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1 Evolution of Current Transport Models for Engineering Applications

An overview of models for the simulation of cur-
rent transport in micro- and nanoelectronic de-
vices within the framework of TCAD applica-
tions is presented. Starting from macroscopic
transport models, currently discussed enhance-
ments are specifically addressed. This comprises
the inclusion of higher-order moments into the
transport models, the incorporation of quantum
correction and tunneling models up to dedicated
quantum-mechanical simulators, and mixed ap-
proaches which are able to account for both, quan-
tum interference and scattering. Specific TCAD
requirements are discussed from an engineer’s per-
spective and an outlook on future research direc-
tions is given.

1.1 Introduction

The continuous minimum feature size reduction
of microelectronic devices, institutionalized by
the ITRS roadmap [1], has been partly enabled
by the support of sophisticated Technology CAD
(TCAD) tools. These tools promise to assist pro-
cess and device engineers during all stages of de-
velopment, ranging from process simulation to de-
vice and circuit simulation. Today, device engi-
neers face the challenge to move from the micro-
electronic feature scale in the mid-90’s, with typ-
ical MOSFET gate lengths just entering the sub-
micron region, to the realm of nanoelectronics
with 90 nm gate length devices in production and
6 nm gate length transistors fabricated in research
labs [2]. The continuum approximation, already
questioned in the mid-1990’s, has to be aban-
doned in this regime, and different approaches for
the simulation of devices in the nanometer regime
have been proposed.

In general, the inaccuracies of presently applied
semiclassical macroscopic transport models are
due to non-local effects [3], either caused by clas-
sical or quantum-mechanical non-localities. Clas-
sical non-localities arise because the distribution
of electrons in very small devices does not depend
on local quantities alone. Quantum-mechanical
non-localities occur due to the wave nature of elec-

trons and the occurrence of quantization, either
due to high electric fields as in the inversion layer
of a MOSFET, or due to the geometry as in ultra-
small double-gate or FinFET devices.

Figure 1 depicts the hierarchy of models which are
currently used for the description of current trans-
port. Semiclassical transport models rely on clas-
sical states characterized by a distribution func-
tion which is governed by the Boltzmann trans-
port equation. In Section 1.2 we will give a review
of the evolution of current semiclassical transport
models, and describe recent results with regard to
higher-order transport models. Quantum ballis-
tic transport is based on pure states described by
a wave function, the evolution of which follows
SCHRODINGER’s equation. These approaches are
mainly used for the simulation of closed sys-
tems, such as quantum corrections in the inver-
sion layer of MOSFETs. In Section 1.3, these
quantum-ballistic transport approaches will be de-
scribed. Finally, quantum transport theory deals
with mixed states. There exist different formu-
lations, which can be based on the Dyson equa-
tion, the Liouville/von Neumann equation, or the
Wigner transport equation. Section 1.4 deals with
quantum transport characterized by both scatter-
ing and quantization. A conclusion will summa-
rize the main findings and give directions for fu-
ture research.

1.2 Semiclassical Transport

In the early days of semiconductor technology,
the electrical characteristics of semiconductor de-
vices could be estimated based on simple analytic
compact models, employing a variety of simplify-
ing approximations but capturing the basic phys-
ical principles of carrier transport. These mod-
els were based on the drift-diffusion (DD) formal-
ism, where the current in the device is governed
by the electric field and the concentration gradi-
ents alone. Based on the ground-breaking work of
Scharfetter and Gummel [4], who first proposed a
robust discretization scheme for the drift-diffusion
equations, the numerical simulation of semicon-
ductor devices was enabled.
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Figure 1: Hierarchy of transport equations in semiconductor current transport modeling.

Computer programs such as Minimos [5] and
Pisces [6] have been developed and played a
pioneering role in the deeper understanding of
current transport for engineering purposes and
in the development of miniaturized devices.
For the first time, it was possible to provide
insight into the functioning of semiconductor
devices by means of the distribution of internal
device quantities, instead of global quantities
such as current-voltage characteristics.  Since
then, numerous transport models of increasing
complexity have been proposed. All models are
coupled to the POISSON equation

V- (kVo) =p(0),  p(9)=q(n—p-C) (D)

where ¢ denotes the electrostatic potential and k
the dielectric permittivity. The question of current
transport basically reduces to the self-consistent
modeling of the non-linear charge density p(¢) in
(18), which includes the electron and hole con-
centration, the net concentration of impurities, and
other charges such as ionized traps.

Neglecting the quantum-mechanical nature
of electrons, carrier transport in a device is
described by BOLTZMANN'’s transport equation, a
seven-dimensional integro-differential equation in
phase space [7]

of qE _ of
§+V.Vrf_7ykf_<§>cou - @

Here, f(r,k,7) is the distribution of carriers in
space (r), momentum (#k), and time. On the
right-hand side stands the collision operator
which describes scattering of particles due to
phonons, impurities, interfaces, or other scattering
sources.

However, for realistic structures, the direct
solution of this equation is computationally
prohibitive. It is rather solved by approximate
means applying the method of moments or using
Monte Carlo methods. In the method of moments
each term of (2) is multiplied with a weight
function and integrated over k-space. This yields
a set of differential equations in the (r,#)-space.
The moments of the distribution function are
defined as

(@) = 4%3 /CIDf(r,k,t)d3k . (3)

This generates an infinite set of equations which
must be closed by a suitably chosen ansatz.
Closure after the second moment and assuming
a cold Maxwellian distribution leads to the
drift-diffusion equations, which for electrons read

on

V-], = =
Ji=aR+a5-, 4)
Jr =quu,E+qD,Vn . (5)

In these equations J, denotes the current density,
R the net recombination rate, u, the mobility, E
the electric field, and D,, the diffusion coefficient.
Together with (1), a coupled equation system is
formed which is solved numerically by means of
the box integration method. From an engineering
point of view, this model has proven amazingly
successful due to its efficiency, numerical
robustness, and the feasibility to perform two-
and three-dimensional studies on fairly large
unstructured grids. However, several shortcom-
ings of this model are critical for miniaturized
devices. Especially hot-carrier effects such as
impact ionization or velocity overshoot motivated
the development of higher-order transport models
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Figure 2: Comparison of macroscopic trans-
port models with full-band Monte
Carlo [10]. While all models yield sim-
ilar results at large gate lengths, only
the six-moments model reproduces the
short-channel Monte Carlo results.

such as the hydrodynamic, energy-transport, and
six-moments model [8]. These models allow
the electron energy distribution function to be
described beyond the Maxwellian approximation,
and they are used routinely in commercial and
academic device simulators. As a calibration tool,
the full-band Monte Carlo method has become
accepted, since it can precisely account for the
various scattering processes in the scattering
operator [9]. Figure 2 shows a comparison of
different macroscopic simulation approaches with
full-band Monte Carlo results for a 250 nm and
a 50nm double-gate MOSFET [10]. It can be
seen that transport models based on two, four,
and six moments deliver similar results for the
long-channel device, while only the six moments
model is able to reproduce the full-band Monte
Carlo results for the short-channel device.

1.3 Quantum-Ballistic Transport

Within the macroscopic transport models
presented above, quantum-mechanical effects
are usually accounted for by means of quantum
corrections in the continuity equations.
However, the fabrication of structures in the
nanometer regime triggered the development
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Figure 3: Comparison of CV characteristics of
a 1.5nm dielectric layer with differ-
ent polysilicon doping applying one-
dimensional classical and quantum-
mechanical simulations.

of quantum-mechanical modeling tools.  This
became especially important for the evaluation
of gate dielectrics, which represent the smallest
feature scale in microelectronics.  Neglecting
quantum confinement in this regime leads to
results which are not just slightly inaccurate,
but systematically wrong. As an example,
the CV-characteristics of an 1.5nm dielectric
layer is shown in Figure 3 for different poly
doping concentrations calculated classically
and quantum-mechanically and showing a large
discrepancy under inversion conditions.  This
apparent inaccuracy of conventional models justi-
fied the development of one-dimensional quantum
device simulators which are today established
tools for the characterization of gate dielectric
layers [11, 12, 13]. Such one-dimensional
solutions of the SCHRODINGER equation are also
frequently used to derive correction factors for the
carrier concentration calculated by macroscopic
transport models [14, 15, 16]. They can be used
to yield a quick estimate of quantum-confinement
related effects without degrading the efficiency of
the device simulator used. However, based on the
closed-boundary SCHRODINGER equation charge
transport is neglected.

Regarding quantum-mechanical current transport,
quantum-ballistic models are predominantly
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applied for the simulation of gate leakage caused
by tunneling. Here, the central quantity is the
transmission coefficient 7C(E) which is used in
the so-called Tsu-Esaki equation

J— 4Tl:meffq Fmax
= e A
fmm

TC(E)N(E)AE:  (6)

to calculate the tunneling current density.
Methods such as the Wentzel-Kramers-Brillouin
(WKB), the transfer-matrix, or quantum trans-
mitting boundary method have been proposed
to calculate the transmission coefficient [17].
The resulting tunneling currents can be easily
incorporated into macroscopic transport models
by means of additional generation/recombination
processes in (4).

However, the further reduction of channel lengths
raises the question for a fully quantum-mechanical
treatment of carrier transport. This makes the
solution of SCHRODINGER’s equation with open
boundary conditions necessary, which can be
done by means of the quantum transmitting
boundary method as shown in [18, 19]. An
established and sophisticated framework for
these calculations is the non-equilibrium Green’s
Function method, which is predominantly used
for one-dimensional studies of resonant tunneling
diodes [20]. Two- and three-dimensional quantum
ballistic simulations can be performed by means
of an adiabatic decomposition of wave functions
into one or two confinement directions [21, 22].
Recently, simulators accounting for a full
two-dimensional solution of the open-boundary
SCHRODINGER equation have been reported and
applied to the simulation of 10nm double-gate
MOSFETs [23, 24]. Besides the requirement for a
fine and sometimes even equidistant mesh, a main
obstacle in these approaches is that the treatment
of scattering is not straightforwardly possible.
Furthermore, these simulators are usually limited
to specific geometries, restrictive grids, or
small length scales, which makes their usability
for engineering applications questionable.
Nevertheless, these simulation approaches are
necessary for the estimation of upper bounds of
current transport at the quantum limit.

1.4 Quantum Transport

The methods described so far are either based on
the assumption of pure classical or pure quantum
transport. Modern microelectronic devices, how-
ever, are characterized by the transition between
large reservoirs with strong carrier scattering, and
small regions where quantum effects are important
or even dominate. To first order, quantum correc-
tion models can account for these effects. A more
rigorous approach is to consider models derived
from the Wigner equation. The Wigner function
is given by a transformation of the density ma-
trix [25, 26]

fw(r k1) = /p <r+ %,r— %,t) exp(—ik-s)ds.

(7
The kinetic equation for the Wigner function is the
Wigner transport equation which is similar to the
Boltzmann equation except the Wigner potential
at the right-hand side

2 E
<—+v-vr+q—-vk> fu =

ot n ®
/ / / afW
Vw(r,k—K) fy (K, r,f)dk’ + | = .
ot coll
The Wigner potential is defined by
1 s
W) = - >)-
Vulr k) = o / (v (e 2) o)

v (r—%))exp(—ik-s) ds.

From this equation the quantum drift-diffusion or
quantum hydrodynamic models can be derived ap-
plying the method of moments [27]. It is there-
fore more suitable for the implementation in de-
vice simulators than a SCHRODINGER-POISSON
solver which strongly depends on non-local quan-
tities. However, it was reported that, while the car-
rier concentration in the inversion layer of a MOS-
FET can be modeled correctly, the method fails to
reproduce tunneling currents [28].

Therefore, strong efforts have been undertaken to
couple the most accurate classical device simula-
tion approach, the Monte Carlo technique, with
quantum-mechanical formulations [29, 30, 31].
One possibility is to use an effective potential
instead of the solution of POISSON’s equation in
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Figure 4: Wigner Monte Carlo results of electron
concentration and mean energy for a
resonant tunneling diode [31].

the Monte Carlo simulation [32, 33]. That can
be achieved by a convolution of the electrostatic
potential with a GAUSSian function which leads
to a smoothing of the original potential.

A less heuristic approach is to solve the WIGNER
transport equation (8) by means of Monte
Carlo techniques. Unlike classical distribution
functions, however, the WIGNER function permits
positive and negative values.  Therefore, it
cannot be interpreted as a probability distribution
function, a peculiarity known as the negative
sign problem. Instead, the WIGNER function
can be modeled as the difference of two positive
functions which describe in-scattering and
out-scattering of particles. This approach has the
advantage that it allows for a seamless transition
between classical and quantum-mechanical
regions in a device [31]. This method has been
applied to the simulation of resonant tunneling
diodes as shown in Figure 4 and it was recently
used for the simulation of 10nm double-gate
MOSFETs [34].

A typical application of quantum transport
interesting for device engineers is shown in
Figure 5, depicting a cross-section through
the channel of different multi-gate silicon-on-
insulator devices, namely a FinFET (top) and a
II-gate FET (bottom) [35]. Three-dimensional
device simulations have been performed for
turned-off devices (Vps=1.0V, Vgs=0.0V) by

ﬁ
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Figure 5: Carrier concentration in the middle of
the channel of a turned-off triple-gate
FinFET (top) and a II-FET [35] (bot-
tom). The I1-gate efficiently suppresses
the spurious drain field.

means of coupling a two-dimensional SCHRO-
DINGER-Poisson solver to the device simulator
MINIMOS-NT [36], and the figures show the
resulting carrier concentrations. While only the
gate-all-around structure can fully deplete the
channel, the Il-gate FET efficiently shields the
channel from the drain bias, while posing only
moderate additional process complexity.

1.5 Conclusion

Semiconductor physics is a vast field and
simulation approaches abound. Physicists
are often tempted to use overly complicated
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approaches, in an understandable effort not to lose
the important physics. However, some constraints
for engineering application should be kept in
mind. Models must be efficient: Timely results
are more valuable than accurate analyses [37].
There is a need for three-dimensional simulations,
even if they are only rarely applied to check
for spurious effects. Device simulators must
allow a coupling with process simulators, since
a detailed, physics-based transport model is of
no use if geometry and doping are not described
correctly. Therefore, support of unstructured grids
is necessary. Furthermore, the simulators should
be general-purpose and not limited to specific
geometries or simulation modes. It is still not
clear which of the outlined quantum transport
approaches will find its way into integrated
TCAD environments, but its further success
depends on efficient and accurate modeling of
these new effects.
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2 Improving the Ambipolar Behavior of Schottky Barrier Carbon

Nanotube Field Effect Transistors

Due to the capability of ballistic transport, carbon
nanotube field-effect transistors (CNTFETs) have
been studied in recent years as a potential alter-
native to CMOS devices. CNTFETSs can be fabri-
cated with Ohmic or Schottky type contacts. We
focus here on Schottky barrier CNTFETs which
operate by modulating the transmission coefficient
of Schottky barriers at the contact between the
metal and the carbon nanotube (CNT). The am-
bipolar behavior of Schottky barrier CNTFETSs
limits the performance of these devices. We show
that a double gate design can suppress the ambipo-
lar behavior of Schottky barrier CNTFETS consid-
erably. In this structure for an n-type device the
first gate which is near the source controls elec-
tron injection and the second gate which is near
the drain suppresses hole injection. The voltage
of the second gate can be set to a constant voltage
or to the drain voltage. We investigated the effect
of the second gate voltage on the performance of
the device and finally discuss the advantages and
disadvantages of these designs.

2.1 Introduction

Carbon nanotubes (CNTs) have emerged as
promising candidates for nanoscale field effect
transistors.  While early devices have shown
poor device characteristics, improvements were
achieved by using doped CNTs [38] or high-
Kk materials [39]. The contact between metal and
CNT can be of Ohmic [40] or Schottky type [41,
42]. Schottky contact CNTFETs operate by mod-
ulating the transmission coefficient of the Schot-
tky barriers at the contact between the metal and
the CNT [38, 42], but the ambipolar behavior of
Schottky barrier CNTFETS limits the performance
of these devices [43, 44].

Two important figures of merit of transistors are
the Io,/lofr ratio and the subthreshold slope. By
using thin high-x materials as gate dielectric
the subthreshold slope of CNTFETSs can be im-
proved [45], but due to their ambipolar behavior
the Ion/Iof ratio is limited. In this work we pro-

pose a double gate structure for CNTFETs. Us-
ing this structure the carrier injection at the source
and drain contacts can be separately controlled.
We show that for an n-type device electron injec-
tion at the source contact can be controlled via the
first gate while the detrimental hole injection at the
drain contact can be reduced by the second gate.
Thus, the ambipolar behavior of CNTFETSs can be
completely avoided.

2.2 Approach

Assuming ballistic transport, we calculate the
drain current using the Landauer-Biittiker for-
mula [46]

Id:%q/[fs(f)—fd(f)]TC(f)dZ, (10)

where f; 4 are equilibrium Fermi functions at the
source and drain contacts and 7C(E) is the trans-
mission coefficient through the device. The factor
4 in (13) stems from the twofold band and twofold
spin degeneracy [38]. In this work we focus on
ambipolar devices, where the metal Fermi level is
located in the middle of the CNT band gap at each
contact.

We evaluate TC(‘E) using the WKB approxima-
tion [45, 47, 48]

InTC(E) = —2 / k(x)dx, (11)

and an idealized band structure [47, 48, 45, 49]

O E | (E+VW)’
N

The symbol a = 0.246 nm denotes the lattice con-
stant, &, is the band gap energy set here to 0.6 eV
corresponding to a CNT of a diameter of 1.4 nm,
Yo = 2.5 eV is the transfer integral, and V (x) is the
electrostatic potential along the CNT. The integra-
tion in (15) is performed only within the classical
turning points.
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Figure 6: Comparison between the simulation
and experimental results for an axial
CNT.

For electrostatic analysis the Smart-Analysis-
Package (SAP) [50] was used. Since we focus
on the subthreshold behavior of CNTFETs, we
neglect charge on the CNT, which is considered
to be a good approximation for the off-state
regime [38, 45, 44, 43].

As seen in Figure 6 our approach is in good
agreement with experimental results for an axial
CNT [51], more details can be found in [52].
Note that these calculations were performed for
axial CNTs, which explains the low Iy, /Iog ratio
and also the ambipolar behavior. In the following
we will focus on lateral CNTs.

2.3 Results and Discussion

We investigated a double gate structure as
sketched in Figure 7 and a single gate structure.
In the latter case the gate is extended from source
to drain, like in conventional FETs. We used the
same geometric dimensions for simulations as
indicated in Figure 7, except the CNT diameter
was set to 1.4 nm.

As seen in Figure 7 high-x and low-kx materials
were used above and below the CNT. Like light re-
fraction at the boundary of two media having dif-
ferent relative dielectric constants, the direction of
the electric field will change. If the relative dielec-
tric constant of the top material is higher than the
bottom one, the direction of the electric field near
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Figure 7: Sketch of the the double gate structure.

the CNT is directed along the CNT axis, suppress-
ing the Schottky contact. As a result the control
of the gate over the Schottky barrier is increased,
leading to a higher subthreshold slope [45]. In
this work we use the relative dielectric constants
of the high-x and low-x materials of 11 and 3.9
respectively.

Figure 8 shows the current-voltage characteristics
of the single gate structure. For this structure
the current is symmetric with respect to the
gate voltage, in agreement with experimental
results [43, 45]. To understand this behavior the
band edge profile for this single gate structure
is shown in Figure 9. Positive gate voltages
near the source increase the tunneling current of
electrons, which is desirable for n-type devices.
By decreasing the gate voltage the tunneling
current of electrons decreases, but the thermionic
emission current of electrons does not vary. If the
gate voltage decreases further to negative values
the thermionic emission current of electrons
also decreases. On the other hand by applying
positive voltages higher than the gate voltage to
the drain, the Schottky barrier near the drain is
suppressed and consequently hole injection at the
drain increases, an undesirable phenomenon for
an n-type device. Especially in the off regime this
would result in an intolerably high off-current.

From the above discussion it seems reasonable to
control the band edge profile near the source and
the drain contacts separately, leading to a double
gate structure as shown in Figure 7. The first gate
near the source controls electron injection and the
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second gate near the drain suppresses hole injec-
tion at the drain contact.

We considered two possibilities for the second
gate voltage:

a) Applying the same voltage as the drain volt-
age.

b) Applying a constant voltage equal or higher
than the maximum drain voltage.

If the same voltage as at the drain is applied to the
second gate, at any drain voltage the band edge
profile near the drain would be flat, see Figure 11.
In consequence the tunneling current of holes is
suppressed and there is just some thermionic emis-
sion current of holes, resulting in an off-current
which is nearly independent of the drain voltage
and equals to the thermionic emission current over
the Schottky barrier, see Figure 10.

If an even lower off-current is required, then the
second gate can be biased at a fixed voltage which
is higher than the maximum drain voltage. This re-
sults in suppressing the hole thermionic emission
current, see Figure 11. As seen in Figure 10 by
using this design a very low off-current can be ob-
tained, but due to the exponential relationship be-
tween thermionic emission current and the barrier
height the off-current increases exponentially as
the drain voltage increases. When the drain volt-
age reaches the second gate voltage the drain cur-
rent reaches the limit of the thermionic emission
current of holes over the Schottky barrier. If the
drain voltage is more increased, the tunneling cur-
rent of holes also appears. This means that for hav-
ing an off-current below the thermionic emission
limit it is necessary to apply a voltage higher than
the maximum drain voltage to the second gate.

In Figure 10 for the case of Vg, = 0.8 V a change
in the subthreshold slope near zero gate voltage
is seen. This phenomenon results from suppress-
ing the thermionic emission current of electrons
at the source contact. Since the relationship be-
tween the thermionic emission current and the bar-
rier height is exponential, the subthreshold slope
in this regime is near its ideal value 70 mV /dec.
This behavior is not seen in other current voltage
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Figure 8: Current-voltage characteristics of the
single gate structure.
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Figure 9: Band edge profile of the single gate
structure.

characteristics since in other cases the hole cur-
rent dominates over the electron current in the off
regime. Here, however, the hole current is sup-
pressed and the electron current is the dominant
part of the total current.

For a better comparison between these designs
current-voltage characteristics of the single
gate and the double gate structures are shown
in Figure 12. For the single gate structure the
off-current is very high, but for the both double
gate structures an o, /I ratio higher than five
orders of magnitude can be obtained.
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2.4 Conclusion

Our simulation results show that by using a dou-
ble gate structure the I, /I ratio of CNTFETSs
can be increased considerably. The second gate
voltage can be either set to the drain voltage or to
a constant voltage higher than the maximum value
of the drain voltage. The advantages of connect-
ing the drain voltage to the second gate are avoid-
ing parasitic capacitances between the second gate
and the drain, avoiding a separate voltage source
for the second gate, and also ease of fabrication.
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Figure 12: Comparison between current-voltage
characteristics of different structures
atVy=03V.

The disadvantage of this method is that the mini-
mum off-current is limited to the thermionic emis-
sion current over the Schottky barrier. By apply-
ing a constant voltage higher than the maximum
value of the drain voltage to the second gate, a very
high I, /L ratio can be obtained. However, for
both of these methods the Iy, /Ios ratio is higher
than five orders of magnitude which is completely
satisfactory for conventional logic applications.
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3 Optimization of Single Gate Carbon Nanotube Field Effect Transistors

The performance of Schottky barrier carbon nano-
tube field effect transistors (CNTFETs) depends
critically on the device geometry. Asymmetric
gate contacts, the drain and source contact thick-
ness, and inhomogenous dielectrics above and be-
low the nanotube influence the device operation.
An optimizer has been used to extract geometries
with steep subthreshold slope and high I,y /Lo ra-
tio. It is found that the best performance improve-
ments can be achieved using asymmetric gates
centered above the source contact, where the opti-
mum position and length of the gate contact varies
with the oxide thickness. The main advantages of
geometries with asymmetric gate contacts are the
increased Io, /L ratio and the fact that the gate
voltage required to attain minimum drain current
is shifted towards zero, whereas symmetric ge-
ometries require Vg = Vp/2. Our results suggest
that the subthreshold slope of single gate CNT-
FETs scales linearly with the gate oxide thickness
and can be reduced by a factor of two reaching a
value below 100 mV/dec for devices with oxide
thicknesses smaller than 5 nm by geometry opti-
mization.

3.1 Introduction

Semiconductor device technology using nanocar-
bon materials in semiconductor chip wiring is re-
ceiving accelerated development. This trend is
mainly caused by their overall properties and not
only by their small size. The electrical properties
of carbon nanotubes can rival, or even exceed, the
best metals or semiconductors known. The elec-
trical behavior is a consequence of the electronic
band structure which depends on the chiralty and
the radius of the nanotube. Metallic nanotubes
are promising for interconnects and vias [53] in
integrated circuits because of their high electrical
and thermal conductivity, whereas semiconduct-
ing tubes have emerged as possible candidates for
nanoscale field effect transistors (CNTFETSs) with
the potential for ULSI integration [54, 55, 56, 57].

A critical issue for conventional CNTFET geome-
tries is the required scaling of the drain voltage

Vp as the gate oxide thickness (T,x) is decreased.
The off-current (/o) rises significantly when the
absolute value of the drain current is increased
leading to a decrease of I, /Io. This effect can
be understood within the Schottky band model,
where the subthreshold characteristics of CNT-
FETs with symmetric geometries, i.e. symmet-
ric gate, source, and drain contacts, is symmetric
around the gate voltage Vg off = Vp/2 [43]. At this
point the barrier for electrons is the same as for
holes and the minimum current will flow through
the nanotube. The electron current rises with Vg,
whereas the hole current rises with Vp — V5. For a
large Vp the resulting gate voltage Vi o is large
enough to suppress the Schottky barriers at the
nanotube contacts and thus large I currents can
flow. This effect will occur whenever the devices
are scaled to smaller size, or high-k gate oxides in-
crease the electric field at the metal nanotube con-
tacts.

Surprising effects regarding to the scaling of the
performance of CNTFETSs have been observed re-
cently [58, 44, 59, 60]. It was shown that di-
electrics with different permittivity above and be-
low the nanotube influence the device operation.
Furthermore it was demonstrated that asymmetric
geometries with gate contacts located only in the
vicinity of the source contact can enhance device
performance. These unexpected scaling trends can
be well understood, assuming that the transistor
action is caused by the modulation of Schottky
barriers at the metal-nanotube contact. The bar-
riers can be thinned by applying gate voltages suf-
ficiently large to allow tunneling of electrons or
holes.

In this work an optimization setup (see Figure 13)
is used to study the scaling behavior of CNTFETs.
The device geometry and the permittivity of the di-
electric material surrounding the nanotube is opti-
mized to extract structures with a steep subthresh-
old slope S = (dlog,,1/dV5) " and a high Io, /It
ratio. The one-dimensional transport model based
on the Landauer Biittiker formula and the simula-
tion setup are discussed in Section 3.2.
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Figure 13: Diagram of the optimization tool flow.

The influence of the contact geometry and the
effect of dielectrics on device performance
are adressed and the results from geometry
optimization are presented in Section 3.3.

3.2 Device Optimization

This paper focuses on single-gated device ge-
ometries, comparable to conventional MOSFETs
with a single-walled nanotube replacing the
silicon channel. We optimized this geometry
(see Figure 14) with respect to the following
six parameters: the position and length of the
gate contact (by varying Lgg, Lsg), the thickness
of source and drain contact (7;,7y), and the
permittivity of the top and bottom dielectric (€yp,

E':bot) .

The simulation framework SIESTA [61] was used
for the optimization. It provides various optimiz-
ers that can be chosen to fit best for the problems at
hand. The optimizer used for this work is a genetic
optimizer that relies on the theory of evolutionary
computation and genetic algorithms. The popula-
tion of the n-tuples of free parameters is chosen
randomly with respect to a Gaussian normal dis-
tribution where a large set of distribution and gen-
eration parameters can be configured and tuned
for various kinds of problems. Furthermore, the
simulation of the population was distributed on a
computer cluster to significantly decrease the op-
timization time.

At start time SIESTA provides the initial values
of the free geometry parameters (7y, Ty, Tox,
Lgs, Lgg, €op, and €po) as shown in Figure 13.
These values are passed to the electrostatic
solver, which calculates the potential profile for a
device in the on-state and in the off-state. For the
optimization of the o, /Iof ratio Ioy /Lo is defined
as the ratio between the current at Vg=1.5V
and Vg=0V. Afterwards the potential along
the nanotube for the two states is extracted and
Iy and Iy are calculated. The Iy, /Io ratio is
submitted to the optimizer which generates the
next n-tuple of free parameters to improve this
value. The subthreshold slope was optimized
analogously, submitting the ratio of the current at
Vc=0.3V and V5= 0.2V to the optimizer. Since
the regime where the subthreshold slope can be
extracted when plotting log,,/ over Vg depends
on the geometry of the structure, the slope
was afterwards reextracted from the optimized
structures in a region where the slope was linear.

Electrostatic simulations were performed using
the Smart-Analysis-Package [62]. This software
contains a finite element solver to obtain the
distributions of the potential and the electric field
in the simulation domain. Electrical contacts
with given voltages are represented by Dirichlet
boundary conditions. For the rest of the border of
the simulation domain a homogeneous Neumann
boundary condition is assumed. The nonuniform
triangular grid is refined at the metal-nanotube
interface, where the Schottky barriers control the
current through the tube. The resulting potential
profile along the tube is used for the calculation
of the transmission coefficient in a postprocessing
step.

3.2.1 Transport Modeling

Coherent transport in the nanotube is described by
the Landauer-Biittiker formula. The drain current
through the nanotube is given by an integration in
the energy domain [63]

=3 [16) - faEnreEE, a3

where f;4 are equilibrium Fermi functions at
the source and drain contacts, and TC(E) is
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Figure 14: Device geometry with simulation pa-
rameters.

the transmission coefficient. Note that, even
if TC(E)=1, the resistance of the tube is
given by h/(4¢*)~6.5kQ, assuming two
conduction channels in the tube. This quantum
mechanical resistance stems from the difference
of possible conduction channels in the tube and
the macroscopic metal contact.

Accounting for an idealized CNT band
structure [64], which is symmetric around the
Fermi level, the first conduction (valence) band is
given by:

_ V3ay 1 ? 2
E() =+ \/<_3pcm> e (4

where a denotes the lattice constant, Yp=2.5 eV is
the transfer integral, p¢ye is the nanotube radius,
and k denotes the wavevector along the CNT
radius. The transmission coefficient to states of
the first conduction (valence) band is estimated
using the Wentzel-Kramers-Brillouin (WKB)
approximation [65]

InTC(E) =

0\ (19
o ;jww_(if?zjy)dx.

Here E, is the CNT band gap energy and ¢(x) is
the electrostatic potential along the CNT. The in-
tegration is performed within the classical turning
points.

For self-consistent simulations of CNTFETs we
followed the approach of John [66, 67] solving

a one-dimensional open-boundary Schrédinger
equation
n? o*W
2m* ox?

+(U=—E)P, =0, (16)

where ¥, is the wavefunction of a carrier with en-
ergy ‘E and effective mass m*. The local poten-
tial energy U is given by U, = —q(x) — Ycnt, and
Un = —U. + E; for holes, with Y, denoting the
electron affinity. The charge induced on the car-
bon nanotube can be calculated from:

4
ngd = E /fs,d|lPs,d|2dks,d =

VI aPn.(7)
i/ Esa

Here, ng 4 denote the concentrations induced from
the source and drain side, respectively. The factor
41in (13) and (17) stems from the twofold band and
twofold spin degeneracy [68]. The total carrier
concentrations n =ng+ng and p = ps+ pq enter
the Poisson equation

q4(p —n)3(p — Pent)
2np

VeV = — ;o (18)

where & denotes the Dirac delta function
describing the CNT charge density. Carriers
were considered as charged sheets with the
charges being distributed uniformly around the
surface of the nanotube. The Poisson equation
is solved self-consistently with the Schrédinger
equation (16) using the general purpose device
simulator MINIMOS-NT [36]. Band structure
modifications due to the potential drop across the
nanotube diameter occuring in planar geometries
have been neglected since the potential variation
across the nanotube diameter is below 0.8
V [69, 70].

3.2.2 Simulation Setup

For device optimization a (16,0) nanotube with
a length of 120nm was assumed to connect the
source and drain contact of the CNTFET. The
nanotube’s band gap E, and radius pcy were
set to 0.6 eV and 0.63 nm, respectively. For the
effective mass m* a value of 0.06 my was chosen,
both for electrons and holes[71].
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Figure 15: Conduction band edge for three gate
voltages from self-consistent (solid
lines) and non-self-consistent calcula-
tions at Vp = 0.2'V.

The length of the source and drain contact and
the overall thickness of the simulation domain
were the only geometry parameters fixed during
the optimization process (Ls=Lgq = 10nm,
T =100 nm). We focus on mid-gap Schottky
barriers where the Fermi level of the metal
contacts is located in the middle of the CNT
bandgap. Charge on the CNT was neglected
during the optimization. Setting n and p to zero
in (18), only (13) and (18) have to be solved in
a single optimization step. For positive-barrier
devices of the type considered here, this leads to
only a very slight overestimation of the current
(= 10%) with respect to that predicted by a fully
self-consistent solution [66], even when the
device is in the on-regime [72, 58]. In Figure 15
the band bending along the CNT is plotted for a
self-consistent simulation and a simulation where
the charge on the CNT has been neglected. It can
be seen that the Schottky barriers at the source
and drain side are not significantly changed in the
energy range of significant tunneling current.

3.3 Simulation Results

In order to get a better understanding of the
optimization results, the influence of size and
location of the gate contact, size of drain and
source contact, and the permittivity of the top
and bottom dielectric on the device performance
are adressed independently in this section. Our

1,1A]

P Ldg=5nm

. L, =50nm
g
- Ldg=ll()nm

.—. L, =130nm
dg

Figure 16: Subthreshold characteristics for dif-
ferent gate contact geometries. The
solid line shows the drain current
Iy for a symmetric geometry with
Lgg = Lsg = 5nm, whereas the other
lines correspond to geometries with
an increased distance between the gate
and the drain contact.

results for symmetric geometries show good
agreement with recent simulations [43, 58, 44],
where these parameters have been investigated
separately. Then the results of the CNTFET
geometry optimization for several fixed gate oxide
thicknesses are presented. Finally, we compare
important figures of merit like the subthreshold
slope S and the I,,/I,s ratio of optimized
geometries with values from conventional
geometries from both simulation and experiments.

3.3.1 Effect of the Gate Geometry

CNTFETs with symmetric gate contacts show
ambipolar behavior leading to a symmetric
subthreshold characteristics, drawn as solid line in
Figure 16. When V= Vpp/2 the current through
the nanotube reaches its minimum [43]. The
amount of electron tunneling from the source side
is equal to the hole tunneling from the drain side
for this gate bias. Larger gate voltages allow more
electron tunneling from the source side whereas
the hole current from the drain is essentially
supressed. When Vg< Vp/2 hole tunneling is
favored and the electron current is supressed,
whereas for V> Vp /2 electron current dominates
over hole current.
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When using asymmetric structures the sub-
threshold characteristics becomes asymmetric.
In Figure 16 the subthreshold characteristics of
geometries with Lgg > 5nm are plotted. While
Ly, =5nm is kept constant, the length of the
gate contact is decreased by increasing Lqg and
thus the control of the gate over the CNT at
the drain side is partially lost. This geometry
modification directly affects the subthreshold
characteristics where a lower hole current can
be observed at small or negative gate voltages.
At the same time the electron current which
dominates for Vg > Vp/2 is insensitive to the
different gate placement. Only if the overall gate
length is below a critical value, a decrease of
electron current takes place. This is illustrated in
Figure 16, where the subthreshold characteristics
for a geometry with Lg; = 130nm, thus having a
gate length of only 5nm, is plotted. The decrease
of the subthreshold slope is noticable, but due to
fringing fields from the gate contact the device
can still be turned on. From Figure 16 it can
also be seen, that the gate voltage leading to a
minimum drain current moves towards zero as the
gate length decreases. Thus asymmetric structures
have the advantage that the I, current is located
around 0 V, which is more practical for real life
applications. Generally it can be observed that
Ion and the subthreshold slope are only weakly
influenced by the location of the gate as long as
Lgg stays beyond a critical value, whereas I can
be reduced which results in a higher I, /I ratio.

3.3.2 Effect of Drain and Source Contact
Geometries

To achieve low Iy it is necessary to have large
tunneling barriers for both electrons and holes
at the source and drain contact in the off-state.
CNTFETs with thin needle-like contacts have
thinner tunneling barriers than devices with
large contacts for source and drain which can be
understood from simple electrostatic arguments.
Hence large contacts have broader barriers and
are able to reduce . From Figure 17 it can be
seen how the hole current is reduced for a device
with 7y =20nm as compared to a device with a
needle like drain contact with Ty = 2.5nm. For
both geometries 7y =2.5nm, and it can be seen

8 o—a T(l =20 nm

o—o Td =2.5nm

107y 005 01 0i5 0z 02
v, V]

Figure 17: Drain current as a function of Vg for a
drain thickness Ty of 20nm (squares)
and 2.5nm (circles). Solid lines are
used for the total current and dashed
lines for the hole current which is re-
duced in the case of large Ty (squares).
The electron current (dash-dotted line)
is the same for both cases.

that the electron current is not influenced by the
increase of Ty. In the same manner as I, can be
reduced by increasing the drain contact thickness,
the tunneling barrier for electrons at the source
side can be reduced using thin source contacts
resulting in an increase of Iqy.

3.3.3 Effect of Inhomogenous Dielectrics

It has been reported that wusing different
K materials above and below the carbon
nanotube increases the subthreshold slope
of CNT-FETs [58], where this effect was
explained from the refraction law for electric
field lines at interfaces of materials with different
permittivities:

tan Qltop tan Oyt

19
€top €bot ( )

Here oyop and Oty are the incident field line angles
between normal to the interface between a top and
bottom dielectric. (19) is valid when the charge
on the tube is neglected and results in a lowering
of the barrier when using materials with different
permittivity above and below the tube. The ef-
fect is more pronounced for thick gate oxides and
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Figure 18: Conduction band edge near the source
contact for a device with T, = 10nm,
plotted for three different ratios & =
€iop/Ebot- For higher & the energy bar-
rier is thinned. The inset shows the
impact of inhomogenous dielectrics
on the subthreshold characteristics at
Vp=0.3V.

becomes stronger as the ratio 8 = €yp/Epot i in-
creased (see Figure 18). The inset of Figure 18
shows that the reduction of the barrier caused by
O > 1 results in higher drive currents. Further-
more it can be observed that the overall subthresh-
old characteristics is shifted upwards and the sub-
threshold slope increases when increasing d. On
the other hand side I, /I is not influenced by this
effect.

For CNTFETs with symmetric gate geometries
by increasing & the potential barrier for holes
tunneling from the drain side is reduced in the
same manner as the tunneling barrier for electrons
is reduced. This leads to high off-currents at large
V4 and requires a proper scaling of Vp. To the
contrary, the hole tunneling of CNTFETs can be
suppressed with an asymmetric contact geometry
and inhomogenous dielectrics can improve device
characteristics for a large range of drain voltages.

3.3.4 Optimized Geometries

Finally we present results of the device optimiza-
tion of CNTFETs with different gate oxide thick-
nesses. In the optimization setup we fixed Tox and
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Figure 19: Comparison of subthreshold slope and
Ion /Iof ratio for conventional (dashed
lines) and optimized (solid lines) ge-
ometries. Experimental data for the
subthreshold slope from [58] shows a
similar scaling behavior.

Gate Length [nm]

ratio

Figure 20: Optiomization results for a homoge-
nous (dashed line with open circles)
and a inhomogenous CNTFET (solid
line with open squares). The gate
length, the I,, /I ratio, and the sub-
threshold slope S are plotted.

varied the other geometry parameters in order to
find optimized structures for a given To.

We find that devices with inhomogenous
dielectrics, thin source contacts, thick drain
contacts yield the best subthreshold slope for
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the whole range of gate oxide thicknesses
(2 —30 nm). However, the length of the gate
contact which results in the optimum subthreshold
slope depends on Tqy. It was found that the current
through the CNT does not depend on Lg, as long
as L < 10 nm, which results in a small overlap
of gate and source contact. The gate length L,
for structures optimized with respect to a steep
subthreshold slope continuously decreases when
decreasing Tox. This stems from the fact that for
geometries with small T, the gate contact is more
efficient in suppressing the potential barriers at
the source (drain) contact. While geometries with
a large Tox need a larger gate contact in order to
control the current over the potential barrier at the
source contact, Ly can be reduced for geometries
with small Tyy.

From Figure 19 it can be seen that for geome-
tries optimized with respect to the subthreshold
slope, the subthreshold slope scales approximately
as Tyx. For comparison in Figure 19 also the sub-
threshold slope of a symmetric CNTFET (Lgg =
Lyg = 5nm, Ty = Ty = 10nm, € = €por = 3.9) is
given. In addition to the improved subthreshold
slope for these geometries, the Iy, /L ratio is in-
creased when decreasing the gate oxide thickness.
This behavior is different from that of symmetric
CNTFETSs. For symmetric geometries the Ioy /Iof
ratio is smaller and for T,x < 15nm a reduction of
Lon /Lot takes place. The Iy, /Ly ratio of symmetric
and optimized CNTFETs are plotted in the lower
graph of Figure 19.

When optimizing geometries with respect to
the I/l ratio, a different behavior occurs.
At Tox > 10 nm structures with inhomogenous
dielectrics show a steeper subthreshold slope as
well as a higher I, /Iof ratio, while at T,y < 10 nm
geometries with homogenous dielectrics have
a larger Ion/Iog ratio than geometries with
inhomogenous dielectrics. This can be seen from
Figure 20, where the gate length, I, /Iy, and
the subthreshold slope of optimized geometries
with 8 = 1 (€op = €0t = 3.9) and & = 20
(Eop = 20, €poy = 1.0) are plotted. Furthermore it
can be observed that the length of the gate contact,
leading to the maximum I, /I ratio, is larger
when using homogenous dielectrics. This can be
explained by the more efficient reduction of the

potential barriers taking place in inhomogenous
structures.

3.4 Conclusion

The Ion/Lgr ratio of single gate CNTFET
structures can be significantly improved by
using an asymmetric gate contact located near
the source contact and thin source and wide
drain contacts. Additionally the subthreshold
slope of such geometries can be improved by
inhomogenous dielectrics above and below the
tube, whereas the use of inhomogenous dielectrics
in symmetric structures merely leads to high Io¢
currents. A subthreshold slope below 100 mV/dec
was found for optimized geometries with
Tox < 5 nm, which is significantly closer to the
thermal limit of about kg7 In10 ~ 60mV/dec at
room temperature than previously reported values
for conventional geometries [43]. Simulation
results suggest that the subthreshold slope of
single gate CNTFETs scales linearly with the gate
oxide thickness.

In contrast to symmetric devices, structures
with asymmetric gate contacts show an increase
of Ion/Ior when scaling down the gate oxide
thickness, whereas I/l decreases with
increasing Tox for symmetric devices when
Tox < 10 nm.
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4 Mixed-Mode Device and Circuit Simulation

We present the motivation for mixed-mode de-
vice and circuit simulation. The possible ap-
proaches are discussed and the particular methods
of the multi-dimensional device/circuit simulator
MINIMOS-NT are presented. The available capa-
bilities are demonstrated on a Colpitts oscillator
and two intermediate circuits, which are matter of
transient and small-signal ac simulations.

4.1 Motivation

Advances in the development of semiconductor
devices have lead to more and more sophisticated
device structures. This concerns device geometry
as well as doping profiles and the combination of
different materials. Due to shrinking device ge-
ometries, the models describing the device physics
increase in complexity. Traditional device simu-
lation has considered the behavior of isolated de-
vices under artificial boundary conditions (single-
mode). To gain additional insight into the perfor-
mance of devices under realistic dynamic bound-
ary conditions imposed by a circuit, mixed-mode
simulations have proven to be invaluable. How-
ever, this problem is very complex and only lim-
ited solutions have been available so far. The main
advantages of mixed-mode simulations are:

e A calibrated device simulator can be di-
rectly employed for circuit simulations: No
subsequent and often expensive parame-
ter/model extraction is necessary. Thus,
in time-to-market considerations results of
many different devices are available at sig-
nificantly earlier times.

e [t is common practice to create optimization
loops consisting of process and device sim-
ulators. Controlled by various kinds of op-
timizers, device figures of merit (e.g., cut-
off frequency f;) trigger process variations
in order to be improved. By switching the
device simulator in the mixed-mode, also
circuit figures of merit can be optimization
targets.

The major drawback in comparison to compact
model approaches is the significant performance
difference, since much larger equation systems
have to be assembled and solved.

4.2 Introduction

Over the last decades, numerous powerful cir-
cuit simulation programs have been developed.
Amongst those are general purpose programs
(e.g., ASTAP [73] or SPICE [74]) and special pur-
pose programs providing highly optimized algo-
rithms, e.g. for filter design. They have in com-
mon that the electrical behavior of the devices is
modeled by means of a compact model, that is, an-
alytical expressions describing the device behav-
ior. Once a suitable compact model is found, it
can be evaluated in a very efficient way. However,
this task is far from being trivial and many com-
plicated models have been developed. Even if the
behavior of the device under consideration can be
mapped onto one of the existing compact models,
the parameters of this compact model have to be
extracted, which is obviously a cumbersome task.

The BSIM4.4.0 model [75] for short-channel MOS
transistors provides over 300 parameters for cali-
bration purposes, the VBIC95 model [76] for bipo-
lar junction transistors offers about 30. If the de-
vice design is known and not modified, these pa-
rameters need to be extracted only once and can be
used for circuit design as long as they deliver suffi-
ciently accurate results. For example, the approx-
imations that underlie the Spice Gummel-Poon
[74] model ignore effects that are important for ac-
curate modeling of today’s bipolar technologies.

When there is need to optimize a device using
modified geometries and doping profiles, the com-
pact model parameters have to be extracted for
each different layout, since many of these param-
eters are mere fit parameters without any physical
meaning.
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4.2.1 Device Simulation

To cope with exploding development costs
and strong competition in the semiconductor
industry today, Technology Computer-Aided
Design (TCAD) methodologies are extensively
used in development and production. Several
questions during device fabrication, such as
performance optimization and process control,
can be addressed by simulation.

The electrical behavior of devices can be obtained
by numerical simulators, such as DESSIS [77],
MEDICI [78], or MINIMOS-NT [36]. These
device simulators solve the semiconductor
equations for a device with given doping
profiles and a given geometry. The transport
equations form a highly nonlinear partial
differential equation system which cannot be
solved analytically. Numerical methods must be
applied to calculate a solution by discretizing the
equations on a simulation grid [79]. The data
obtained from these simulations can be used to
extract the parameters of the compact model.

4.2.2 Circuit and Device Simulation

Altogether, this subsequent use of different
simulators and extraction tools is cumbersome
and error-prone. To overcome these problems
several solutions have been published where
a device simulator was coupled to the circuit
simulator SPICE [80]. This is again problematic,
when considering the communication between
two completely different simulators. On the
other hand some solutions were presented, where
circuit simulation capabilities were added to a
device simulator [81]. However, application
was severely restricted, in particular due to
limitations regarding the distributed devices.
Commercially available simulators like DESSIS
provide mixed-mode circuit simulations with
SPICE and physical models.

Our device simulator MINIMOS-NT has been
equipped with full circuit simulation capabilities
[82] with the only major limitation being the
available amount of computational resources.
MINIMOS-NT is a general purpose device
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simulator developed as the successor of MINIMOS
[83]. Whereas the latter is restricted to rectangular
MOS structures, MINIMOS-NT can be employed
for arbitrary device structures with unstructured
grids.

4.3 Circuit Equations

A physical circuit consists of an interconnection of
circuit elements. Two, actually, well-known dif-
ferent aspects have to be considered when devel-
oping a mathematical model for a circuit.

First, the circuit equations must
Kirchhoff’s topological laws:

satisfy

e Kirchhoff’s current law: the algebraic sum
of currents leaving a circuit node must be
zero at every instant of time.

e Kirchhoff’s voltage law: the algebraic sum
of voltages around a circuit loop must be
zero at every instant of time.

Second, each circuit element has to satisfy
its branch relation which will be called a
constitutive relation in the following.  There
are current-defined branches where the branch
current is given in terms of circuit and device
parameters, and voltage-defined branches where
the branch voltage is given in terms of circuit and
device parameters. Devices with N terminals can
be described using N - (N — 1) /2 branch relations.
It is not necessary to include all branch currents
and voltages into the vector of unknowns x, it is
possible to also include charges and fluxes into x.
The wide choice of possible unknown quantities
leads to a huge variety of equation formulations
that are available.

Furthermore, depending on the choice of x, dif-
ferent phenomena may be described and the com-
plexity of the problem varies drastically. From the
vast number of published methods, the nodal ap-
proach and the tableau approach [84] are the most
important. Whereas the latter is the most general
approach allowing also simulation of many ideal-
ized theoretical circuit elements, it has several in-
herent disadvantages (e.g., ill-conditioned system
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matrices). Since the main objective is to solve re-
alistic devices, the nodal approach perfectly suits
the needs.

4.3.1 The Nodal Approach

The independent variables of the nodal approach
are the node voltages of each circuit node to a ref-
erence node which can be chosen arbitrarily. This
choice guarantees that Kirchhoff’s voltage law is
fulfilled. Kirchhoff’s current law is applied to each
node other except the reference node in the circuit
such that the summation of the currents leaving
the node is zero. Thus, in matrix representation,
the admittance matrix of the circuit is assembled,
which consists of N — 1 independent equations for
a circuit of N nodes. The admittance matrix can
be assembled by inspection on a per-element ba-
sis. The various admittance matrices of the circuit
elements can simply be superpositioned to yield
the complete circuit admittance matrix. Current
sources contribute to the current source vector on
the right-hand-side of the equation system. All
contributions are commonly referred to as stamps
as they can be directly stamped into the equation
system without considering the rest of the circuit.

For circuits containing conductances and current
sources only, the condition of the resulting
system matrix is very good. In this case the
nodal approach produces diagonal-dominant
matrices which are well suited for iterative
solution procedures. Two additional devices can
be modeled, namely a voltage controlled current
source and the gyrator. However, these devices
destroy the diagonal dominance of the circuit
admittance matrix.

4.3.2 The Modified Nodal Approach

One disadvantage of the nodal approach is the in-
adequate treatment of voltage sources. Ideal volt-
age sources and current controlled elements can-
not be modeled with this approach. However, a
very large class of integrated circuits can be ac-
commodated by adding a provision for grounded
sources. The modified nodal approach [85] over-
comes these shortcomings by introducing branch
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currents as independent variables, which are avail-
able to formulate the device constitutive relations.

The modified nodal approach enjoyed large
popularity due to its simplicity and ease of
implementation and is employed in SPICE. But
the numerically well-behaved system matrix
obtained by the nodal approach is distorted by
those additional equations, and some additional
measures (see section Numerics) have to be taken.
Furthermore, the additional equations can even
produce zero diagonal entries which are avoided
by exchanging the rows of the admittance matrix
[86].

4.3.3 Simulator Coupling

Several efforts dealing with circuit simulation us-
ing distributed devices have been published so far
[80, 81]. Most publications deal with the coupling
of device simulators to SPICE. This results in a
two-level Newton algorithm since the device and
circuit equations are handled subsequently. Each
solution of the circuit equations gives new oper-
ating conditions for the distributed devices. The
device simulator is then invoked to calculate the
resulting currents and the derivatives of these cur-
rents with respect to the contact voltages.

The alternative approach is called full-Newton al-
gorithm as it combines the device and circuit equa-
tions in one single equation system. This equa-
tion system is then solved applying Newton’s al-
gorithm. In contrast to the two-level Newton al-
gorithm where the device and circuit unknowns
are solved in a decoupled manner, here the com-
plete set of unknowns is solved simultaneously. In
MINIMOS-NT the capability to solve circuit equa-
tions was added to the simulator kernel. This al-
lowed for assembling the circuit and the device
equations into one system matrix which results in
a real full-Newton method.

4.3.4 Thermal Simulation

As thermal circuit simulation is an equivalent
problem to electrical simulation, one can make
use of similar formulations. The thermal
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interaction between the distributed devices is
modeled by solving the lattice heat flow equation
in conjunction with a thermal network. The
thermal heat flow over the contact replaces the
electrical current and the contact temperature the
contact voltage.

4.4 The Device Simulator

In order to analyze the electronic properties of an
arbitrary semiconductor structure under all kinds
of operating conditions, the effects related to the
transport of charge carriers under the influence of
external fields must be modeled. In MINIMOS-NT
carrier transport can be treated by drift-diffusion
and hydrodynamic models.

The transport models are based on the semiclassi-
cal Boltzmann transport equation which is a time-
dependent partial integro-differential equation in
the six-dimensional phase space. By the so-called
method of moments this equation can be trans-
formed in an infinite series of equations. Keep-
ing only the zero and first order moment equations
(with proper closure assumptions) yields the basic
semiconductor equations (drift-diffusion model).
These equations as given first by VanRoosbroeck
[87] are the Poisson equation, the continuity equa-
tions for electrons and holes. The unknown quan-
tities of this equation system are the electrostatic
potential Y, and the electron and hole concentra-
tions n and p, respectively. The heat flow equation
is added to account for thermal effects in the de-
vice, which requires proper modeling of the ther-
mal conductivity, the mass density, and the heat
capacity.

Considering two additional moments gives the
hydrodynamic model [88], where the carrier
temperatures are allowed to be different from the
lattice temperature. Since the current densities
depend then on the respective carrier temperature,
two more unknowns, the electron temperature 7,
and the hole temperature 7),, are added.

The physical models implemented in MINIMOS-
NT allow the simulation of today’s advanced de-
vices, since all important physical effects such as
bandgap narrowing, surface recombination, tran-
sient trap recombination, impact ionization, self-
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heating, and hot electron effects can be taken into
account. The simulator deals with different com-
plex structures and materials, such as Si, Ge, SiGe,
GaAs, AlAs, InAs, GaP, InP, their alloys and non-
ideal dielectrics.

4.4.1 The Input-Deck

MINIMOS-NT employs a powerful input-deck
[89], enabling the wuser to customize the
simulation in many details. The basic idea is
that the input-deck is not evaluated once at the
beginning of the simulation, but is stored as
a database which can be accessed at runtime.
Since each keyword in this input-deck can be an
arbitrary complex and time dependent expression,
fine-tuning can be done without the need of any
predefined heuristic algorithms.

4.4.2 Iteration Schemes

The need for iteration schemes arises from the fact
that, when solving very complex coupled equa-
tion systems, the solution can very often not be
obtained from the available initial-guess as the re-
gion of attraction for the Newton scheme would be
to small. Hence, the problem can be split into dif-
ferent levels of complexity with each of them us-
ing the previous level as an initial-guess to further
refine the solution by applying more complicated
models. This procedure is called iteration scheme.
MINIMOS-NT provides an interface so that itera-
tion schemes can be arbitrarily programmed with
several additional options making use of the fea-
tures provided by the input-deck [82]. An itera-
tion scheme consists of arbitrarily nested iteration
blocks. Each block can have subblocks which will
be evaluated recursively.

For mixed-mode an iteration scheme consisting of
two blocks has been created. In the first block,
specified node voltages are kept constant in order
to obtain a converged solution for the distributed
devices. This block is similar to single-mode de-
vice simulation. In the second block, the fixed
voltages are set free in order to start the full cir-
cuit simulation.
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Figure 21: Circuits with the three subcircuits as shown in Figure 22.

4.4.3 Numerics

The full-Newton method is characterized by
integrating one or more distributed devices in one
equation system. Whereas the compact models
require relatively few equations per device, the
complete discretized structure of each device has
to be taken into account. For example, if one
MOS structure requires 10.000 equations, about
100.000 equations for a ring-oscillator consisting
of ten transistors must be assembled. As stated
above, the modified nodal approach yields system
matrices with numerically problematic equations
which can distort the convergence of these solver
systems.  Therefore, specific preconditioning
measures such as pre-elimination of numerically
or structurally problematic equations have to be
taken, which are provided by the linear assembly
module [90]. Basically, iterative methods such as
BI-CGSTAB are preferred for solving large linear
equation systems. However, for mixed-mode
simulations with more than one distributed device
state-of-the-art implementations of direct solvers
show a significant performance advantage.

4.5 Example Circuits

In the following the implemented features are
demonstrated on the simulation of a Colpitts
oscillator. We start building an amplifier which
is the first example circuit. In the second step
a resonant circuit is coupled to the output of the
amplifier. The oscillator is eventually constructed
by feeding back the output.

h
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Figure 22: The three subcircuits which are em-
bedded in the example circuits.

Since all three circuits (see Figure 21) consist
of equal subcircuits (see Figure 22), the
input-deck inheritance feature can be perfectly
used. The section SubCircuits contains
the definition of all three subcircuits.  The
settings for the distributed devices are specified
like in the single-mode [36]. In addition,
MINIMOS-NT  directly  provides  compact
models of the commonly used circuit elements
like capacitors and inductors. Therefore, the
respective Devices sections have to be simply
inherited and their public members accordingly
overwritten. In the definition of the resonant
circuit both terminals are connected to the input,
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output, and ground nodes of the subcircuit:

SubCircuits
{
LC
{
in = ""; // is assigned in circuit
out = "";
Ll : "Devices.L { N1 = "in;
N2 = “out;
L =1 nH; }
Cla : "Devices.C { N1 = "in;
N2 = "gnd";
C = 0.279 pF; }
Clb : "Devices.C { N1 = "gnd";
N2 = “out;
C = 2.790 pF; }
}
/1 1

4.5.1 Amplifier

The amplifier circuit is a combination of the
core, the ac source subcircuits and load elements.
The transistor used in the core subcircuit is a
0.4 x 12um? SiGe-HBT device structure obtained
by process simulation [91]. The structure was
thoroughly investigated by steady-state and
small-signal ac simulations as presented in [92].

CircuitAmplifier
{
Vsrc: SubCircuits.Vsrc { in = "pinl"; }
Core: " SubCircuits.Core { in = "pinl";
out = "pin2"; }

CL: " Devices.C { N1 = "pin2";

N2 = "pin3"; C = 1 nF; }
RL: "Devices.R { N1 = "pin3";

N2 = "gnd"; R = 1le3; }

}

All simulations use the mixed-mode iteration
scheme. In the first block the fixed node voltages
apply static boundary conditions at the transistor
terminals in order to improve convergence to
an initial solution useful for the subsequent
circuit simulations. In this case, the three fixed
node voltages (Vpinz = 2.0V, Vpinp = 1.2V, and
Vping = 0.4V) represent the dimensioning of
the circuit in respect to the chosen operating
point. Transient simulation results are shown in
Figure 23. Due to the large equation system with
a dimension of 11.601, the simulator requires
between 1.0 and 2.9s per time step (2.4 GHz
single Intel Pentium IV with 1 GB memory).
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4.5.2 Amplifier with resonant circuit

The second example circuit consists of all three
subcircuits, since the resonant circuit iS now cou-
pled to the output of the amplifier. The resonant
circuit is configured for an oscillation frequency
of 10GHz. This can be confirmed by results of a
small-signal ac simulation as shown in Figure 24
(Vae = ImV). In average, MINIMOS-NT requires
8.5s per frequency step. With a VBIC95 compact
model of a similar transistor, the circuit simulator
ADS [93] was used to obtain data from the same
circuit.

4.5.3 Colpitts oscillator circuit

Finally, a Colpitts oscillator circuit is built by
feeding back the output of the resonant circuits
to the input of the core circuit (amplifier).

CircuitOscillator

{

Core: " SubCircuits.Core { in = "pinl";
out = "pin2"; }

LC :"SubCircuits.LC { in = "pin2";
out = "pinl"; }

}

At turn on, random noise is generated within the
active device, which is here the SiGe bipolar junc-
tion transistor, and then amplified. This noise is

206F |— 1

pin2

—_— V_+2V
ac

2.04F -

Voltages [V]
5
=)
[3%)

N
=
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1.96 -
1 . 1 . 1
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Figure 23: Result of transient simulation of
the amplifier circuit with V,. =
10mV, f = 2.4GHz.
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Figure 24: Result of small-signal ac simulation of
the resonant circuit. The results are
compared with ADS simulations using
a VBIC95 model of a similar transistor.

fed back positively through the frequency selec-
tive circuit (resonant circuit consisting of an in-
ductor and two capacitors) to the input, where it
is amplified again. After the initial phase, a state
of equilibrium is reached. Then, the losses of the
circuit are compensated by the power supply. The
amount of feedback to sustain oscillation is basi-
cally determined by the Cy,/Cyy, ratio.
Transient simulation results are shown in
Figure 25. In the simulator, the random noise of
the active device is replaced by a numerical noise
caused by the restricted representation of floating
point numbers. The simulator requires 0.4s in the
initial phase and between 1.9s and 2.9s in the
state of equilibrium per time step.

1.00

]
49.5
Time [ns]

49 50

Figure 25: Result of the transient simulation of
the oscillator. The upper figure shows
the output Vi, in the initial phase, the
lower figure both possible outputs in
the state of equilibrium.

4.6 Conclusion

The highly sophisticated models required for to-
day’s advanced device structures can be directly
employed for circuit simulations. MINIMOS-NT
has been equipped with many powerful capabil-
ities for these mixed-mode simulations. One or
more distributed devices can be embedded in ar-
bitrary circuits applying realistic dynamic bound-
ary conditions. In turn, the setup of MINIMOS-NT
can be based on compact models using the circuit
simulator only.
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S Anisotropic Laplace Refinement for 3D Oxidation Simulation

We present a computational method for three-
dimensional tetrahedral mesh refinement accord-
ing to the demands of oxidation simulation. The
main focus lies on two major problems. First, the
start-up condition of oxidation claims an initial
mesh preparation which is done by the so called
Laplace refinement, second the transient conver-
sion of silicon (Si) to silicon dioxide (SiO;) forces
a high spatial resolution in a small area around
the material interface which shows the need of
adaptive refinement on demand. More over our
approach takes anisotropy into account to keep
the amount of elements small compared to strict
isotropic refinement.

5.1 Introduction

Oxidation, by the means of a process step involved
in the fabrication of integrated circuits (IC), is an
directional and surface near process step. This
means that the interesting simulation region is near
the surface and therefore it is important to guar-
antee a good spatial resolution at the skin of the
simulation domain.

This can only be achieved efficiently by
anisotropic meshes. Strict isotropic three-
dimensional regular meshes are not practicable for
realistic structures due to required high resolution
compared to the size of the simulation domain.
The demand on calculation time and the limitation
of memory requires anisotropic meshes.

The generation of small, strongly anisotropic, and
unstructured mesh layers by three-dimensional
mesh generators is, unfortunately from a technol-
ogy point of view, still something of an art, as well
as a science [94]. A more robust way is to generate
mostly isotropic coarse initial meshes for instance
with a Delaunay mesh generator, followed by a
mesh adaption post processing step on demand. A
means to an end for this task is a robust grid refine-
ment step which is based on tetrahedral bisection.
One way to increase spatial resolution and to take
anisotropic mesh refinement at the same time into

account was shown in [95]. The basic idea in this
work is to introduce a metric tensor function. The
initial mesh refinement is based on the solution of
the Laplace equation, while the dynamic adapta-
tion observes the diffuse interface function which
describes the moving boarder between silicon and
silicon dioxide.

5.2 Anisotropic Metric

The idea used in our approach is to apply a
combination of rotation and dilation to define an
anisotropic metric. The dilation is represented by
three scalar values Ag, Ay and, Ay, respectively.
Using (E,ﬁ,i) and (Ag, Ay, A¢) we define two ma-
trices

&x MNx Cx

R=|&& n § and

& M. &

e 0 0 (20)
S:= 0 A O which leads to

0 0 A
M :=RSR”.

The anisotropic metric M is a tensor function
which varies over the domain M = M(x,y,z). The
tensor function is symmetric and positive definite
which allows to use this tensor as a metric tensor.

5.3 Laplace Refinement

Our idea is to use the solution of Laplace’s equa-
tion as approximation for a surface distance func-
tion. The imagination is based on electrostatic
field calculations of the plate-capacitor. A typical
plate-capacitor structure is formed by two copla-
nar metal planes which are connected to a voltage
supply. We neglect the surrounding area by ap-
plying zero Neumann boundary conditions at open
borders of the capacitor and Dirichlet boundary
conditions at the electrodes (assumes an infinitely
expanded capacitor).
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Iso-surfaces of the electrostatic potential inside the
plate-capacitor form also coplanar planes which
can be used as a measure for the perpendicular dis-
tance to the surface (electrodes).

For the description of the metric tensor function,
we first calculate the solution of Laplace’s equa-
tion considering the given Dirichlet boundary con-
ditions on the initial coarse mesh. This approach
allows to define in a very flexible way where the
refinement should take place. To take anisotropy
into account we use the derivative of the electro-
static potential Y as primary stretching direction
for the anisotropic metric description (20). To ac-
complish this task we first rotate the three axes of
the Cartesian coordinate system (x-, y-, and z-axes)
so that the new y-axis is parallel to the gradient
vector V.

At the second step we apply a dilation-factor-
function Ay = Ay(Y). So the dilation along the
gradient direction depends on the potential y. All
other stretching weights are set to unity, which
guarantees a dilation only along the gradient field.
According to (20) the anisotropic metric function
is now completely specified over the element.
For the three-dimensional simplex partitioning
the anisotropic length of all tetrahedron edges are
calculated under consideration of

1
EPQ:/O \/ET-M(PH-@)-EM Q1)

The longest anisotropic edge which transcends the
maximum edge length value is chosen as the re-
finement edge.

5.4 Ocxidation

For the oxidation model we use analogously
to [96, 97] a normalized silicon concentration
nt) = % where Cs;(X,?) is the silicon con-
centration at time ¢ and point ¥(x,y,z) and Cyg; is
the concentration in pure silicon. Sonis 1 in pure
silicon and O in pure silicon-dioxide. The oxidant
diffusion is described by DAC(X,1) = k(n)C(%,1).
Here D is the diffusion coefficient and k(7)) is the
strength of a spatial sink and not just a reaction
coefficient at a sharp interface like in the standard
model for oxidation [98]. However, 1(X,?) varies

during oxidation simulation with ascending time,

so therefor it is important for the convergence
of the model and the quality of the computed
solution to increase the spatial resolution near the
interface on demand.

The idea is to solve the Laplace equation on the
initial coarse mesh with special Dirichlet bound-
ary conditions. Boundary conditions on the up-
per silicon surface which is exposed to an oxidiz-
ing atmosphere are set to unity and the opposite
part of the silicon body is set to zero. The solu-
tion of the Laplace equation and the corresponding
iso-surfaces can be seen in the right part of Fig-
ure 26, the initial coarse mesh is shown in the left
part. For the refinement post processing step we
detect those elements which hold a solution value
close to unity, all others are untouched. The ori-
entation of the anisotropy should reflect boundary
aligned elements by the mean of short point dis-
tances perpendicular to, and long point distances
along the oxidizing surface. Observing the gradi-
ent field of the solution, c.f. Figure 26(b), reflects
the anisotropic compression direction and is there-
fore a good choice for the anisotropic tensor func-
tion.

While performing the simulation we use 1(¥,7) to
identify the interface region and the first derivative
of n for our anisotropic refinement. Figure 27(b)
shows the resulting mesh at the end of the oxida-
tion simulation caused by applying our strategy.
The interface between silicon and silicon dioxide
migrates from the upper surface of the initial sil-
icon body downwards. The refinement procedure
follows this behavior and thereby a good spatial
resolution near the interface is reached. Other re-
gions at the simulation domain are left untouched
which guarantees the usage of an almost minimal
number of grid points.
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(a) Cubic silicon (Si) body with L-shaped silicon nitride (b) Iso-surfaces of Laplace’s equation solution and ac-
(Si3Nig) mask on top. Initial mostly coarse regular cording gradient field vectors on initial coarse mesh.
mesh.

Figure 26: Calculations for anisotropic refinement on the initial coarse mesh.

(a) Highly anisotropic thin mesh layer after Laplace- (b) Anisotropic mesh after oxidation simulation. The re-
Refinement in the upper region of the silicon body finement procedure followed the moving interface of
(input for oxidation). Si and SiO,.

Figure 27: Mesh adaption during oxidation simulation.



References

References
[1] International Technology Roadmap for
Semiconductors - 2003 Edition, 2003.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

http://public.itrs.net.

H. Iwai. CMOS Downsizing Toward Sub-
10 nm. Solid-State Electron., 48(4):497-503,
2004.

F. O. Heinz, F. M. Bufler, A. Schenk, and
W. Fichtner. Quantum Transport Phenom-
ena and Their Modeling. In Symposium on
Nano Device Technology, pp 2-8, Hsinchu,
Taiwan, 2004.

D. L. Scharfetter and H. K. Gummel. Large-
Signal Analysis of a Silicon Read Diode
Oscillator. IEEE Trans.Electron Devices,
16(1):64-77, 1969.

S. Selberherr, W. Fichtner, and H. Potzl.
MINIMOS - A Program Package to Facili-
tate MOS Device Design and Analysis. In
B. T. Browne and J. J. Miller, editors, Nu-
merical Analysis of Semiconductor Devices
and Integrated Circuits, volume 1, pp 275—
279, Dublin, 1979. Boole Press.

M. R. Pinto. PISCES IIB. Stanford Univer-
sity, 1985.

S. Selberherr. Analysis and Simulation of
Semiconductor Devices. Springer, 1984.

T. Grasser, T. W. Tang, H. Kosina, and
S. Selberherr. A Review of Hydrodynamic
and Energy-Transport Models for Semi-
conductor Device Simulation. Proc.IEEE,
91(2):251-274, 2003.

M. V. Fischetti and S. E. Laux. Monte Carlo
Analysis of Electron Transport in Small
Semiconductor Devices Including Band-
Structure and Space-Charge Effects. Phys-
ical Review B, 38(14):9721-9745, 1988.

T. Grasser, C. Jungemann, H. Kosina,
B. Meinerzhagen, and S. Selberherr.
Advanced Transport Models for Sub-

Micrometer Devices. In Proc. Intl. Conf. on
Simulation of Semiconductor Processes and
Devices, pp 1-8, 2004.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

28

S. Jallepalli, J. Bude, W. K. Shih, M. R.
Pinto, C. M. Maziar, and A. F. Tasch,
jr.  Electron and Hole Quantization and
Their Impact on Deep Submicron Sil-
icon p- and n-MOSFET Characteristics.
IEEE Trans.Electron Devices, 44(2):297-
303, 1997.

D. Vasileska, D. K. Schroder, and D. K.
Ferry. Scaled Silicon MOSFET’s: Degra-
dation of the Total Gate Capacitance.
IEEE Trans.Electron Devices, 44(4):584—
587, 1997.

E. M. Vogel, C. A. Richter, and B. G.
Rennex. A Capacitance-Voltage Model
for Polysilicon-Gated MOS Devices Includ-
ing Substrate Quantization Effects Based
on Modification of the total Semiconduc-
tor Charge. Solid-State Electron., 47:1589—
1596, 2003.

W. Hinsch, T. Vogelsang, R. Kircher, and
M. Orlowski. Carrier Transport Near the
Si/Si0, Interface of a MOSFET. Solid-State
Electron., 32(10):839-849, 1989.

M. I. van Dort, P. H. Woerlee, and A. J.
Walker. A Simple Model for Quantization
Effects in Heavily-Doped Silicon MOSFETs
at Inversion Conditions. Solid-State Elec-
tron., 37(3):411-414, 1994.

C. Jungemann, C. D. Nguyen, B. Neinhiis,
S. Decker, and B. Meinerzhagen. Improved
Modified Local Density Approximation for
Modeling of Size Quantization in NMOS-
FETs. In Proc. Intl. Conf. Modeling and Sim-
ulation of Microsystems, 2001.

A. Gehring. Simulation of Tunneling
in Semiconductor Devices. Dissertation,
Technische Universitit Wien, 2003.

C. S. Lent and D. J. Kirkner. The
Quantum Transmitting Boundary Method.
J.Appl.Phys., 67(10):6353-6359, 1990.

W. R. Frensley.  Numerical Evaluation
of Resonant States. Superlattices & Mi-
crostructures, 11(3):347-350, 1992.

R. Lake, G. Klimeck, R. C. Bowen, and
D. Jovanovic. Single and Multiband



References

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Modeling of Quantum Electron Transport
Through Layered Semiconductor Devices.
J.Appl.Phys., 81(12):7845-7869, 1997.

F. O. Heinz, A. Schenk, A. Scholze,
and W. Fichtner. Full Quantum Simula-
tion of Silicon-on-Insulator Single-Electron
Devices. J.Computational Electronics,

1(1):161-164, 2002.

G. Curatola, G. Fiori, and G. Iannaccone.
Modeling and Simulation Challenges for
Nanoscale MOSFETsS in the Ballistic Limit.
Solid-State Electron., 48(4):581-587, 2004.

S. E. Laux, A. Kumar, and M. V. Fis-
chetti. Ballistic FET Modeling Using
QDAME: Quantum Device Analysis by
Modal Evaluation. IEEE Trans. Nanotech-
nology, 1(4):255-259, 2002.

M. Sabathil, S. Hackenbuchner, J. A. Ma-
jewski, G. Zandler, and P. Vogl. Towards
Fully Quantum Mechanical 3D Device Sim-
ulations. J.Computational Electronics, 1:81—
85, 2002.

E. Wigner. On the Quantum Correction for
Thermodynamic Equilibrium. Physical Re-
view, 40:749-759, 1932.

H. Kosina and M. Nedjalkov. Wigner Func-
tion Based Device Modeling. In M. Ri-
eth and W. Schommers, editors, Handbook
of Theoretical and Computational Nanotech-
nology. Springer, 2005.

A. Wettstein, A. Schenk, and W. Ficht-
ner. Quantum Device-Simulation with
the Density-Gradient Model on Unstruc-
tured Grids. IEEE Trans.Electron Devices,
48(2):279-284, 2001.

T. Hoehr, A. Schenk, A. Wettstein, and
W. Fichtner. On Density-Gradient Modeling
of Tunneling Through Insulators. In Proc.
Intl. Conf. on Simulation of Semiconductor
Processes and Devices, pp 275-278, 2002.

L. Shifren, C. Ringhofer, and D. K. Ferry.
A Wigner Function-Based Quantum Ensem-
ble Monte Carlo Study of a Resonant Tun-
neling Diode. IEEE Trans.Electron Devices,
50(3):769-773, 2003.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

29

B. Winstead and U. Ravaioli. A Quantum
Correction Based on Schrodinger Equation
Applied to Monte Carlo Device Simulation.
IEEE Trans.Electron Devices, 50(2):440-
446, 2003.

H. Kosina, M. Nedjalkov, and S. Selberherr.
A Monte Carlo Method Seamlessly Linking
Quantum and Classical Transport Calcula-

tions. J. Computational Electronics, 2(2—
4):147-151, 2002.

Y. Li, T. W. Tang, and X. Wang. Modeling of
Quantum Effects for Ultrathin Oxide MOS
Structures with an Effective Potential. /IEEE
Trans. Nanotechnology, 1(4):238-242, 2002.

K. Z. Ahmed, P. A. Kraus, C. olsen, and
F. Nouri. On the Evaluation of Performance
Parameters of MOSFETs With Alternative
Gate Dielectrics. IEEE Trans.Electron De-
vices, 50(12):2564-2567, 2003.

A. Gehring and H. Kosina. Wigner-Function
Based Simulation of Classic and Ballistic
Transport in Scaled DG-MOSFETs Using
the Monte Carlo Method. In , Purdue, 2004.

J. T. Park, J. P. Colinge, and C. H. Diaz. Pi-
Gate SOI MOSFET. IEEE Electron Device
Lett., 22(8):405-406, 2001.

Institut fiir Mikroelektronik.  MINIMOS-
NT 2.1 User’s Guide. Wien, Austria,
2004. http://www.iue.tuwien.ac.at/software/
minimos-nt.

M. Duane. TCAD Needs and Applica-
tions from a Users Perspective. IEICE
Trans.Electron., E82-C(6):976-982, 1999.

S. Heinze, J. Tersoff, R. Martel, V. Derycke,
J. Appenzeller, and Ph. Avouris. Carbon
Nanotubes as Schottky Barrier Transistors.
Physical Review Letters, 89(10):106801-4,
2002.

B. M. Kim, T. Brintlinger, E. Cobas,
H. Zheng, M.S. Fuhrer, Z.Yu, R. Droopad,
J. Ramdani, and K. FEisenbeiser. = High-
Performance Carbon Nanotube Transistors
on SrTiO3/Si Substrates. Appl.Phys.Lett.,
84(11):1946-1948, 2004.



References

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[50]

A. Javey, J. Guo, Q. Wang, M. Lundstrom,
and H. Dai. Ballistic Carbon Nanotube
Field-Effect Transistors. Letters to Nature,
424:654-657, 2003.

R. Martel, V. Derycke, C. Lavoie, J. Appen-
zeller, K.K Chan, J. Tersoff, and Ph. Avouris.
Ambipolar Electrical Transport in Semi-
conducting Single-Wall Carbon Nanotubes.
Physical Review Letters, 87(25):256805-4,
2001.

J. Appenzeller, J. Knoch, V. Derycke,
R. Martel, S.Wind, and Ph. Avouris. Field-
Modulated Carrier Transport in Carbon Nan-
otube Transistors. Physical Review Letters,
89(12):126801-4, 2002.

M. Radosavljevic, S. Heinze, J. Tersoff, and
Ph. Avouris. Drain Voltage Scaling in Car-
bon Nanotube Transistors. Appl. Phys.Lett.,
83(12):2435-2437, 2003.

S. Heinze, J. Tersoff, and Ph. Avouris.
Electrostatic Engineering of Nanotube

Transistors for Improved Performance.
Appl.Phys.Lett., 83(24):5038-5040, 2003.

S. Heinze, M. Radosavljevic, J. Tersoff, and
Ph. Avouris. Unexpected Scaling of the
Performance of Carbon Nanotube Schottky-
Barrier Transistors.  Physical Review B,
68(23):235418-5, 2003.

S. Datta. Electronic Transport in Mesoscopic
Systems. Cambridge University Press, 1995.

F. Lonard and J. Tersoff. Novel Length
Scales in Nanotube Devices. Physical Re-
view Letters, 83(24):5174-5177, 1999.

T. Nakanishi, A. Bachtold, and C. Dekker.
Transport Through the Interface Between
a Semiconducting Carbon Nanotube and
a Metal Electrode.  Physical Review B,
66(7):073307-4, 2002.

J. W. Mintmire and C. T. White. Univer-
sal Density of States for Carbon Nanotubes.
Physical Review Letters, 81(12):2506-2509,
1998.

R. Sabelka and S. Selberherr. A Finite
Element Simulator for Three-Dimensional

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

30

Analysis of Interconnect Structures. Micro-
electronics Journal, 32(2):163-171, 2001.

W. B. Choi, J. U. Chu, K. S. Jeong, E. J.
Bae, and J. W. Lee. Ultrahigh-Density Nan-
otransistors by Using Selectively Grown Ver-
tical Carbon Nanotubes. Appl.Phys.Lett.,
79(22):3696-3698, 2001.

E. Ungersboeck, A. Gehring, H. Kosina,
S. Selberherr, B.-H. Cheong, and W. B. Choi.
Simulation of Carrier Transport in Carbon
Nanotube Field Effect Transistors. Proceed-
ings ESSDERC 2003, pp 411414, 2003.

W. Hoenlein. New Prospects for Microelec-
tronics: Carbon Nanotubes. J.Appl Phys.,
41(6b):4370-4374, 2002.

B. M. Kim, T. Brintlinger, E. Cobas, and
M. S. Fuhrer. High-Performance Carbon
Nanotube Transistors on SrTiO3/Si Sub-
strates. Appl.Phys.Lett., 84(11):1946-1948,
2004.

M. Radosavljevic, J. Appenzeller, and
Ph. Avouris. High Performance of
Potassium n-doped Carbon Nanotube
Field-EffectTransistors. Appl.Phys.Lett.,
84(18):3693-3695, 2004.

W. B. Choi, B. H. Cheong, J. J. Kim, J. Chu,
and E. Bae. Selective Growth of Carbon
Nanotubes for Nanoscale Transistors. Ad-
vanced Functional Materials, 13(1):80-84,
2003.

W. B. Choi, J. U. Chu, K. S. Jeong, E. J.
Bae, and J. W. Lee. Ultrahigh-Density Nan-
otransistors by Using Selectively Grown Ver-
tical Carbon Nanotubes. Appl.Phys.Lett.,
79(26):3696-3698, 2001.

S. Heinze, M. Radosavljevic, J. Tersoff, and
Ph. Avouris. Unexpected Scaling of the Per-
formance of Carbon Nanotube Transistors.
Physical Review B, 68:235418, 2003.

J. P. Clifford, D. L. John, L. C. Castro,
and D. L. Pulfrey. Electrostatics of Par-
tially Gated Carbon Nanotube FETs. [EEE
Trans.Nanotechnology, 3(2):281-286, 2004.



References

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

A. Javey, J. Guo, Q. Wang, M. Lundstrom,

and H. Dai. Ballistic Carbon Nanotube
Field-Effect Transistors. Nature, 424:654—
657, 2003.

Institut fiir Mikroelektronik. SIESTA
User’s Guide, IuE. Wien, Austria, 2003.
http://www.iue.tuwien.ac.at/software/siesta.

R. Sabelka. A Finite Element Simulator
for Three-Dimensional Analysis of Intercon-

nect Structures. Microelectronics Journal,
32(2):163-171, 2001.

Supriyo Datta.  Electronic Transport in
Mesoscopic Systems. Cambridge University
Press, 1995.

H. Ajiki and T. Ando. Electronic States of
Carbon Nanotubes. Journal of the Physical
Society of Japan, 62(4):1255-1266, 1993.

E. Ungersboeck, A. Gehring, H. Kosina,
S. Selberherr, B.-H. Cheong, and W. B. Choi.
Simulation of Carrier Transport in Carbon
Nanotube Field Effect Transistors. Proceed-
ings ESSDERC 2003, pp 411414, 2003.

D. L. John, L. C. Castro, J. Clifford, and
D. L. Pulfrey.  Electrostatics of Coax-
ial Schottky-Barrier Nanotube Field-Effect
Transistors. [EEE Trans.Nanotechnology,
2(3):175-180, 2003.

D. L. John, L. C. Castro, and D. L. Pulfrey.
Quantum Capacitance in Nanoscale Device
Modeling. J.Appl.Phys., 96(9):5180-5184,
2004.

J. Appenzeller, J. Knoch, R. Martel,
V. Derycke, S. J. Wind, and P. Avouris. Car-
bon Nanotube Electronics. IEEE Trans. Nan-
otechnology, 1(4):184-189, 2002.

Y. H. Kim and K. J. Chang. Subband Mixing
Rules in Circumferentially Perturbed Carbon
Nanotubes: Effects of Transverse Electric
Fields. Physical Review B, 64:153404, 2001.

J. Guo and M. S. Lundstrom. A Com-
putational Study of Thin-Body, Double-
Gate, Schottky Barrier MOSFETs. [EEE
Trans.Electron Devices, 49(11):1897-1902,
2002.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

31

J. Appenzeller, M. Radosavljevic, J. Knoch,
and P. Avouris. Tunneling Versus
Thermionic Emission in One-Dimensional
Semiconductors. Physical Review Letters,
92:048301, 2004.

D. L. Pulfrey and L. C. Castro, 2004. private
communication.

IBM. Advanced Statistical Analysis Pro-
gram (ASTAP), Program Reference Manual.
Technical Report SH20-1118-0, IBM, 1973.

L.W. Nagel. SPICE2: A Computer Program
to Simulate Semiconductor Circuits. Tech-
nical Report UCB/ERL M520, University of
California, Berkeley, 1975.

Department of Electrical Engineering and
Computer Sciences, University of Berkeley,
Berkeley, CA. BSIM4.4.0 MOSFET Model,
2004.

C. C. McAndrew, J. A. Seitchik, D. F.
Bowers, M. Dunn, I. Getreu, M. Mc-
Swain, S. Moinian, J. Parker, D. J. Roulston,
M. Schréter, P. van Wijnen, and L. F. Wag-
ner. VBIC95, The Vertical Bipolar Inter-
Company Model. [EEE J.Solid-State Cir-
cuits, SC-31(10):1476-1483, 1996.

ISE Integrated Systems Engineering AG,
Ziirich, Switzerland. DESSIS-ISE, ISE
TCAD Release 9.0, 2003.

Synopsis, Freemont, CA. Medici, Two-
Dimensional Device Simulation Program,
Version 2002.4, 2003.

S. Selberherr. Analysis and Simulation of

Semiconductor Devices. Springer, Wien—
New York, 1984.

J. G. Rollins and J. Choma. Mixed-Mode
PISCES-SPICE Coupled Circuit and Device
Solver. IEEE Trans.Computer-Aided De-
sign, 7:862-867, 1988.

J. R. McMacken and S. G. Chamberlain.
CHORD: A Modular Semiconductor De-
vice Simulation Development Tool Incor-
porating External Network Models. [EEE
Trans.Computer-Aided Design, 8(8):826—
836, 1989.



References

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

T. Grasser. Mixed-Mode Device Simulation.
Dissertation, Technische Universitit Wien,
1999. http://www.iue.tuwien.ac.at.

S. Selberherr, A. Schiitz, and H. W. Potzl.
MINIMOS—A Two-Dimensional MOS
Transistor Analyzer. [EEE Trans.Electron
Devices, ED-27(8):1540-1550, 1980.

J. Demel. JANAP — Ein Programm zur Sim-
ulation von elektrischen Netzwerken. Disser-
tation, Technische Universitit Wien, 1989.
http://www.iue.tuwien.ac.at/phd/demel.

C. W. Ho, A. E. Ruehli, and P. A. Brennan.
The Modified Nodal Approach to Network

Analysis. IEEE Trans.Circuits and Systems,
CAS-22(6):504-509, 1975.

L. W. Nagel. SPICE2: A Computer Program
to Simulate Semiconductor Circuits. Tech-
nical Report UCB/ERL M520, University of
California, Berkeley, 1975.

W. V. VanRoosbroeck. Theory of Flow
of Electrons and Holes in Germanium and
Other Semiconductors. Bell Syst.Techn.J.,
29:560-607, 1950.

T. Grasser, T. Tang, H. Kosina, and S. Sel-
berherr. A Review of Hydrodynamic
and Energy-Transport Models for Semi-
conductor Device Simulation. Proc.IEEE,
91(2):251-274, 2003.

R. Klima, T. Grasser, and S. Selberherr.
The Control System of the Device Simu-
lator Minimos-NT. In Proc. 2nd WSEAS
Intl. Conf. on Simulation, Modelling and Op-
timization, pp 281-284, Skiathos, Greece,
2002.

S. Wagner, T. Grasser, C. Fischer, and S. Sel-
berherr. A Simulator Module for Advanced
Equation Assembling. In Proc. 15th Euro-
pean Simulation Symposium ESS, pp 55-64,
Delft, The Netherlands, 2003.

ISE Integrated Systems Engineering AG,
Ziirich, Switzerland. DIOS-ISE, ISE TCAD
Release 8.0, 2002.

[92]

[95]

[96]

[97]

32

S. Wagner, V. Palankovski, T. Grasser,
G. Rohrer, and S. Selberherr. A Direct Ex-
traction Feature for Scattering Parameters
of SiGe-HBTs. Applied Surface Science,
224/1-4:365-369, 2004.

Agilent Technologies, Palo Alto, CA. Ad-
vanced Design System ADS, 2003.

J. F. Thompson, B. K. Soni, and N. P. Weath-
erill. Handbook of Grid Generation. CRC
Press LL.C, 2000 N.W. Corporate Blvd.,Boca
Raton, Florida 33431, first edition, 1999.

W. Wessner, C. Heitzinger, A. Hossinger,
and S. Selberherr. Error Estimated Driven
Anisotropic Mesh Refinement for Three-
Dimensional Diffusion Simulation. 2003
Intl. Conf. on Simulation of Semiconductor
Processes and Devices, pp 109-112, 2003.

E. Rank and U. Weinert. A Simulation
System for Difuse Oxidation of Silicon: A
Two-Dimensional Finite Element Approach.
IEEE Transactions on CAD, 9(5):543-550,
1990.

C. Hollauer, H. Ceric, and S. Selberherr.
Simulation of Thermal Oxidation: A Three-
Dimensional Finite Element Approach. Pro-
ceedings ESSDERC 2003, pp 383-386,
2003.

B. E. Deal and A. S. Grove. General Rela-
tionship for the Thermal Oxidation of Sili-
con. Journal Applied Physics, 36(12):3770—
3778, 1965.



