angles is important since it enables a priori error estimates and estimates of
the order of convergence [13].
Fig. 7 shows the triangulated simulation domain. Because of different lengths of the segments which are
obtained by each boundary extraction, we can clearly see that this triangulation contains triangles which
are too small. An enlargement of this undesirable situation is shown in Fig. 9. We introduce an algorithm
for overcoming this problem in the next section.

2.4 The Segment Length Equalizer

To find the origin of this problem we briefly describe the boundary extraction algorithm which uses an
interpolation method to find the points of the boundary and represents these as a list of segments with
different lengths. Fig. 11 shows a part of the last five steps of advancing the front on a larger scale to show
more clearly the varying lengths of the segments. The segments may become arbitrarily small and are the
cause of the areas of dense triangles. To overcome this problem we need to ensure that all segments of the
boundary have about equal lengths.
We start the algorithm by choosing a certain common length d for all segments. In our example we chose
the minimum value of the vertical or horizontal distance between the points of our original rectangular
grid which is used in the level set step. The first point of the extracted boundary stays without any changes
but to find the second point we have to discern two cases. The first one is that the distance between the
second and first point of the originally extracted boundary is equal or greater than our d and in the second
one this distance is smaller than d. In the first case we compute the second point of the new boundary in
this manner that we get a point which fulfills two restrictions: first, the caused segment must be along the
first segment of the originally extracted boundary and second, the length of the new segment must be equal
to d. In this case the new segment is a part of the old segment but the length of the new segment is equal
or smaller than the old one. In the second case we compute the second point of the new boundary along
the next segment of the origin boundary and like the first case fulfilling the length requirement. In this
case the new segment is parallel to the second segment of the origin boundary and the length of the new
segment is greater than the old one. These steps are iterated until we reach the boundary of the domain.
Fig. 12 and Fig. 8 show the resulting segments with the enlargement and triangulated grid after equalizing
the lengths of the segments. Furthermore in Fig. 10 a part of Fig. 8 is shown on a larger scale. In Fig. 13,
Fig. 14 and Fig. 15 we show a simulation domain with a rectangular advancing front as another example
and the resulting grid also with the enlargement.

2.4.1 Grid Generation for a Real Device Structure

Fig. 16 shows the device structure of a trench gate UMOS transistor. This device is useful for power
switching at high voltages [14, 15, 16]. Trench gate UMOS transistors also provide advantages because of
their geometric layout, i.e., because their inversion and accumulation channel regions are perpendicular
to the wafer surface. Hence they enable to maximize the ratio of cell perimeter to area and thus increase
packing density. An analytical model for a typical trench gate UMOS transistor is given in [17].
The model is derived using the charge control analysis of the channel and drain drift regions and gradual
channel approximation is assumed to be valid in modeling the channel region. The shape of the different
junctions is obtained by the doping concentration profile which is modeled with a Gaussian distribution.
For the grid generation we used four boundaries which follow the three junctions. At the n+ � p junction
we used three boundaries in each direction of the initial boundary which follow the junction with a distance
of 0.02�m between any two adjacent boundaries.
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Figure 7: The triangulated grid without using the
segment length equalizer.

Figure 8: The triangulated grid is caused using the
segment length equalizer.

Figure 9: A part of the above grid on a larger
scale.

Figure 10: A part of the above grid on a larger
scale.

Figure 11: The last five steps of advancing the
front is shown partly on a larger scale.
The varying lengths of the segments are
shown clearly.

Figure 12: The last five steps of advancing the front
is shown partly on a larger scale after
equalizing the lengths of the segments.
The length of the segments are not more
different.
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At the p�n junction we used one boundary above and below the initial boundary and a distance of 0.02�m.
At the n�n

+ junction in the lower part of the device we took into account two boundaries with a distance
of 0.5�m going downwards from the initial boundary following the junction. For the last prescribed edges
we started at the tight hand side of the p region and moved to the left using three boundaries at a distance
of 0.005 �m.
Finally, we applied the TRIANGLE program requiring a minimum angle of 25o with the prescribed edges
as input. The grid produced is shown in Fig. 17, and it resolves very finely the junction areas as demanded.

2.5 Conclusion

A technique for generating structurally aligned triangulated grids using the level set method was described
and implemented in two dimensions. In contrast to previously generated structurally aligned grids based
on the level set method [9] the anisotropy of the grids and their quality can be controlled. The simulation
domain can be divided into parts with different resolutions using adjustable speeds for advancing the
front through the simulation domain with level set method. This adjustable grid resolution is essential
in semiconductor device simulation where high resolutions are required in certain parts of the simulation
domain. Furthermore the grid can very well adapted to different structures. Finally enforcing the minimum
angle criterion is important for the numerical behavior of the subsequent finite element calculations and
ensures high quality grids. At the same time, the diameter of the triangles may vary over several orders
of magnitude within one simulation domain (cf. Fig. 8, Fig. 14, and Fig. 17). Our technique enables to
produce triangulated grids for each form of semiconductor device structure with demanded resolution at
different junctions (cf. Fig. 17).



2 GENERATING STRUCTURALLY ALIGNED GRIDS USING A LEVEL SET APPROACH 14

Figure 13: The advancing rectangular front after 10
time steps. As same as Fig. 8 the ratio
of the speed in the first 6 steps to the last
4 steps is 3/8.

Figure 14: The triangulated grid of simulation do-
main in Fig. 13.

Figure 15: Fig. 14 is shown partly on a larger scale.
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Figure 16: Structure of TMOSFET. The half cell
pitch of the device is 2.5�m and its n
drift length is about 9.5�m.

Figure 17: The grid generated for the device in
Fig. 16.
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3 Rigorous Modeling Approach to Numerical Simulation of SiGe-HBTs

We present results of fully two-dimensional numerical simulations of Silicon-Germanium (SiGe) Hetero-
junction Bipolar Transistors (HBTs) in comparison with experimental data. Among the critical modeling
issues discussed in the paper, special attention is focused on the description of the anisotropic major-
ity/minority electron mobility in strained SiGe grown in Si.

3.1 Introduction

Our SiGe HBT-CMOS integrated process is based on a 0.35 �m mixed-signal CMOS process and includes
an additional high-performance analog-oriented HBT module. The applications reach is from circuits
for mobile communication to high-speed networks. Using simulation in a predictive manner has been
recognized as an integral part of any advanced technology development. In order to satisfy predictive
capabilities the simulation tools must capture the process as well as the device physics.

3.2 Physical Modeling

The two-dimensional device simulator MINIMOS-NT [18] can deal with various semiconductor materials
and complex geometrical structures. Previous experience gained in the area of III-V HBT modeling and
simulation which lead to successful results [19] was a prerequisite to use MINIMOS-NT also for simulation
of SiGe HBTs.

3.2.1 Bandgap and Bandgap Narrowing

Modeling of strained SiGe is not a trivial task, since special attention has to be focused on the stress-
dependent change of the bandgap due to Ge content [20]. This effect must be separated from the dopant-
dependent bandgap narrowing which for itself depends on the semiconductor material composition, the
doping concentration, and the lattice temperature [21].

3.2.2 Carrier Mobility

As the minority carrier mobility is of considerable importance for bipolar transistors, an analytical low
field mobility model which distinguishes between majority and minority electron mobilities has been
developed [21] using Monte Carlo simulation data for electrons in Si. A similar expression is currently
implemented in MINIMOS-NT:
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where �L is the mobility for undoped material, �
hi

is the mobility at the highest doping concentration.
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, �, and � are used as fitting parameters. The final low-field
electron mobility �

LI, which accounts for a combination of both acceptor and donor doping is given by
(40). Fig. 18 demonstrates a good match between the analytical model, our Monte Carlo simulation data,
and measurements from [22]-[23] at 300 K for Si.
Monte Carlo simulation which accounts for alloy scattering and the splitting of the anisotropic conduction
band valleys due to strain [24] in combination with an accurate ionized impurity scattering model [25],
allowed us to obtain results for SiGe for the complete range of donor and acceptor concentrations and
Ge contents x. We use the same functional form to fit the doping dependence of the in-plane mobility
component for x = 0 and x = 1 (Si and strained Ge on Si). The material composition dependence is
modeled by
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C

�

is a bowing parameter which equals 140 cm2/Vs and 110 cm2/Vs for doping levels below and above
C

mid

, respectively. Fig. 19 shows the in-plane minority electron mobility in Si
1�x

Ge
x

as a function of x
at 300 K for different acceptor doping concentrations. The model parameters used for SiGe at 300 K are
summarized in Table 1.
The component of the mobility perpendicular to the surface is then obtained by a multiplication factor
given by the ratio of the two mobility components. The good agreement of the model with the measured
and the Monte Carlo simulation data, both for in-plane and perpendicular to the surface directions, is
illustrated in Fig. 20.

3.3 Simulated Device Structure

The double-base SiGe HBT structures are CVD-grown with emitter areas of 12�0.4 �m2. The base-
emitter junction is formed by Rapid Thermal Processing which causes out-diffusion of Arsenic from the
poly-Silicon emitter layer into the crystalline Silicon. The process simulation with DIOS [26] reflects real
device fabrication as accurately as possible. The implant profiles as well as the annealing steps are cali-
brated to one-dimensional SIMS profiles. To save computational resources the simulation domain covers
only one half of the real device which is symmetric and the collector-sinker and the base poly-Silicon
contact layer are not included in the structure.
All important physical effects, such as surface recombination, impact ionization generation, and self-
heating, are properly modeled and accounted for in the simulation in order to get good agreement with
measured forward (Fig. 21) and output characteristics (Fig. 22) using a concise set of models and parame-
ters. In contrast, simulation without including self-heating effects cannot reproduce the experimental data,
especially at high power levels.
The only fitting parameters used in the simulation are the contribution of doping-dependent bandgap nar-
rowing to the conduction band (here about 80% and 20% for donor and acceptor doping, respectively),
the concentration of traps in the Shockley-Read-Hall recombination model (here 1014 cm�3), the velocity
recombination for holes (here 8200 cm/s) in the polysilicon contact model [27] used at the emitter contact,
and the substrate thermal resistance.
A closer look at the increasing collector current I

C

at high collector-to-emitter voltages V
CE

and constant
base current I

B

stepped by 0.4 �A from 0.1 �A to 1.7 �A reveals the interplay between self-heating and
impact ionization (see Fig. 23). While impact ionization leads to a strong increase of I

C

, self-heating
decreases it. In fact, both I

C

and I
B

increase due to self-heating at a given bias condition. As the change
is relatively higher for I

B

, in order to maintain it at the same level, V
BE

and, therefore, I
C

decrease.
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3.4 Conclusion

Critical issues for numerical modeling of SiGe devices have been discussed including accurate models
for bandgap narrowing and minority/majority electron mobility in strained SiGe. Good agreement was
obtained between simulation and experimental DC-results (forward and output characteristics) of SiGe
HBTs. The newly established models are beneficial for future process development.
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Figure 18: Majority and minority mobility in Si at 300 K: Comparison between Monte Carlo simulation
data and experimental data.

Table 1: Parameter values for the majority/minority electron mobility at 300 K.

Parameter Si Ge(on Si) Unit

�

L

n

1430 560 cm2/Vs

�

maj

mid

44 80 cm2/Vs

�

maj

hi

58 59 cm2/Vs

�

min

mid

141 124 cm2/Vs

�

min

hi

218 158 cm2/Vs

� 0.65 0.65

� 2.0 2.0

C

mid

1.12e17 4.0e17 cm�3

C

maj

hi

1.18e20 4.9e18 cm�3

C

min

hi

4.35e19 5.4e19 cm�3
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4 Direct Extraction Feature for Scattering Parameters of SiGe-HBTs

We present a direct approach to obtain scattering parameters S-parameters and other derived figures of
merit of SiGe-HBTs by means of small-signal (AC) analysis. Therefore, an additional simulation mode
has been implemented in the three-dimensional device simulator Minimos-NT [18]. Several additional
features are provided for efficiently obtaining various small-signal parameters. The accuracy of the results
is proven by analytical methods and by comparison with measurements.

4.1 Introduction

Since advanced SiGe techniques allow competitive performance of high frequency devices in markets that
were prior the object of other materials, small-signal analysis by means of simulation of these devices be-
comes more important. The idea of small-signal AC device characterization is to analyze the relationship
between small (in terms of the limit of the amplitude to avoid harmonic generation) sinusoidal contact
currents and voltages superimposed upon a DC device operating point obtained by a steady-state simu-
lation mode. S-parameter sets which are widely used for RF circuit design, are one particular result of a
small-signal analysis. The advantage over Y-parameters is that normalized incident and reflected waves
are used to characterize the operation of the two-port network. Thus, no short circuit is required, which
often cannot be achieved because the parasitics cause unstable devices and thus prevent measurements.
The current version of the device simulator Minimos-NT [18] has been equipped with an efficient feature
for obtaining intrinsic admittance and scattering parameters, which can then easily be converted to other
parameter sets, such as Z- or H-parameters. For example, it is common practice to use the parameter h

21

to
extract the cut-off frequency f

T

. Hence, a direct small-signal analysis of complex structures can crucially
ease device design and circuit development.

4.2 Physical Modeling

The physical models implemented in Minimos-NT allow advanced simulation of heterostructure devices
[19], since all important physical effects such as bandgap narrowing, surface recombination, transient trap
recombination, impact ionization, self-heating, and hot electron effects are taken into account. In addition,
we use an anisotropic electron mobility model. The simulator deals with different complex structures and
materials, such as Si, Ge, SiGe, GaAs, AlAs, InAs, GaP, InP, their alloys and non-ideal dielectrics.
The models are based on experimental or Monte Carlo simulation data and cover the whole material
composition range. The carrier transport, generation-recombination, and the self-heating models take
also the transient contributions into account and, therefore, the same models are used for the small-signal
simulation mode in our approach.

4.3 The Small-Signal Simulation Mode

A small-signal simulation mode can be based on several approaches, e.g. Fourier decomposition and ap-
plying quasi-static or equivalent-circuit parameter models. These approaches commonly use a transient
simulation mode as shown in Fig. 24. The time derivatives are usually discretized by a backward Euler
discretization, and thus a high number of steps has to be performed to achieve sufficient accuracy. For that
reason the time consumption is usually reduced by extracting an equivalent circuit using the information
of only one frequency.
Our small-signal analysis mode is based on the S3A approach presented in [28]. After a conventional
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DC step at a given operating point the simulator is switched to the simulation mode in the frequency do-
main, where the device is excited by a complex sinusoidal perturbation of infinitesimal amplitude. For
example, the electron current continuity equation can be symbolically given as F (V; n; p) = dG(n(t))=dt,
with nonlinear functions F and G. The time-dependent vector function of electron concentration n(t) is
then substituted by n(t) = n

0

+ n � e

j!t. The system is thus Fourier transformed (dt! j!) and the final
small-signal approximation is obtained by terminating the Taylor series expansion after the linear part. In
comparison to transient methods [29, 30] performance is better (only one equation system per frequency
step has to be solved) and the results are more accurate, since approximations are not required. As was
shown in [31] the speed-up can be up to 98%.
This approach requires the ability for solving complex-valued linear equation systems, for which several
methods can be applied. One possibility is to reuse a real-valued assembly and solver system, split the real-
and imaginary part and solve both systems separately. In terms of memory consumption this approach has,
especially for three-dimensional simulations, severe disadvantages, since the dimension doubles causing
a fourfold-sized system matrix. Thus, the computational effort for factorization can be excessive. In
[28] iterative methods like block-Gauss-Seidel or block-SOR are suggested for reducing this effort. An-
other approach implemented in Minimos-NT is to provide a template-based assembly and solver system
(BiCGStab and GMRES(m) iterative solvers) capable to handle both real- and complex-valued systems.
The real-valued variant was kept due to performance considerations.
In addition to this already established small-signal analysis method, we have implemented a feature for
direct extraction of intrinsic (de-embedded) Y- and S-parameters. As an optional feature these parameters
can be transformed into extrinsic parameters in order to take parasitics introduced by the measurement
set-up into account.

4.4 The Simulation Device and Results

The investigated 0:4 � 12�m

2 SiGe-HBT device structure is obtained by process simulation [26]. For
DC simulations usually only the active part (base and emitter area, collector contact was moved to the
bottom) of the device is required. For that reason the collector area was cut to speed-up simulations due
to the reduced grid size. Only half of the real structure was simulated because of symmetry. Fig. 25
shows a comparison of simulated and measured forward Gummel plots at V

CE

=1 V.
Note that it is absolutely necessary for AC simulations to take the complete device structure into account.
Thus, for the reduced device structure the important capacitances between collector and substrate C

CS

as well as between base and collector C
BC

could not be reproduced. In addition, the correct base and
collector resistances are missing. There are two possibilities to overcome this problem. Either the
missing parts are approximated by introducing linear elements in a postprocessing step or a larger
or even complete structure is used for AC simulations. The first option allows faster simulations but
gives approximated results. The second one produces more accurate results and does not require a
postprocessing step, but takes much more time: in the example the computational effort of device
simulation is 2.5 times higher.
In Fig. 26 and Fig. 27 both options are compared: in the frequency range between 50 MHz and
31 GHz measured and simulated S-parameters at V

CE

=1 V and current densities J
C

= 28 kA/cm2 and
J
C

= 76 kA/cm2 are shown. For the first option we embedded the device structure in a circuit containing
the following elements: C

CS

= 50 fF, C
BC

= 20 fF, R
B

= 15
 and R
C

= 27
. Their values were
experimentally estimated. The results of the second option are the intrinsic parameters only.
The quality of the simulated (intrinsic) Y-parameters is proven by calculating the row and column sums of
the admittance matrix, which have to be zero according to Kirchhoff’s laws. The simulation yields errors
of about 10�16 A/V for typical matrix entries of 10�3 A/V. The transformation to intrinsic S-parameters
is completely analytical (also the accounting for the capacitances) and, thus, the results can be directly
compared to the measurement data. Since the measurement environment accounts for the parasitics, no
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transformation to extrinsic parameters is necessary.
For the same device we calculated the matched gain g

m

and the short-circuit current gain h
21

in order to
extract the figures of merit f

T

(short-circuit cut-off frequency) and f
max

(maximum oscillation frequency)
found at the intersection with 0 dB (unity gain point). Fig. 28 and Fig. 29 show the comparison of
our results and the corresponding measurement data. While the measurement data ends at 31 GHz the
simulation could be extended to frequencies beyond this intersection. The peak of the f

T

-curve in Fig. 28
corresponds exactly to the frequency at the respective intersection in Fig. 29.
Fig. 28 shows also the effect of the introduction of anisotropic electron mobility. In addition, results
obtained by a commercial device simulator (Dessis [32]) using default models and parameters are
included for comparison.

4.5 Conclusion

The agreement in order of the typical curve characteristics with measured and transformed data proves
the efficiency of our approach. In addition, the performance speed-up in comparison to alternatives is
an important advantage. However, a general approach to match simulated results and measured data
perfectly has to comprise a proper physical modeling of the complete device since there are no extrinsic
fitting parameters available. We are able to extract various sets of small-signal parameters as well as
related figures of merit by means of simulation with Minimos-NT.
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Figure 24: Comparison of small-signal and transient approaches. The dashed rectangles of the S3A ap-
proach symbolize complex-valued equation systems, the other real-valued ones.
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5 Statistical Analysis for the 3D Ion Implantation Simulation

Without a proper statistical analysis of the simulation output data, it is not possible to assess the statistical
accuracy of three-dimensional Monte Carlo simulation results. The Monte Carlo technique applied to the
simulation of ion implantation produces a statistical fluctuation of the doping profile, in particular in the
three-dimensional case. The statistical accuracy is determined basically by the number N of simulated
ion trajectories. It depends also on the variation of the ion concentration up to several orders of mag-
nitudes in the simulation domain. The theoretical simulation error of order 1=

p

N has been expectedly
verified by several simulation experiments with different N. The paper describes the application of statis-
tical methods in order to evaluate the accuracy of three-dimensional ion implantation results compared to
one-dimensional results. We propose a method to determine the number of trajectories required to obtain
a specified precision in a three-dimensional Monte Carlo simulation study.

5.1 Introduction

Ion implantation is the state-of-the-art method for doping semiconductors because of its high controlla-
bility. The small dimensions of modern semiconductor devices have led to simulation applications which
require a high accurate and full three-dimensional treatment. Since the process of ion implantation has
a statistical nature, it is straightforward to use statistical methods to simulate it on computers. The most
important of such methods is the Monte Carlo method which is based on applying random behavior at an
atomistic level [33] [34].
Particularly, the position where an ion hits the crystalline target is calculated using random numbers. Fur-
thermore, the lattice atoms of the target are in permanent movement due to thermal vibrations. Thus,
the actual positions of the vibrating atoms in the target are also simulated using random numbers. The
trajectory of each implanted ion is determined by the interactions with the atoms and the electrons of the
target material. The final position of an implanted ion is reached where it has lost its complete energy. The
accuracy of the simulation is mainly determined by the complexity of the models that describe the physi-
cal behavior. These models are applicable for a wide range of implantation conditions without additional
calibration. The number of simulated ions must be considerably increased in order to achieve the same
statistical accuracy for three-dimensional simulations as in two dimensions. Therefore the computational
effort grows approximately proportional to the surface area of the simulation domain.
A very common mode of operation is to simulate an arbitrary large number N of ion trajectories and then
treat the resulting ion concentration estimates as the exact doping profile. In spite of the use of an ex-
pensive simulation model misleading results might be obtained, if the random nature of the output data is
ignored. From our point of view no in-depth analysis of the simulation accuracy of Monte Carlo process
simulations has been carried out so far, and in this work we will present the first comprehensive investiga-
tion of the statistical accuracy for three-dimensional Monte Carlo simulations of ion implantation.
The practitioner of a Monte Carlo simulation is always concerned with the computational time and the
statistical accuracy of the simulation. Both are related to the simulation rate of convergence to the ”true”
value. The standard error in the simulation can be viewed as the standard deviation of the random sample
divided by an increasing function of N, the number of simulated ions. We assume that all simulated ions
are statistically independent. One way to reduce the simulation error is by using a smart postprocessing
of the row data. The statistical fluctuation can be reduced effectively by smoothing the Monte Carlo sim-
ulation results in a postprocessing step [35].
The other obvious way to reduce the error is by increasing the number N of simulated ions. The traditional
Monte Carlo technique using pseudo random numbers has only a convergence rate of order 1=

p

N , which
follows from the Central Limit Theorem [36]. This rate is independent of the dimension and depends only
on the number N of simulations.
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Figure 30: Data flow and involved process simulation tools.

However, there is always a trade-off between the computational effort and the simulation error. In partic-
ular with regard to three-dimensional Monte Carlo simulations additional speed-up techniques have to be
used in order to get reasonably low statistical noise by practicable long simulation runs. Examples of such
speed-up techniques are the trajectory split method and the trajectory reuse method.

5.2 The Simulator

All Monte Carlo simulation experiments were performed with the object-oriented, multi-dimensional ion
implantation simulator MCIMPL. The simulator is based on a binary collision algorithm and can handle
arbitrary three-dimensional device structures consisting of several amorphous materials and crystalline
silicon. In order to optimize the performance, the simulator uses cells arranged on an ortho-grid to count
the number of implanted ions and of generated point defects. The final concentration values are smoothed
and translated from the internal ortho-grid to an unstructured grid suitable for subsequent process simula-
tion steps, like finite element simulations for annealing processes.
Fig. 30 shows the data flow during the simulation of ion implantation. The simulator MCIMPL is embed-
ded in a process simulation environment by using the object-oriented WAFER-STATE SERVER library
[37].
The WAFER-STATE SERVER has been developed in order to integrate several three-dimensional process
simulation tools used for topography, ion implantation, and annealing simulations. It holds the complete
information describing the simulation domain in a volume mesh discretized format, and it provides con-
venient methods to access these data. The idea was that simulators make use of these access methods to
initialize their internal data structure, and that the simulators report their modifications of the wafer struc-
ture to the WAFER-STATE SERVER. Thereby a consistent status of the wafer structure can be sustained
during the whole process flow.
The meshing strategy of DELINK follows the concept of advancing front Delaunay methods and produces
tetrahedral grid elements [38].
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Figure 31: Accurate Monte Carlo simulation result of phosphorus implantation in silicon with N = 10
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Figure 32: Variability of the 3D result.
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Figure 33: Result evaluation.

5.3 Analysis Method

For the analysis of three-dimensional simulation output, several numerical experiments
were performed on a three-dimensional structure equivalent to a one-dimensional prob-
lem. In particular, implantations of phosphorus ions into a crystalline silicon substrate were
simulated with different N. Fig. 31 shows the three-dimensional result for an accurate simulation with
N = 10

7 ions. We extracted the z coordinates and the phosphorus concentration values C (vertical
direction) from all 2972 grid points of the unstructured grid. This leads to Fig. 32 which demonstrates the
statistical fluctuation of the impurity concentration at equal penetration depth z.
The relative standard deviation of the impurity concentration in a plane z = const is a measure for the
simulation error of three-dimensional results compared to one-dimensional results. The mean impurity
concentration C(n) of n grid points at equal location z forms the one-dimensional doping profile. The
standard deviation S(n) of a sample defined by the concentration values of n grid points in a plane
z = const is given by

S(n) =

s

P

n

i=1

[C

i

�C(n)℄

2

n� 1

(42)
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� =

S(n)

C(n)

(43)

The relative standard deviation � according to (43) is calculated in order to evaluate the three-dimensional
result. Fig. 33 demonstrates the statistical accuracy of the three-dimensional result related to the one-
dimesional doping profile. Most of the simulated ions come to rest close to the mean projected range R

p

,
causing a small variance there. Due to the very low dopant concentration in deeper regions (typically more
than 10

4 times lower than at the maximum), insufficient events lead to an increase of the statistical noise.
Being based on random numbers, the results obtained with the Monte Carlo technique are never exact, but
rigorous in a statistical sense. The results converge to the used model characteristics. A 90% confidence
interval is constructed for the mean, in order to assess the relative error of the one-dimensional doping
profile in relation to the model limit value. The half of the approximate 90% confidence interval, �(n),
using the t-distribution [36] is given to

�(n) = t

n�1;0:95

S(n)

p

n

(44)

The relative statistical error �(n) for the one-dimensional doping profile can be defined as

�(n) =

�(n)

C(n)

(45)

The assessed statistical accuracy of the one-dimensional doping profile according to (45) is also demon-
strated in Fig. 33.
The accuracy of the Monte Carlo result is determined by the number of counted ions per cell. The distri-
bution of N ions determines the one-dimensional doping profile by using a scaling factor �:

�

Z

1

0

C(z)dz = N (46)

(46) can be used in order to calculate the factor � by means of numerical integration. For a small volume
of the width �z (cell dimension) the local number N

i

of simulated ions is determined by

N =

X

i

N

i

; N

i

= � C

i

�z (47)

The division by all cells of a z plane yields to the average ions per cell, which is demonstrated in Fig. 34
for N = 10

7 simulated ions. Each bar is located at the grid points of the internal ortho-grid. The histogram
demonstrates that in deep regions only one simulated ion per cell is available in the mean. More and more
empty cells at increasing penetration depth downgrade the statistics dramatically. An essential contribu-
tion to the accomplished accuracy of the final result is obtained through the reduction of the statistical
fluctuation by an implemented smoothing algorithm [35]. This algorithm sweeps a small rectangular grid
over the points of the new tetrahedral grid and uses an approximation by generalized Bernstein polynomi-
als. The Bernstein approximation of a concentration value on a new grid point by using the values of cells
located close to the new grid point reduces significantly the statistical noise. The bad statistics generated
by empty cells can be attenuated by averaging the values of surrounding cells.
We extracted again z coordinates and phosphorus concentration values from all 120 � 112 � 20 cells
of the simulation area. Fig. 35 compares the relative standard deviation for N = 10

6 ions before and
after smoothing. Thus a significant improvement of the statistical accuracy of Monte Carlo results can be
achieved through the filter effect of the Bernstein polynomials, which eliminates high-frequency fluctua-
tions from the original data.
Of great importance for the simulation is the weight of an ion, which is defined by the ratio of the number
of real ions N

real

to the number of simulated ions N .

Weight =

N

real

N

(48)
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Figure 35: Improvement of the statistical accuracy
by smoothing (N = 10

6).

In our simulation experiment shown in Fig. 31 the surface dimension is 0:7�m x 0:65�m. With a dose of
10

14


m

�2, 455000 ions are implanted. With 10

7 simulated ions the weight of an ion results to 0:0455.
In practice the real-world implanted doping profile has also a fluctuation due to the statistical nature of
the implantation process. In our simulation example a real ion has only a very little weight. Thus the
simulation result can be considered as a simulation of averaging over multiple real-world implantations.

5.4 Improvement of the Simulator

The crucial factor for the duration and accuracy of the simulation is the specified number N of ion trajecto-
ries as input data of the simulator. One drawback of the fixed-sample-size procedure based on N simulated
ions is that the analyst has no immediate control over the precision of the output data. We suggest an im-
provement of the used fixed-sample-size procedure by determining the duration of the simulation also
through a specified precision as input data of the simulator.
The simulation error of the Monte Carlo method is of order 1=

p

N . The relationship between the standard
deviation � and the number N of ions is given by

� = 
onst �

1

p

N

(49)

This relationship has been expectedly verified by simulation experiments with different N and is demon-
strated in Fig. 36. It can also be used to assess the number of trajectories required to obtain a specific
precision in a Monte Carlo simulation study.

As measure of the simulation accuracy, the desired maximum of the relative standard deviation �

max

within the range 2 ��R
p

(twice the straggling at the mean projected range) of the doping profile is used.
In our experiment of Fig. 31, 2 ��R

p

= 22 nm at R
p

= 30 nm.
For the calculation of the required N as function of the given standard deviation �

max

, a parameter 

is used which takes the incident atom species and the implantation energy into account. The following
formula can be used to assess the N for a specified surface area A and a desired precision �

max

:

N = 


A

A

0

1

�

2

max

; A

0

= 0:455 �m

2 (50)

Fig. 36 demonstrates this relationship for a phosphorus implantation, an ion energy of 25keV, A = A

0

, and
parameter 
 = 15992.
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5.5 Conclusion

The functionality of the three-dimensional Monte Carlo simulator MCIMPL for ion implantation is
demonstrated. The statistical fluctuation of the simulation result caused by the stochastic simulation
method and the expensive three-dimensional treatment are analyzed. The evaluation of the statistical
accuracy for three-dimensional results is performed by the use of statistical methods like calculating the
standard deviation or the confidence interval of the output data. The gained insight into the relationships
responsible for the statistical accuracy is used in order to achieve a better controllability of the simulator.
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[11] C. Heitzinger, J. Fugger, O. Häberlen, and S. Selberherr. On Increasing the Accuracy of Simulations
of Deposition and Etching Processing Using Radiosity and the Level Set Method. In European

Solid-State Device Research Conference (ESSDERC 2002), pp 347–350, Florence, Italy, 2002.

[12] C. Heitzinger and S. Selberherr. On the Topography Simulation of Memory Cell Trenches for Semi-
conductor Manufacturing Deposition Processes Using the Level Set Method. In 16th European Sim-

ulation Multiconference (ESM 2002): Modelling and Simulation, pp 653–660, Darmstadt, Germany,
2002.

[13] P. Knabner and L. Angermann. Numerik partieller Differentialgleichungen. Springer, Berlin, 2000.

[14] C. Bulucea and R. Rossen. Trench DMOS Transistor Technology for High Current (100A Range)
Switching. Solid-State Electron., 34(5):493–507, 1991.

[15] K. Shenai. Optimized Trench MOSFET Technologies for Power Devices. IEEE Trans.Electron

Devices, 39(6):1435–1443, 1992.

[16] K. Dharmawardana and G. Amaratunga. Analytical Model for High Current Density Trench Gate
MOSFET. In Proc. of the 10th International Symposium on Power Semiconductor Devices and ICs

(ISPSD 1998), pp 351–354, Kyoto, Japan, 1998.

[17] K. Dharmawardana and G. Amaratunga. Modeling of High Current Density Trench Gate MOSFET.
IEEE Trans.Electron Devices, 47(12):2420–2428, 2000.



REFERENCES 35

[18] Institut für Mikroelektronik, Technische Universität Wien, Austria. Minimos-NT 2.0 User’s Guide.
http://www.iue.tuwien.ac.at/software/minimos-nt.

[19] V. Palankovski, R. Schultheis, and S. Selberherr. Simulation of Power Heterojunction Bipolar Tran-
sistors on Gallium Arsenide. IEEE Trans.Electron Devices, 48(6):1264–1269, 2001.

[20] J. Eberhardt and E. Kasper. Bandgap Narrowing in Strained SiGe on the Basis of Electrical Mea-
surements on Si/SiGe/Si Hetero Bipolar Transistors. Materials Science and Engineering, 89:93–96,
2002.

[21] V. Palankovski, G. Kaiblinger-Grujin, and S. Selberherr. Implications of Dopant-Dependent Low-
Field Mobility and Band Gap Narrowing on the Bipolar Device Performance. J.Phys.IV, 8:91–94,
1998.

[22] G. Masetti, M. Severi, and S. Solmi. Modeling of Carrier Mobility Against Carrier Concentration in
Arsenic-, Phosphorus- and Boron-Doped Silicon. IEEE Trans.Electron Devices, ED-30(7):764–769,
1983.

[23] I.Y. Leu and A. Neugroschel. Minority-Carrier Transport Parameters in Heavily Doped p-type Sili-
con at 296 and 77 K. IEEE Trans.Electron Devices, 40(10):1872–1875, 1993.

[24] S. Smirnov, H. Kosina, and S. Selberherr. Investigation of the Electron Mobility in Strained
Si
1�x

Ge
x

at High Ge Composition. In Proc. Intl.Conf. on Simulation of Semiconductor Processes

and Devices, pp 29–32, 2002.

[25] H. Kosina and G. Kaiblinger-Grujin. Ionized-Impurity Scattering of Majority Electrons in Silicon.
Solid-State Electron., 42(3):331–338, 1998.

[26] ISE Integrated Systems Engineering AG, Zürich. DIOS-ISE, ISE TCAD Release 8.0, 2002.
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