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1 Evaluation of ZrO2 Gate Dielectrics for Advanced CMOS Devices

We discuss modeling issues of ZrO2 insulating
layers fabricated by metal-organic chemical vapor
deposition (MOCVD). Tunneling through such
layers cannot be described within the established
Tsu-Esaki model due to the presence of a strong
trap-assisted tunneling component. Trap energy
levels and concentrations can be extracted from
the time constants of the measured trap charg-
ing and decharging processes. A trap concentra-
tion of 4.5×1018 cm−3 with a trap energy level of
1.3 eV below the ZrO2 conduction band edge was
found for the considered layer. The parameters are
used to simulate a 50 nm ’well-tempered’ MOS-
FET and the influence of the high-κ dielectric on
the threshold voltage was studied. Two counter-
acting effects are found: while the fringing fields
from the drain contact reduce the threshold volt-
age, the presence of traps in the dielectric can lead
to a strong increase of the threshold voltage.

1.1 Introduction

Gate dielectric stacks of high-κ dielectrics have
been proposed to enable the reduction of MOS-
FET effective oxide thicknesses below 2 nm which
is necessary to allow further device scaling. Sev-
eral materials have been suggested to act as alter-
native dielectrics, such as Si3N4, Al2O3, Ta2O5,
HfO2, or ZrO2. Apart from thermodynamic sta-
bility, interface quality, and reliability, the dielec-
tric permittivity and the barrier height are of ut-
most importance as they influence the gate current
density through the layer [1]. Unfortunately, al-
ternative dielectrics show a pronounced tradeoff
between the permittivity and the barrier height.
Simulations have shown that ZrO2 promises good
performance as compared to other materials [2].
In this paper the performance of ZrO2 dielec-
tric layers is studied by simulations based on
static and transient measurements of ZrO2 layers.
Section 1.2 describes layer formation while Sec-
tions 1.3 and 1.4 are dedicated to the static and
transient measurements. In Section 1.5 a ’well-
tempered’ MOSFET is studied by means of device
simulation using the parameters of the investigated
layers, and Section 1.6 presents conclusions.

1.2 Device Preparation

ZrO2 pMOS capacitors have been fabricated by
MOCVD on p-type (100) silicon wafers with an
acceptor doping of 1.5e18 cm−3 and Al gate elec-
trodes. A horizontal hot-wall reactor equipped
with a bubbler system for metal-organic precur-
sor delivery was employed, see Fig. 1. Zr(tfacac)4
was selected as precursor substance. It shows ad-
vanced stability towards hydrolysis compared to
other possible precursor materials such as Zr(Ot-
Bu)4 and has sufficient volatility for delivery
at moderate bubbler temperatures. The already
present Zr-O bonds in the precursor molecule also
promote the formation of high quality thin films.
The silicon substrates were subjected to a mod-
ified RCA-clean immediately prior to deposition
including an HF dip to remove the native oxide
and passivate the substrate surface. During the
thin film deposition oxygen was supplied in addi-
tion to the argon carrier gas flow to support the de-
composition of the precursor to zirconium oxide.
All depositions were performed at a temperature
of 450°C Gas flow rates were optimized in regard
to the chemical composition of the product. At-
mospheres of forming gas (10% hydrogen in nitro-
gen) and diluted oxygen (20% oxygen, 80% nitro-
gen) were employed as exemplary reducing (form-
ing gas) and oxidizing (diluted oxygen) conditions
in post-deposition annealing at 650°C [3].

Figure 1: MOCVD deposition scheme
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Figure 2: Static gate current measurements of
the ZrO2 layers compared with simula-
tions.

The overall thicknesses of the dielectric
layers has been evaluated by spectroscopic
ellipsometry. Employing a relative permittivity
of the high-κ material itself of κ=18, which has
been found for thicker films, the comparison of
optical measurements and the results of C-V
characterization implicates the presence of an
interfacial layer with a permittivity in the range
of 4 to 8. Table 1 summarizes the results of an
evaluation of the thicknesses of the high-κ films
and interfacial layers. Also given is the effective
oxide thickness teff = tintκs/κint + thkκs/κhk

where tint and thk are the thicknesses of the
interface and the high-κ layer, and κint, κs, and
κhk the permittivities of the interface layer, silicon
dioxide, and the high-κ dielectric.

tphys tint thk teff
6.9 0.75 – 2.0 6.15 – 4.9 2.0
12.7 0.3 – 1.0 12.4 – 11.7 3.0

Table 1: Layer thicknesses of the deposited layers
in nm.

1.3 Modeling of Static Tunneling

The band diagram of ZrO2 dielectrics deposited
on silicon shows a two-step energy barrier due to
the presence of a thin layer of Zr-silicate at the
interface between ZrO2 and silicon. We assume
a band gap of the ZrO2- and Zr-silicate layer of
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Figure 3: Transient gate current of the dielectrics
annealed under reducing and oxidizing
conditions.

5.7 eV and 4.5 eV, respectively, with a conduction
band offset of 1.5 eV for ZrO2 and 0.8 eV for the
Zr-silicate [4]. For the calculation of tunneling
current through the layer we used the the general-
purpose device simulator MINIMOS-NT and ap-
plied the Tsu-Esaki method, for which the tunnel
current density is

J =
4πmoxqkBT

h3

∫ ∞

Emin

TC(E)N(E)dE (1)

where mox is the effective electron mass in the ox-
ide, Emin the lower of the two conduction band
edges next to the oxide, TC(E) the transmission
coefficient, and N(E) the supply function which is
calculated using Fermi-Dirac statistics. The trans-
mission coefficient TC(E) can be calculated us-
ing several methods, such as the transfer-matrix
or transmitting-boundary method. However, since
the transfer-matrix method showed numerical in-
stabilities we employed the transmitting-boundary
method as described in [2].

Fig. 2 shows the measured gate current for the two
dielectric layers, with the approximate shape of
the energy barrier shown in the insets. As ref-
erence, the figure also shows the gate current for
a 2 nm and a 3 nm SiO2 layer (dotted lines). As
expected, the measured current density is lower
than for the SiO2 counterparts. However, the tun-
nel current predicted by the Tsu-Esaki model for
the ZrO2 layer could not reproduce the measure-
ments as it yielded tunneling currents orders of
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magnitude lower than the measurements. We ex-
plain this failure of the Tsu-Esaki model by the
presence of strong trap-assisted tunneling due to a
high trap concentration in the dielectric layer. By
assuming a simple Frenkel-Poole like conduction
through the oxide layer

J = AFox exp

(

B
√

Fox − qΦt

kBT

)

(2)

where Fox is the electric field in the oxide and A
and B were used as fitting parameters, the mea-
surements could be reproduced (full lines). How-
ever, the values of A and B differ for positive and
negative gate bias. That indicates that different
conduction processes occur for accumulation and
inversion. Note that in previous studies [5] tunnel-
ing through ZrO2 layers fabricated by magnetron
sputtering could be reproduced without consider-
ing trap-assisted tunneling.

1.4 Modeling of Transient Tunneling

To clarify the trap energy level and concentration,
the step response of the MOS capacitors has been
measured as shown in Fig. 3 for the 12.7 nm
ZrO2 layer annealed in reducing conditions
(forming gas) and the 6.9 nm layer annealed
under oxidizing conditions. The gate voltage is
turned off after being fixed at a value of 2.5 V and
the resulting gate current is measured over time.
The transient gate current exceeds the static gate
current by orders of magnitude and decays very
slowly. This behavior can be explained assuming
slow states in the dielectric layer [6].

To account for this transient trap-assisted tunnel-
ing we use a model that has been presented in [7]
and was implemented in MINIMOS-NT. Based on
the rate equation for the concentration of occupied
traps at position z and time t in the dielectric layer

dfT(z, t)

dt
=

= (1 − fT(z, t))τ−1
c (z) − fT(z, t)τ−1

e (z),
(3)

the trap occupancy follows an exponential decay

fT(z, t) =
τm(z)

τc(z)
+

+

(

fT(z, 0) − τm(z)

τc(z)

)

exp

(

− t

τm(z)

)

.

(4)
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Figure 4: Decay of the trap occupancy in the gate
dielectric after removing a gate bias of
2.5 V

In these equations fT(z, t) is the trap oc-
cupancy function at position z and time t,
τ−1
m = τ−1

c + τ−1
e , and τc(z) and τe(z) are

the time constants for capture and emission
processes. They are calculated assuming inelastic
phonon-assisted tunneling processes [8]. The
free parameters of the model are the trap
concentration, the trap energy level below the
dielectric conduction band edge, the Huang-Rhys
factor of the traps S, and the phonon energy
~ω. Once the occupancy function is known,
the transient tunnel current through one of the
interfaces is

J(t) = q

∫ tox

0

(

NT(z)
(

τc(z)−1−

− fT(z, t)τm(z)−1
)

)

dz.

(5)

The trap charge of occupied traps is calculated as
the product of the local trap concentration NT(z),
the trap occupancy fT(z, t) and the trap charge
state. The trap concentration was assumed to be
constant in the dielectric layer. Only electron tun-
neling has been assumed, and the trap charge was
self-consistently taken into account in the Poisson
equation. Using this model, a trap energy level
of 1.3 eV below the ZrO2 conduction band edge,
a trap concentration of 4.5×1018 cm−3 and an en-
ergy loss of 1.5 eV have been found. For the di-
electric layer annealed under oxidizing conditions
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Figure 5: Transfer characteristics of the ’well-
tempered’ MOSFET with SiO2 and
ZrO2 dielectrics at VDS=1.2V.

the trap concentration was reduced to 4e17 cm−3

to fit the measurements.

The model allows to study the location of occu-
pied traps in the dielectric. Under inversion condi-
tion, traps near the substrate side of the dielectric
layer are occupied while traps near the gate are
empty. Fig. 4 shows that the trap occupancy has
a Gaussian shape and shows a linear decay over
time when the gate voltage is switched off.

1.5 Device Simulation

To predict the performance of devices based on
ZrO2 dielectrics a well-tempered MOSFET as de-
scribed in [9] with an effective channel length of
50 nm has been simulated. Effective gate oxide
thicknesses of 2 nm and 3 nm SiO2 and respective
ZrO2 layers have been considered. Fig. 5 show
the transfer characteristics for a drain-source volt-
age of VDS=1.2 V on a linear and logarithmic scale
for the different oxide thicknesses and dielectrics.
It can be seen that the ZrO2 layer leads to consid-
erably reduced threshold voltages. This reduction
in the threshold voltage can be explained by the
fringing fields from the drain contact which re-
duce the drain-source barrier, an effect which is
especially pronounced for thicker layers. Fig. 6
depicts the conduction band edge in the channel
for different gate-source voltages. It can be seen
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Figure 6: Well-tempered MOSFET conduction
band edge along the channel for SiO2

and ZrO2 dielectrics

that the barrier is slightly lower for the ZrO2 layer
at VGS=1.2 V, while there is a heavy barrier reduc-
tion for VGS=0.1 V.

An additional topic of interest for high-κ
dielectrics is the influence of trapped charges
in the high-κ layer on the threshold voltage of
the device. We used MINIMOS-NT to study
this effect and defined the threshold voltage
at a drain-source current of 10 µA. The trap
concentration in the ZrO2 layer was increased
from 1015 cm−3 to 1019 cm−3, with full trap
occupancy in the dielectric layer. It can be seen in
Fig. 7 that the threshold voltage strongly increases
with rising trap concentration. This effect is
therefore contradictory to the increase of the
threshold voltage due to fringing fields described
above.

1.6 Conclusion

The tunneling current through ZrO2 layers
deposited by MOCVD is mainly determined by
trap-assisted tunneling which can be explained
by a Frenkel-Poole tunneling model. The trap
energy level and concentration can be estimated
by measuring the step response of the MOS
capacitors. The performance of a ’well-tempered’
MOSFET using ZrO2 dielectrics was studied by
means of device simulation. It was found that



1 EVALUATION OF ZRO2 GATE DIELECTRICS FOR ADVANCED CMOS DEVICES 5

1e+15 1e+16 1e+17 1e+18 1e+19
Trap concentration [cm-3]

0.25

0.5

0.75

1

T
hr

es
ho

ld
 v

ol
ta

ge
 [V

]

SiO2

ZrO2

teff=2nm

teff=3nm

Figure 7: Influence of the dielectric trap concen-
tration on the MOSFET threshold volt-
age

there exist two controversial effects influencing
the threshold voltage of the device. On the one
hand, the high-κ dielectric leads to a reduced
threshold voltage especially for thicker layers.
This effect is due to fringing fields from the drain
contact. On the other hand, occupied traps in the
dielectric layer increase the threshold voltage of
the device. So, for low trap concentrations, the
threshold voltage for the high-κ device is lower
than for the SiO2 counterpart, while it is higher
for high trap concentrations. This effect must
be taken into account when modeling advanced
MOS devices.
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2 High Quality Grids and its Application to a Trench Gate MOSFET

The error of the numeric approximation of the
semiconductor device equations particularly de-
pends on the grid used for the discretization. Since
the most interesting regions of the device are gen-
erally straightforward to identify, the method of
choice is to use structurally aligned grids. Here
we present an algorithm for generating structurally
aligned grids including anisotropy and for produc-
ing grids whose resolution varies over several or-
ders of magnitude. Furthermore the areas with in-
creased resolution and the corresponding resolu-
tions can be defined in a flexible manner and cri-
teria on grid quality can be enforced.

The grid generation algorithm was applied to sam-
ple structures which highlight the features of this
method. Furthermore we generated grids for the
simulation of a high voltage trench gate MOS-
FET. In order to resolve the junction regions ac-
curately, four regions were defined where the grid
was grown in several directions with varying res-
olutions. Finally device simulations performed by
MINIMOS NT show current voltage characteristics
and the threshold voltage.

2.1 Introduction

Generating structurally aligned grids is a crucial
prerequisite for the accurate simulation of the elec-
tric behavior of semiconductor devices. The qual-
ity of the numeric approximation of the solution
of the device equations by the finite element or
the finite volume method particularly depends on
the underlying mesh. In addition to aligning the
meshes with the structures, it is desirable to be
able to enforce quality criteria like the Delaunay
criterion or the minimum angle criterion [10].

Here we present a new method to gener-
ate structurally aligned triangulations, including
anisotropy if desired. The principal idea is to ob-
tain a suitable, not connected set of edges by ad-
vancing a front through the simulation domain by
a level set algorithm in the first step. In the second
step these edges are used as the input for a special-
ized grid generator that enforces the quality crite-
ria. Although a technique based on the level set

method has been used for generating structurally
aligned grids [11], that method cannot generate
anisotropic grids and no condition concerning the
quality of the grid, e.g., minimum angles or the
Delaunay criterion, can be guaranteed. However,
with our approach we can successfully carry out
device simulations with the simulator MINIMOS

NT [12] using the grids generated.

After the description of the grid generation algo-
rithm, it is applied to two examples. The first ex-
ample is a sample structure which highlights the
critical parts near the corners. The second example
stems from the simulation of a trench gate MOS-
FET. Here several areas of refinement were cho-
sen and the grid was generated to take the specific
structure of the device and location of the junc-
tions into account. This example emphasizes the
applicability of the algorithm to real world exam-
ples.

Trench gate MOSFETs (TMOSFETs) are useful for
power switching at high voltages [13–17]. They
also provide advantages because of their geomet-
ric layout, i.e., because their inversion and accu-
mulation channel regions are perpendicular to the
wafer surface. Hence they enable to maximize the
ratio of cell perimeter to area and thus to increase
packing density. The TMOSFET considered is a
120V trench gate UMOS transistor (cf. Figure 10).
After generating the structurally aligned grid, we
present simulated characteristics of this TMOSFET

in the final section.

2.2 The Grid Generation Method

In this section we discuss the algorithm devised
for generating structurally aligned grids. The main
idea is to advance one or more fronts through
the simulation domain using a level set algorithm
[18–20] and constant speed functions. For each
moving front a certain number of boundaries are
extracted. The number of these boundaries and the
spacing between them can be arbitrarily defined
and depends on the number of advancing level set
steps and their time steps.
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Figure 8: This figure shows a sample structure
with angles of 270◦ and 90◦. The set of
edges was constructed from three mov-
ing boundaries: going downwards from
the upper boundary and going upwards
and downwards from a boundary in the
lower part.

Clearly the spacing between the intermediate
boundaries obtained by the level set algorithm
will later determine the diameters of the triangles
of the final grid.

Since the boundary segments of the intermediate
boundaries obtained after surface extraction from
the rectangular grid may be arbitrarily small, the
boundary segments must be normalized. The seg-
ments are normalized by choosing points on the
boundary that are equidistant when their distance
is measured along the boundary. The normalized
intermediate boundaries consist of straight lines
which are the edges of the final grid to be respected
in the second part of the algorithm.

This first part of the grid generation is highly cus-
tomizable and anisotropy can be introduced here
by choosing the spacing between the intermediate
boundaries and the distance between points of the
normalized boundary accordingly.

In the second part of the algorithm the set of edges
constructed in the first part serve as input to the ac-
tual grid generator. The TRIANGLE program [21]
was used in this work because of its robustness.
After reworking the edges into the appropriate in-
put format and running TRIANGLE, the output is
translated into PIF files [12].

The benefits of this algorithm can be summarized
as follows. The grid resolution is customizable
and the areas of higher resolution can be chosen

Figure 9: A vertex with an outer angle of 90◦ of
the grid in Figure 8 is magnified.

arbitrarily. The grid resolution may vary over
several orders of magnitude. The algorithm
can deal with arbitrary initial structures and an
arbitrary number of starting fronts defining areas
of high resolution. Anisotropy may be introduced
by choosing appropriate parameters for the
algorithm. At the same time quality criteria like
the Delaunay criterion and requiring that all
angles of the triangulation are larger than a certain
minimum angle are enforced. It is important to
note that the algorithm works reliably, since it
is based on edges in contrast to just prescribing
sets of points and hence directional information is
preserved.

Compared to grid generation algorithms using
iso-lines or iso-surfaces of solutions of the
Poisson equation, the advantage of this algorithm
is its flexibility. This is important, e.g., near
the buried layers of SOI devices. The initial
boundaries where the advancing fronts start, the
prescribed number of intermediate boundaries
and their spacing determine the properties of the
final grid in a straightforward manner in contrast
to the Poisson equation approach.

2.3 Grid Generation for Sample
Structures

The grid in Figure 8 was generated by the above
algorithm. The sample structure contains vertices
with outer angles of 90◦ and 270◦ at the boundary
where the grid is finest. Figure 9 shows a mag-
nification of these interesting parts. In the exam-
ples we used a constant propagation speed for the
first eight steps, starting at the upper boundary, and
twice this value for the next seven steps.

Based on the edges constructed in the first step, the
grid generator TRIANGLE [21] was used to obtain
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a Delaunay triangulation. We demanded that the
final triangulation contains no angle smaller than
20◦. In these examples the grid resolution varies
over several orders of magnitude and the critical
areas near the corners are resolved without prob-
lems.

2.4 Simulation of a TMOSFET

The device structure of the trench gate UMOS tran-
sistor is shown in Figure 10 and its parameters in
Table 2. Its trench depth is 3µm and its gate ox-
ide thickness is 0.1µm. It is designed to achieve a
forward blocking voltage of 120V.

2.4.1 Grid Generation

For the grid generation we used four boundaries
following the three junctions (cf. Figure 10) and
one in the p-region near the gate oxide. First, at
the n+–p junction we used three boundaries in
each direction of the initial boundary following
the junction with a distance of 0.02µm between
any two adjacent boundaries.

At the p–n junction we used one boundary above
and below the initial boundary and a distance of
0.02µm. At the n–n+ junction in the lower part of
the device we constructed two boundaries with a
distance of 0.5µm going downwards from the ini-
tial boundary following the junction. For the last
prescribed edges we started at the right hand side
of the p-region and moved to the left constructing
three boundaries at a distance of 0.005µm.

In the second step we used the TRIANGLE pro-
gram requiring a minimum angle of 25◦ with these
prescribed edges as input. The grid produced and
two enlargements thereof are shown in Figure 11.
The junction areas are resolved very finely as de-
manded.

2.4.2 Device Simulation

The device simulations were performed using
MINIMOS NT [12]. Figure 13 shows typical
on-state characteristics of the high voltage

Parameter Value

n drift doping 1.5 · 1015cm−3

p well doping 1 · 1017cm−3

p well ≈ 1.4µm
p+ buffer 5 · 1018cm−3

n+ source depth ≈ 0.38µm
Gate oxide thickness 0.1µm
Trench depth 3µm
n drift length ≈ 9.5µm

Table 2: The technological and geometrical pa-
rameters considered of the device.

n−drift
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n+

n+

Drain

Source Gate

SiO2

p
p+

Trench Gate UMOS Transistor

Figure 10: Structure of the TMOSFET. The half
cell pitch of the device is 2.5µm and
its n drift length is about 9.5µm.

TMOSFET. The I–V curves of the figure show
that good saturation currents behavior is obtained
by increasing the drain voltage. Transfer
characteristics are shown in Figure 14 for drain
voltages of Vd = 0.1V and 0.5V. From this figure
a threshold voltage VT of 2.5V is obtained. It
is important to note that the threshold voltage is
independent of the drain voltage.

2.5 Conclusion

One of the main advantages of this method is
the flexibility it provides. The resolution and
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Figure 11: The grid generated for the device in
Figure 10. Two enlargements are
shown on the right hand side.

Figure 12: Enlargement of the upper grid shown
in Figure 11.

anisotropy of the grid is customizable and the
diameter of the triangles may vary over several
orders of magnitude within one simulation
domain. Compared to the approach of using
iso-lines or iso-surfaces of solutions of the
Poisson equation, our method allows to propagate
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Figure 13: This plot shows the on-state character-
istics of the vertical TMOSFET for gate
voltages of 5V, 7V, and 10V.

several fronts through the device and thus to tailor
the areas of high resolution precisely and in a
straightforward manner. This is, e.g., especially
important for the simulation of SOI devices,
where high resolution is required in the vicinity
of the buried layer.

Furthermore the algorithm is robust since the
generation of the final triangulation is based
on edges that have to be respected (and not on
single points). Finally the grids generated satisfy
the Delaunay criterion and the minimum angle
criterion which ensures high grid quality with
respect to numeric properties.

In a real world example the constructed mesh was
used to obtain the on-state and transfer character-
istics of a 120V trench gate MOSFET. The simula-
tions of the TMOSFET show that the threshold volt-
age is independent of the drain voltage. The grid
generated for the nontrivial geometry of this de-
vice increased the speed and accuracy of the sim-
ulations.
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Figure 14: This figure shows the transfer charac-
teristics of the high voltage TMOSFET

for drain voltages of 0.1V and 0.5V.
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3 A Smoothing Algorithm for Cellular and Polygonal Datastructures

When cellular based topography simulation is
coupled with polygonal data structures it is nec-
essary to extract a triangular representation of
the surface of the simulated structure after a de-
position or an etching process from the cellular
discretization. In this work an advanced mul-
tistage cellular postprocessing algorithm is pre-
sented which is capable of generating a smooth
triangulated surface with a relatively small num-
ber of triangles even for practical applications in
semiconductor process simulation. All structural
edges are maintained by the smoothing algorithm
while almost all artificial edges are removed from
the surface discretization.

3.1 Introduction

For the simulation of etching and deposition pro-
cesses cellular algorithms [22] can be the method
of choice due to their high robustness. How-
ever, they suffer from the fact that the cellular
data structure is not directly compatible to polyg-
onal based data structure used for the simulation
of other semiconductor process steps like finite el-
ement simulators for annealing processes.

In [23] it has been demonstrated that this prob-
lem can be overcome by using a combination of
polygonal and cellular data structures within the
simulator. Roughly speaking the movement of the
topography front is simulated using a cellular dis-
cretization, while the final simulation result is ob-
tained by intersecting the generated process front
with the input structure which is maintained in the
polygonal data format.

Even if the method described in [23] seems to be
straight forward on first glance, some critical prob-
lems have to be solved when using it within a sim-
ulation tool. The major problem is the generation
of a smooth triangulated representation of the pro-
cess front from the cellular discretization. Accord-
ing to our recent experience a multistage smooth-
ing and simplification algorithm has turned out to
be most successful to satisfy that purpose.

3.2 Simulation Flow

Initialize Simulation Structure

Begin Simulation

Intersect Front with Structure

Generate Region Mapping

Update Original Structure

End Simulation

Mesh the Merged Structure

Cellular Model

Cellular Postprocessing Polygonal Postprocessing

Polygonal Model

Figure 15: Simulation flow of TOPO3D

The algorithm proposed in this paper has been im-
plemented into the three-dimensional etching and
deposition simulator TOPO3D ( [23], [24], [25]).
Fig. 15 shows the simulation flow of the simulator.
At the beginning the simulation structure is ini-
tialized. Than the actual simulation is performed.
Therefore TOPO3D provides cellular algorithm
based as well as polygonal algorithm based mod-
els. As a result both types of models generate a
triangular discretization of the front of the topog-
raphy process. The quality of this triangulation
is improved by a postprocessing step before the
front is intersected with the interfaces of the orig-
inal structure.
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Afterwards a tetrahedrized representation of the
merged structure is generated and separated into
several single-connected regions. The regions are
mapped to regions of the original structure and ex-
posed regions are removed. With the mapping in-
formation a new consistent structure which main-
tains all information originally contained in the in-
put file is generated.

In order to perform the cellular postprocessing
a multistage smoothing and simplification
algorithms has been integrated into TOPO3D,
since it is very crucial to extract a smooth
description of the process front to ensure the
convergence of the succeeding volume meshing
step. Furthermore the number of tetrahedral
elements contained in the volume mesh is
dramatically increased, if many artificial edges
are contained in the triangular discretization of
the process front.

3.3 The Cellular Postprocessing
Algorithm

The postprocessing algorithm consists of four
stages

• Surface extraction

• Smoothing

• Coarsening

• Simplification

3.3.1 Triangular Surface Extraction

The first stage of the algorithm is used to extract
a triangulated representation of the process front.
This is performed by applying a marching cube
algorithm [26] to the cellular data. Thereby a set
of triangles is extracted for each cell which is sur-
rounded by at least one vacuum cell. The number
of triangles and their shapes depend on the loca-
tion of the neighboring vacuum cells. For a single
test cube which is surrounded by eight cells 256
different cases of arrangement have to be distin-
guished by the marching cube algorithm.

By extracting a set of triangles for each test cube
which contains vacuum as well as material cells
a contiguous surface is generated. Fig. 16 shows
the triangulated topography front extracted by the
marching cube algorithm. The edge length of the
triangles in the marching cube discretization is of
the order of the cell size. This means that the pro-
cess front is made up of a huge number of trian-
gles. Another problem is that even if the marching
cube algorithm does minor smoothing by consid-
ering the surrounding of a test cube, the surface
discretization still contains a lot of artificial edges.
Therefore two additional postprocessing stages are
required to get a smooth surface with as few as
possible triangles.

Our investigations have raised that applying
smoothing before coarsening is the best approach
since it is only possible with a huge effort to avoid
a degeneration of the surface triangulation if the
coarsening stage is applied first.

Figure 16: Process front after marching cube dis-
cretization (332718 triangles)

3.3.2 Smoothing Stage

In order to get rid of most of the artificial edges
all points connected to artificial edges are moved
during the smoothing process. This is performed
iteratively by applying small displacements to
some point of the surface triangulation, as shown
in Fig. 17. In order to decide whether a point
should be moved mainly two criteria are checked
(Fig. 18).
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Surface

Direction of motion

Sphere of motion

Iso−planar point

Figure 17: Illustration of the point offset mecha-
nism in the smoothing stage

On the one hand side the curvature is analyzed. If
the curvature is small the point is only surrounded
by approximately iso-planar triangles and there-
fore needs not to be smoothed. Furthermore a typ-
ical property of a point on an artifical edge is that
the curvature of at least one connected point has an
opposite sign. This is why a point can be excluded
from the smoothing process, if the curvature is
smooth in the surrounding of the point. Worth
mentioning is that due to performance reasons just
an approximated curvature is used in the smooth-
ing stage [27]. The approximate curvature Capprox

is the average of the projection of all edges con-
nected to a point onto the normal vector of the sur-
face at that point.

Capprox =
1

Nedges

·
∑

edges

~e · ~ns (6)

~e is the vector of one edge and ~ns is the normal
vector of the surface at the test point. It is approx-
imately calculated as the sum of the normals of all
triangles connected to the test point.

On the other hand side the distance of a point from
its original position is analyzed. Since the maxi-
mal error of the cellular discretization is less than√

3
2

× the cellular resolution, the distance of the
real surface from the discretized surface is smaller
than the size of the discretization error. This de-
fines a sphere of motion for each point around the
original position of the point. If a point would
leave its sphere of motion within one smoothing
iteration, it is not moved.

Besides the selection of the points which have to
moved during the smoothing process their direc-
tion of motion is a critical aspect. Within each it-
eration step the direction of motion of one point is

calculated as the sum of the normals of all trian-
gles connected to this point. The distance of mo-
tion is set to 1

10
× the cellular resolution. If the

distance of motion exceeds the length of one edge
or the height of one triangle connected to the point,
the motion is damped in order to inhibit a degen-
eration of the surface triangulation.

Smooth curvature

Switching curvature

Figure 18: Illustration of the point selection
method in the smoothing stage

The consistency of the surface triangulation
is checked after all points have been moved,
and point movements which have violated the
consistency are reversed in a repairing step.
Since the smoothing operation has to preserve
the bounding box of the surface discretization, a
special treatment is applied to the boundary points
(point contained in the rectangular bounding
box). Their freedom of motion is restricted to two
dimensions or even one dimension, if the point is
placed in the corner of the bounding box.

Fig. 19 shows the surface triangulation after ap-
plying smoothing steps while the number of points
which can be moved decreases.

Figure 19: Process front after applying the
smoothing stage (332718 triangles)
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At the end of the smoothing stage the number of
triangles is still very high. Therefore two stages
are applied afterwards to significantly reduce the
number of triangles.

3.3.3 Coarsening stage

During the coarsening stage triangles are removed
by collapsing triangle edges to a single point. Due
to performance reasons only two simple criteria
are checked in the coarsening stage to determine
whether an edge can be collapsed. On the one
hand side there are edges which contain at least
one iso-planar point and on the other hand side
edges which are connected to two iso-linear edges.
In the first case the edge is located within a larger
plane, while in the second case the edge is part of
a larger structural edge (Fig. 20).

Collinear edge

Isoplanar edge

Replacement point

Figure 20: Illustration of the edge removal algo-
rithm in the coarsening stage

In general, when an edge is collapsed it is replaced
by the point in the middle of the edge. But if one
point of the collapsed edge is located at a structural
edge, this point is chosen as the replacement point.
Thereby a modification of the surface topology is
avoided.

There are some cases where the collapsing of an
edge results in a degeneration of the surface trian-
gulation as shown in Fig. 21. Therefore the consis-
tency of the surface triangulation is checked after
each edge collapse operation and the edge collapse
is reversed in case of a consistency violation.

Since the vast majority of triangles are located
within iso-planar regions after the smoothing
stage the coarsening stage is capable to
significantly reduce the number of triangles, as
shown in Fig. 22. Anyhow, there are still a lot of

Degenerating edge
Rejected edge

Figure 21: Example for an edge which degen-
erates the surface triangulation if it
would be removed

unnecessary triangles especially within curved
regions, which are eliminated by the following
simplification stage.

Figure 22: Process front after applying the coars-
ening stage (24302 triangles)

3.3.4 Simplification stage

As well as the coarsening stage, the simplification
stage uses the edge collapse algorithm to get rid
of triangles. The same consistency checks and the
same selection criteria for the replacement points
are applied, but an alternative more sophisticated
edge selection criterion as proposed in [28] is
used.

The idea of the edge selection mechanism is to
calculate the distance of any replacement point
generated during the simplification process and
to collapse an edge only if the distance does not
exceed a certain limit. Within the simplification
stage we again have chosen the cellular resolution
as the limit for the selection algorithm since this is
the minimal resolvable feature size of the cellular
algorithm.
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Since the calculation of the distance of a replace-
ment point from the original surface is extremely
time consuming and requires to store two repre-
sentations of the surface (the original surface and
the simplified surface), an approximation for the
distance is proposed in [28]. Using the 4 × 4 dis-
tance matrix M derived for each point (Eq. 7), the
distance d of the point from the surface can be cal-
culated by (Eq. 8).

M =
∑

triangles

(

(

~ntri

~ntri · ~p

)

⊗

(

~ntri

~ntri · ~p

)

)

(7)

d =

(

~p
1

)

· M ·
(

~p
1

)

(8)

~p is the position vector of the point, ~ntri is the nor-
mal vector of a connected triangle. When a re-
placement point is added to the surface a distance
matrix MR has to be calculated for the new point
by summing up the distance matrices ME1 and
ME2 of the corner points of the collapsed edge
(Eq. 9).

MR = ME1 + ME2 (9)

While the distance is zero for points contained
in the original surface the distance calculated by
(Eq. 8) is greater than zero for a replacement
point.

Although the selection mechanism used in the
simplification stage would also select edges
already eliminated by the coarsening stage, it is
preferable to use both stages since the selection
mechanism used in the simplification stage is
more time and memory consuming. This is more
critical as long as there is a large number of
points in the surface triangulation. The surface
discretization at the end of the simplification stage
is shown in Fig. 23.

3.4 Conclusion

We present a multistage smoothing and
coarsening algorithms for cellular based
etching and deposition simulation, which has
been implemented into the three-dimensional
process simulator TOPO3D. It can significantly
reduce the number of triangles in the surface
triangulation and it removes almost all artificial

Figure 23: Process front after applying the sim-
plification stage (710 triangles)

edges generated by the cellular discretization.
Due to the small number of triangles in the surface
also the number of the tetrahedral elements
generated by the subsequent volume meshing step
can be kept small.
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4 Simulation of Carrier Transport in Carbon Nanotube Field Effect

We discuss models to describe carrier transport in
axial and lateral type carbon nanotube field-effect
transistors (CNT-FET). Operation is controlled by
the electric field from the gate contact which can
lead to strong band bending allowing carriers to
tunnel through the interface barrier. We find that
the difference between lateral and axial CNT-
FETs is that in devices with axially aligned car-
bon nanotubes tunneling becomes negligible and
transport can be modeled by means of thermionic
emission. In lateral CNT-FETs tunneling domi-
nates for which we present a model for the trans-
mission coefficient using the WKB method and a
non-parabolic dispersion relation. The simulated
output and transfer characteristics show reason-
able agreement with experimental data for both
lateral and axial CNT-FET devices.

4.1 Introduction

Carbon nanotubes belong to the most promising
candidates for future nanoelectronic applications.
Experiments and theory have shown that the tubes
can either be metals or semiconductors. Their
electrical properties can rival, or even exceed, the
best metals or semiconductors known. The elec-
trical behavior is a consequence of the electronic
band structure which depends on the exact posi-
tion of the carbon atoms forming the tube. Semi-
conducting nanotubes can be used as active el-
ements in field-effect transistor (FET) designs.
While early devices showed poor device character-
istics, improvements were achieved by using thin-
ner dielectric films [29].

Recently models to describe the transport proper-
ties of carbon nanotubes have been developed [30,
31]. It was shown that carbon nanotubes act as un-
conventional Schottky barrier transistors. Transis-
tor action is achieved by varying the contact resis-
tance rather than the channel conductance. Trans-
port through the nanotube is ballistic, so the cur-
rent predominately depends on energy barriers be-
tween the source and drain contacts. Since the
shape of this energy barrier and hence the oper-
ation of the transistor depends crucially on the de-

vice geometry, device simulation becomes neces-
sary to predict device performance.

Simulation studies have shown that the shape of
the contact electrodes has a high impact on the
Schottky barriers and can be used for device op-
timization [32]. In this paper we compare two
common CNT-FET geometries, namely transis-
tors with laterally and axially aligned carbon nan-
otubes. While lateral CNT-FETs have shown
good performance with high Ion/Ioff ratios [33],
the manufacturability challenges are still signif-
icant. Transistors with axially aligned carbon
nanotubes [34] show worse device characteristics
while being more suitable for large-scale integra-
tion. The considered device structures are pre-
sented in Section 4.2. In Section 4.3 models are
discussed which allow the simulation of CNT-
FETs in both the thermionic emission and the tun-
neling regime. Finally the simulations are com-
pared to measurements of a lateral [31] and axial
CNT-FET [34].

4.2 Device Modeling

The structure of axial and lateral CNT-FET de-
vices is shown in Fig. 24. Lateral CNT-FETs re-
semble conventional MOSFET structures where
the silicon channel is replaced by a single-wall or a
highly defective multi-wall carbon nanotube con-
necting the source and drain contacts [32].

In axial CNT-FETs the gate contact lies above
the drain contact from which it is separated by a
thin gate oxide. While this structure has a much
smaller footprint as compared to laterally aligned
tubes, it has the shortcoming that the capacitive
coupling between the gate and the tube is only
weak. To get the potential distribution in such de-
vices three-dimensional simulation is required.

However, since the principle of carrier transport in
carbon nanotubes is still a subject of intense re-
search and for the sake of simplicity we have used
the two-dimensional general-purpose device sim-
ulator MINIMOS-NT to acquire the potential pro-
file at the surface of the tube.
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Figure 24: The lateral (a) and axial (b) carbon
nanotube device structures

Since measured characteristics of most CNT-FETs
resemble those of conventional p-type FETs
the figures concentrate on hole transport and
the valence band edge in the nanotube. Still
the method is suited for electron transport as
well. A band gap of 0.6 eV and undoped tubes
have been assumed. The tube is covered in
HfO2 and connected to Al source and drain
contacts. Fig. 25 shows the resulting valence
band edge along the tube for the lateral and
for the axial device at VDS = 0V. In case of
lateral CNT-FETs the gate field heavily influences
the valence band. Modulating the gate voltage
from −0.25V to −1.5V, the valence band is
shifted upwards towards the Fermi level of the
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Figure 25: The valence band edge in a lateral
CNT-FET at different gate voltages.
The dashed line shows the band profile
of an axial CNT-FET at VG = −10V
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Figure 26: Valence band edge of a lateral CNT-
FET for various drain voltages. One
can observe suppression of the Schot-
tky barrier at the drain contact

source and drain electrodes. This effectively
reduces the energy barrier for holes. At modest
gate voltages the carriers have to surmount a
large energy barrier. Tunneling current is small
and thermionic emission prevails. Increasing
the gate voltage leads to a reduction of the
energy barrier till tunneling dominates over
thermionic emission. The threshold voltage VVth

of the device can be defined as the gate voltage
necessary to shift the valence band up so that the
tunneling current exceeds thermionic emission.
The current saturates as soon as the second barrier
is completely suppressed. Hence all electrons
that can tunnel through the source barrier will
contribute to the current.

The axial device, on the other hand, does not
exhibit this behavior even for a gate voltage of
−10V.

For a fixed gate voltage the band edge energies
also depend on the drain voltage, as shown in
Fig. 26 for a gate voltage of VG = −0.5V.
At zero drain voltage the tunneling barrier is
strong and thermionic emission dominates over
tunneling. When VDS is decreased, the band
edge at the drain side moves up and the effective
barrier seen by holes coming from the source
contact is reduced. This leads to an increase
of tunneling current. At drain voltages below
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−0.375V the drain tunneling barrier vanishes
completely. The source energy barrier is fixed by
the potential at the source contact and remains
relatively insensitive to an increase of VDS. This
gives rise to an output characteristics which is
characterized by three distinguishable regions:
an exponential region where thermionic emission
dominates over tunneling, a linear region where
tunneling prevails and the drain barrier decreases,
and a saturation regime with a constant current.

For axial devices the gate field is blocked to a
large amount by the underlying source contact
(see Fig. 25). Even when applying relatively high
gate voltages the effect on the barrier between
source and drain is weak. The charge carriers
have to surmount a potential barrier with two
peaks at the contacts which is almost constant
throughout the carbon nanotube. In this sense Vth

is never reached and thermionic emission will at
all voltages dominate over tunneling. This results
in output characteristics which resemble those of
conventional Schottky barrier transistors.

4.3 Transport Modeling

Modeling of tunneling current is crucial for lateral
CNT-FETs, while carrier transport in axial CNT-
FETs can be described within the Schottky emis-
sion theory.

4.3.1 Modeling of Tunneling Current

To account for coherent transport in the
nanotube the Landauer Büttiker formula has been
implemented in MINIMOS-NT. The drain current
through the nanotube is given by an integration in
the energy domain [35]

Id(Vds) =
4q

h

∫

dE(f0
s (E) − f0

d(E))TC(E),

(10)
where TC is the transmission coefficient and f 0

d,s

are the equilibrium Fermi functions at the source
and drain contacts. The transport is ballistic, hence
the current does neither depend on the length nor
on the cross section of the carbon nanotube. The
factor 4 in (10) stems from the twofold band and
the twofold spin degeneracy.

In carbon nanotubes the dispersion relation cannot
be described by a simple parabolic shape. Instead

E±n(k) = ±
√

3aγ0

2

√

κ(n)2 + k2 (11)

has been used to approximate the band structure
in the vicinity of the Fermi energy [36]. In this
expression a denotes the lattice constant, γ0 is the
transfer integral, and κn is related to the radius R
of the nanotube via

κn =
1

R

(

n − 1

3

)

. (12)

Here, the value n denotes the band index.
Accounting for this band structure, the transmis-
sion coefficient of carriers from band n can be
estimated within the commonly used Wentzel
Kramers Brillouin (WKB) approximation:

TCn(E) = exp

(

−2

∫

k(x) dx

)

(13)

with the wave number

k =
|κ0|
2

√

(

κn

κ0

)2

−
(

E − V (x)

Eg/2

)2

. (14)

In this expression V (x) is the position dependent
band edge along the tube. The band gap Eg of
single walled carbon nanotubes is related to the
radius, Eg = 0.9, eV/2R, where R is given in
nm.

Numerical integration is performed only within
classical turning points. Note that the WKB
method can only be used for slowly varying
potentials and has the shortcoming that it
fails at the classical turning points (E = V ).
Furthermore, the WKB method does not account
for wavefunction interference effects which may
occur due to the two separated barriers.

An alternative approach to calculate the trans-
mission coefficient is to solve SCHRÖDINGER’s
equation with open boundary conditions in the
whole nanotube. This has been done using
the quantum transmitting boundary method
(QTBM) [37]. This method has been preferred
over transfer-matrix based schemes due to
its better numerical stability. The resulting
wavefunction at an energy of 0.1 eV is shown in
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Figure 27: Potential along the nanotube at Vds=-
0.1 V (a) and the hole probability
wavefunction (b)

Fig. 27. Exponential decay occurs in the barrier
regions. Although no interference effects have
been observed for long nanotubes, these affects
can influence shorter devices.

4.3.2 Modeling of Thermionic Emission

The qualitative band diagram for axial CNT-FETs
(see Fig. 25) motivates to describe the current den-
sity through the tube as emission over a Schottky
barrier. Within the thermionic emission theory the
current density can be written as [38]

J = C exp

(

− qΦB

kBTγ

)

·
[

exp

(

qVDS

kBTγ

)

− 1

]

,

where C = 4πmeffqkB
2T 2/h3 and the parame-

ter γ has been introduced to describe the exponen-
tial slope of the IV-characteristics. To get a model
which only depends on the gate-source and drain-
source voltages, the values of ΦB and γ have been
fitted to measurement results with the gate-source
voltage as parameter. This compact model has also
been implemented in MINIMOS-NT, enabling the
simulation of complete circuits.

4.4 Results and Conclusion

A lateral CNT-FET with a 20 nm HfO2 layer
(εr = 11) between the gate and the carbon

nanotube and a source drain separation of 300 nm
has been simulated. The single wall carbon
nanotube has a radius of 0.7 nm and a bandgap
of 0.6 eV. The subthreshold characteristics of
this device for a drain voltage of VDS = −1.2V
is shown in Fig. 28. The experimental data [31]
show reasonable agreement with the simulation
results. The best fit is obtained if the radius of the
tube is assumed to be 0.9 nm resulting in a band
gap of 0.4 eV. However, we point out that the
model has to be enhanced in order to take account
for the linear increase of the drain current Id at
high drain voltages of fully turned on devices.

Finally we used the thermionic emission model
for the simulation of an axial CNT-FET. The con-
ducting channel of this device is a highly defective
multi-wall carbon tube with a diameter of approx-
imately 20 nm, covered by SiO2 and attached to
source and drain contacts. The measured band gap
of this device was 0.6 eV. Good agreement to ex-
perimental data [34] is found (see Fig. 29). Note
that these measurements have been performed at
liquid helium temperature. The low magnitude of
the resulting drive current and the low Ion/Ioff ra-
tio makes the usage of axial devices as a replace-
ment of MOSFET devices questionable.

We showed how transport through carbon-
nanotube devices can be understood as tunneling
or thermionic emission depending on the device
geometry. Lateral CNT-FETs allow good
coupling between gate and tube, enabling output
characteristics with good Ion/Ioff ratios. Axial
CNT-FETs can be described assuming thermionic
emission. The presented models can be used to
describe carrier transport in both types of carbon
nanotubes.
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Figure 28: Experimental data and simulation re-
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the tube radius reduces the band gap
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5 Anisotropic Mesh Refinement for 3D Diffusion Simulation

We present a computational method for locally
adapted conformal anisotropic tetrahedral mesh
refinement. The element size is determined by an
anisotropy function which is governed by an error
estimation driven ruler according to an adjustable
maximum error. Anisotropic structures are taken
into account to reduce the amount of elements
compared to strict isotropic refinement. The spa-
tial resolution in three-dimensional unstructured
tetrahedral meshes for diffusion simulation can be
dynamically increased.

5.1 Introduction

In the numerical solution of practical problems of
physics engineering such as semiconductor pro-
cess and device simulation, one often encounters
the difficulty that the overall accuracy of the nu-
merical approximation is deteriorated by local ex-
altations. An obvious remedy is to refine the dis-
cretization in the critical regions [39].

YES

NO

Refinement

Begin Simulation

Calculate Timestep n

Estimate Error

marked
Elements

n < MAX

NO

YES

End Simulation

n = n + 1

Figure 30: Simulation procedure

The question then is how to identify these regions
and how to obtain a good balance between the re-
fined and unrefined regions such that the overall
accuracy is optimal. These considerations clearly
show the need for error estimators which can be
extracted a posteriori from the computed numeri-
cal solution and the given data of the problem. The
error should be local and should yield reliable up-
per and lower bounds. The global upper bounds
are sufficient to obtain a numerical solution with
an accuracy below a prescribed tolerance. Local
lower bounds are necessary to ensure that the grid
is correctly refined according to an adjustable error
using a (nearly) minimal number of grid-points.
As shown in Fig. 30, during the calculation of a
time step a combination of error estimation and re-
finement mechanism is necessary to deliver higher
accuracy, if needed, by increasing the spatial reso-
lution.

5.2 Anisotropic Refinement

Using strict isotropic meshes for three-
dimensional process simulation is not practica-
ble [40]. The need of calculation time and the
limitation of memory tend to result in anisotropic
adapted meshes which are more manageable.
In [41], e.g., the element shapes are controlled
by a tensor-based metric space for representing
mesh anisotropy over the domain.
Anisotropy is defined by three orthogonal princi-
pal directions and an aspect ratio in each direction.
The three principal directions are represented by
three unit vectors ~ξ, ~η, and ~ζ , and in these direc-
tions the amounts of stretching of a mesh element
are represented by three scalar values λξ, λη, λζ ,
respectively. Using (~ξ, ~η, ~ζ) and (λξ, λη, λζ) we
define two matrices R and S by

R :=





ξx ηx ζx

ξy ηy ζy

ξz ηz ζz



 and S :=





λξ 0 0
0 λη 0
0 0 λζ



 .

(15)
By combining matrices R and S, we obtain a 3×3
positive definite matrix M

M := RSR
T (16)
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that describes the three-dimensional anisotropy.
The basic refinement step in our algorithm is tetra-
hedral bisection which is well investigated by, e.g.
Arnold [42]. When bisecting a tetrahedron, a par-
ticular edge – called the refinement edge – is se-
lected and split into two edges by a new vertex.
As new tetrahedra are constructed by refinement,
their refinement edges must be selected carefully
to take anisotropy into account without producing
degenerately shaped elements. In order to identify
which edge should be cut, the length of the edges
is calculated in a metric space [43].
A set S with a global distance function (the metric
g) which for every two points x, y in S gives the
distance between them as a nonnegative real num-
ber g(x, y) is called the metric space [44]. The
distance function must also satisfy

g(x, y) = 0 ⇔ x = y

g(x, y) = g(y, x)

g(x, y) + g(y, z) ≥ g(x, z).

(17)

In our implementation this metric specially varies
over the domain, and hence the length of an edge
depends on its position. In case the anisotropic
length is greater than an adjustable value, the
edge is cut in the middle.

Calculating the length of an edge in a metric space
can be seen as calculating a line integral. In gen-
eral an arc length `C is defined as the length along
a curve C: `C =

∫

C
ds. M as defined in (16) rep-

resents a metric when viewed as positive definite
tensor M = M(x, y, z) over the entire domain.
Roughly spoken, the metric tensor mij shows how
to compute the distance between any two points
in a given space. Its components can be viewed
as multiplication factors which must be placed in
front of the differential displacements dxi in a gen-
eralized Pythagorean theorem ds2 = g11dx2

1 +
g12dx1dx2 + g22dx2

2 + · · · .
The length of a line segment PQ in a metric space
is calculated by [45]

`PQ =

∫ 1

0

√

PQT · M(P + tPQ) · PQ dt

(18)
where M(P + tPQ) is the metric at point
P + tPQ, t ∈ [0, 1].

The basic idea of our refinement algorithm is to
use the gradient field of the solution and the given
data of the scalar diffusion problem as stretching
direction of the anisotropy metric. The gradient
∇C = grad(C) of a scalar field C = C(x, y, z) in
Cartesian coordinates is given by

∇C =
∂C(x, y, z)

∂x
~i +

∂C(x, y, z)

∂y
~j+

+
∂C(x, y, z)

∂z
~k.

(19)

The gradient of a tetrahedral discretization can be
calculated by using linear basis functions [46] ap-
plied to the three-dimensional unit simplex T . The
coordinate transformation

x = x1+(x2 − x1)ξ + (x3 − x1)η+(x4 − x1)ζ

y = y1 +(y2 − y1)ξ + (y3 − y1)η +(y4 − y1)ζ

z = z1 +(z2 − z1)ξ + (z3 − z1)η +(z4 − z1)ζ
(20)

allows to map an arbitrary tetrahedron at global
coordinates (x, y, z) to the unit simplex T (cf.
Fig. 31) with local element coordinates (ξ, η, ζ).
In matrix notation this can be written as

~r − ~r1 = J · ~δ, (21)

where ~r = (x, y, z)T , ~r1 = (x1, y1, z1), ~δ =
(ξ, η, ζ)T , and J denotes the Jacobian

J =





x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1



 . (22)

Using linear basis functions on the three-
dimensional unit simplex, which are given
by [47]

N1 = 1 − ξ − η − ζ

N2 = ξ

N3 = η

N4 = ζ,

(23)

allows a linear approximation over the element in
the form

C(ξ, η, ζ) =

4
∑

k=1

Nk(ξ, η, ζ)Ck, (24)

where Ck denotes the scalar value of the solution
on vertex k of the three-dimensional unit simplex
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T .
Applying (19) to the linear approximation, given
by (25), results in

∇C(ξ, η, ζ) =





−C1 + C2

−C1 + C3

−C1 + C4



 (25)

for the gradient of the discretization. The gradi-
ent is constant over an element and represents the
anisotropic stretching direction.

P1

P3

P4

P2
ξ

ζ

η

1

1

1

0

x

z

y

Figure 31: Coordinates transformation.

5.3 Diffusion

Diffusion is the transport of matter caused
by a gradient of the chemical potential. This
mechanism is responsible for the redistribution
of dopant atoms within a semiconductor during
a high-temperature processing step. The
underlying ideas can be categorized into two
major approaches, namely, the continuum theory
of Fick’s diffusion equation and the atomistic
theory [48]. We are using the continuum
theory approach which describes the diffusion
phenomenon by the diffusion law:

~J = −D · grad(C) (26)

~J denotes the diffusion flux, D is the diffusion co-
efficient or diffusivity, and C is the concentration
of the dopant atoms.
In general, the diffusion models used in
semiconductor process simulation are strongly
nonlinear, because the diffusion coefficients
depend, e.g., on the impurity and point
defects [49]. These dependences also couple
the equations for multiple impurities and point
defects. Additionally, more complex models
include chemical reactions and contain convection

terms. However, for better understanding of our
refinement method we use the linear parabolic
diffusion problem which is given by (27).

5.4 Error Estimation

Since the vector field ∇C(ξ, η, ζ) (26) is
piecewise constant, it is obvious that strong
variations of the gradient from one element to
an adjacent one yield an approximation error
when compared to the proper continuous gradient
field. This gradient approximation error causes a
diffusion flux error which gives rise to a violation
of the law of mass conservation.

According to the discussion of a posteriori gradi-
ent recovery error estimation by Ainsworth [50],
the basic idea is to estimate the error per cell by
integrating the gradient jump of the solution along
the faces of each cell.

For the elliptic problem −∇(a(x)4u) = f with
Dirichlet boundary conditions, an error estimator
for two dimensional triangulations, proposed by
Kelly et al. [51], is

η2
K =

h

24

∫

∂K

[

∂uh

∂n

]2
dσ, (27)

where h denotes the longest edge of the triangle
K and

[

ω
]

K
(x) := limε→0+ ω(x + ενK) −

limε→0+ ω(x − ενK), x ∈ K , is the jump of ω
over the triangle K .

Picking up this idea for elliptic problems we use
a modification for the linear parabolic diffusion
problem (27). In our implementation the error es-
timation is performed by calculating the gradient
field of the solution in every element over the do-
main, where only a small variation in adjacent vec-
tors is allowed. As shown in Fig. 32, to evaluate
the variation, the maximum of the vector norm of
the difference

`d = ‖ ~E‖2 =

√

( ~G1 − ~G2) · ( ~G1 − ~G2) (28)

of adjacent gradient vectors G1 and G2 is
used. For this procedure only the face-to-face
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Figure 32: Error of adjacent gradient vectors.

relationship of every tetrahedron is used.
So in this sense every tetrahedron has as
maximum only four neighbors. The length of
the difference vector `d can be seen as measure
for the anisotropic stretching values (15). The
refinement anisotropy is now fully described by
the stretching direction (the gradient field) and the
stretching values (length of the difference vectors).

According to Section 5.1 an adjustable lower
bound for the whole discretized domain is
necessary to identify which regions should be
refined. As shown in Fig. 30 after error estimation
critical elements are marked for the refinement
procedure if `d (29) is greater than the prescribed
lower error bound. The refinement procedure
utilizes the local element gradient as anisotropy
direction in combination with (29) to identify
which edge of the marked tetrahedron should be
used for the new vertex.

5.5 Example

To see the essential impact of our refinement strat-
egy we use a three-dimensional test structure. The
underlying initial mesh (see Fig. 33) is a coarse
fairly isotropic mesh which carries a dopant pro-
file. The white area can be seen as mask, where at
the upturn open part of the structure the diffusion
dose Nd is kept constant. For an one-dimensional
case this can be written as

Nd =

∫ ∞

0

C(x, t)dx = const. (29)

This diffusion condition is referred to as
drive-in diffusion [52]. Note that the gradient
of the concentration C vanishes at the surface,

∇C = grad(C) = 0, and so does the diffusion
flux ~J (27). The dopant concentration has its
maximum therfore at the step of the structure.

Fig. 34 shows the corresponding gradient field
and iso-surfaces of the dopant concentration.
The gradient vectors are calculated over every
tetrahedron according to (26). The orientation
of the gradient is turned towards higher
concentration values and perpendicular to the
iso-surfaces of the dopant concentration. The
gradient field varies much stronger along the short
edges of the structure.

To increase the accuracy, refinement is needed
only in the relevant area around the step in the
structure. The anisotropy should care of the
variations of the vector field along the short edge
of the structure and should keep the edge length
along the long side.

As shown in Fig. 35, after refinement the edge
length along the long side of the cuboid does not
change much, but on the short side a much higher
mesh density arises and the resolution can be in-
creased. To find a good balance between refined
and unrefined regions under consideration of ele-
ment shapes its mandatory also to refine elements
which belong to the white mask structure. Bisect-
ing a tetrahedron by inserting a new vertex on an
edge yields always the division of the whole patch.
Well behaved element shapes demand a smooth
transition between refined and unrefined regions.
The algorithm produces a quite local refinement
under consideration of a desired anisotropic be-
havior.

5.6 Conclusion

We present a computational method for
anisotropic mesh refinement. The refinement
method is based on bisecting tetrahedrons by
inserting a new vertex on a particular edge. This
particular edge is selected according to a specific
metric which is governed by the gradient field
of the numerical solution of the linear diffusion
problem and the given initial data. The refinement
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Figure 33: Dopant concentration (initial mesh).

Figure 34: Gradient field and iso-surfaces (initial
mesh).

is driven by an a posteriori error estimator which
identifies these regions where a higher spatial
resolution is needed. The algorithm shows a local
behavior and avoids ill shaped elements during
refinement. The resulting mesh matches the
dopant profile appropriately and a good resolution
of the gradient field is expected. Therefore this
refinement method is also a good choice for
complex dynamic diffusion problems.

Figure 35: Refined anisotropic mesh.
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[7] F. Jiménez-Molinos, A. Palma, F. Gámiz, J. Banqueri, and J. A. Lopez-Villanueva. Physical Model
for Trap-Assisted Inelastic Tunneling in Metal-Oxide-Semiconductor Structures. J.Appl.Phys.,
90(7):3396–3404, 2001.

[8] A. Palma, A. Godoy, J. A. Jimenez-Tejada, J. E. Carceller, and J. A. Lopez-Villanueva. Quantum
Two-Dimensional Calculation of Time Constants of Random Telegraph Signals in Metal-Oxide-
Semiconductor Structures. Physical Review B, 56(15):9565–9574, 1997.

[9] D. A. Antoniadis, I. J. Djomehri, K. M. Jackson, and S. Miller. ”Well-Tempered” Bulk-Si NMOS-
FET Device Home Page. http://www-mtl.mit.edu/Well/.

[10] Ch. Großmann and H.-G. Roos. Numerik partieller Differentialgleichungen. B.G. Teubner, Stuttgart,
1994.

[11] J.A. Sethian. Curvature Flow and Entropy Conditions Applied to Grid Generation. J. Comput. Phys.,
115(2):440–454, 1994.

[12] T. Binder, K. Dragosits, T. Grasser, R. Klima, M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski,
M. Rottinger, G. Schrom, S. Selberherr, and M. Stockinger. MINIMOS-NT User’s Guide. Institut
für Mikroelektronik, 1998.

[13] D. Ueda, H. Takagi, and G. Kano. A New Vertical Power MOSFET Structure with Extremely Low
On Resistance. IEEE Trans.Electron Devices, ED-32(1):2–6, 1985.

[14] K. Shenai. Optimized Trench MOSFET Technologies for Power Devices. IEEE Trans.Electron
Devices, 39(6):1435–1443, 1992.

[15] C. Bulucea and R. Rossen. Trench DMOS Transistor Technology for High Current (100A Range)
Switching. Solid-State Electron., 34(5):493–507, 1991.

[16] K. Dharmawardana and G. Amaratunga. Analytical Model for High Current Density Trench Gate
MOSFET. In Proc. of the 10th International Symposium on Power Semiconductor Devices and ICs
(ISPSD 1998), pp 351–354, Kyoto, Japan, 1998.



REFERENCES 27

[17] K. Dharmawardana and G. Amaratunga. Modeling of High Current Density Trench Gate MOSFET.
IEEE Trans.Electron Devices, 47(12):2420–2428, 2000.

[18] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cam-
bridge, 1999.
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