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1 Microstructure and Stress Aspects of Electromigration Modeling

The modifications and extensions of standard con-
tinuum models used for a description of mate-
rial transport due to electromigration with models
for the copper microstucture are studied. Copper
grain boundaries and interfaces are modeled as a
network of high diffusivity paths. Additionally,
grain boundaries act as sites of vacancy recombi-
nation. The connection between mechanical stress
and material transport is established for the case of
strain build up induced by local vacancy dynamics
and the anisotropy of the diffusivity tensor caused
by these strains. High diffusivity paths are set on
the surfaces of polyhedral domains representing
distintcive grains. These polyhedral domains are
connected by diffusive, electrical, and mechanical
interface models. For a numerical solution a three-
dimensional finite element method is used.

1.1 Introduction

The electromigration behavior of copper intercon-
nects realized in damascene architecture indicates
macroscopic and microscopic electromigration di-
vergence sites. Macroscopic divergence sites exist
at the cathode end of via bottoms where the barrier
layer can be a blocking boundary for the electro-
migration flux. The sites where two or more grain
boundaries intersect can be considered as micro-
scopic electromigration divergence sites. In the
cases where failures are induced far away from a
via, it has been shown that their activation energies
are often below the expected value for the grain
boundary diffusion [1].

This is a strong indication that copper interfaces
to the barrier and/or capping layer are dominant
diffusion paths [1]. Considering interfacial diffu-
sion as main contribution to electromigration was
a significant simplification for modeling and sim-
ulation of both void nucleation and void evolution
[2, 3]. Surface treatment aiming at strengthening
the copper/capping layer interface has been suc-
cessfully applied to suppress interfacial diffusion
[1, 4] and to increase electromigration life time.
Reducing the diffusivity at the interfaces to the
level of bulk and grain boundaries diffusivities ne-

cessities modeling of the grain boundary network
and the crystal orientation in the grains. Moreover,
intrinsic stress, introduced by the dual damascene
process, has a strong impact on the bulk and grain
boundary diffusion which has also to be consid-
ered [5].

The main challenge in electromigration model-
ing and simulation is the diversity of the relevant
physical phenomena. Electromigration induced
material transport is accompanied with the mate-
rial transport driven by the gradients of material
concentration, mechanical stress, and temperature
distribution. A comprehensive, physically based
analysis of electromigration for modern copper in-
terconnect lines serves as basis for deriving so-
phisticated design rules which will ensure higher
steadfastness of interconnects against electromi-
gration. In the present work we study a possi-
ble extensions of the vacancy transport model de-
scribed in [2] in order to include effects of the cop-
per microstructure and mechanical stress. charac-
teristic features of an extended model are verified
by a three-dimensional simulation example.

1.2 Theoretical Background

The most comprehensive models of electromigra-
tion and accompanying phenomena are described
by Mullins [6], Korhonen et al. [7], Sarychev et

al., and Kirchheim [8]. The major ideas and con-
cepts of these models are set here into a general
framework which enables their application to sim-
ulation of realistic three-dimensional interconnect
layouts.

1.3 Vacancy Continuity

The bulk chemical potential of vacancies in a
stressed solid can be expressed as [9, 10],

µ(σ,Cv) = µ0 + µ(0,Cv)+
1

3
f Ωa tr(σ), (1)

where, according to [9], the chemical potential in
the absence of stress is:
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µ(0,Cv) = kB T ln
(Cv

C0
v

)
. (2)

C0
v is the equilibrium vacancy concentration in a

stress free solid, µ0 is the corresponding chemical
potential, and σ is the tensor of the applied me-
chanical stress. A vacancy flux ~Jv driven by gradi-
ents of chemical potential and electromigration is
given by,

~Jv = − Cv

kB T
D(gradµ+ |Z∗|egradϕ). (3)

ϕ is the electric potential which obeys Laplace’s
equation (∆ϕ = 0). Since a vacancy is a point de-
fect with cubic symmetries and copper is an fcc
crystal, the tensor of diffusivity D is diagonal (D =
D0I).

Vacancy transport fulfills the continuity equation,

∂Cv

∂t
= −div~Jv + G, (4)

with G as a source function which describes the
vacancy generation and annihilation process.
The equations (1)-(4) model electromigration of
vacancies in the perfect fcc monocrystal stressed
by σ.

1.4 Mechanical Stress

Since atoms and vacancies have a different volume
of about 20-40% [8], the migration and recombi-
nation of vacancies induce local stress build up.

1.4.1 Vacancy Migration

We consider a small test volume V inside the in-
terconnect metal. If n atoms leave this volume and
n vacancies enter it, due to the different volume of
the single vacancy and atom (Ωv/Ωa = f < 1) the
new volume will be,

Vnew = V −nΩa + n f Ωa. (5)

The relative volume change in this case is

δV

V
= −(1− f )Ωa

n

V
= −(1− f )ΩaδCv, (6)

where δCv is the increment of the vacancy con-
centration. With a time derivative of (6) and the
well known mechanical relationship between vol-
ume increase and strain [11]

δV

V
=

Vnew −V

V
= εm

xx + εm
yy + εm

zz = 3εm, (7)

we obtain

3
∂εm

∂t
= −(1− f )Ωa

∂Cv

∂t
. (8)

For the test volume V the vacancy continuity holds

−div~Jv =
∂Cv

∂t
. (9)

From (8) and (9) we obtain for the components of
the migration strain tensor

∂εm
i j

∂t
=

1

3
(1− f )Ωa div~Jvδi j. (10)

1.4.2 Vacancy Recombination

Using the same concept as given above we calcu-
late the new volume Vnew as a result of production
(annihilation) of n vacancies inside the initial vol-
ume,

Vnew = V ±n f Ωa. (11)

Now we can express a relative volume change as,

δV

V
=

Vnew −V

V
= ± f ΩaδCv. (12)

Using relation (7) and the time derivative we ob-
tain

3
∂εg

∂t
= ± f Ωa

∂Cv

∂t
. (13)

The time derivative ∂Cv/∂t in this case is equal to
the vacancy production/annihilation source func-
tion G. Thus the time change of the strain caused
by vacancy recombination is given by,

∂εg
i j

∂t
=

1

3
f Ωa Gδi j. (14)

From (10) and (14), we obtain a kinetic relation
for the strain caused by vacancy migration and re-
combination,

∂εv
i j

∂t
=

Ωa

3

[
(1− f )div~Jv + f G

]
δi j. (15)
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1.4.3 Stress Equilibrium

According to [9] the general form of the mechani-
cal equilibrium equation is

3

∑
j=1

∂σi j

∂x j

= 0, for i = 1,2,3. (16)

Taking into account the strain induced by vacancy
migration and recombination we obtain [12]

σi j = (λ tr(ε)−B tr(εv))δi j + 2Gεi j, (17)

where λ and G are Lame’s constants and
B = (3λ + 2G)/3 is the bulk modulus. The strain
tensor εv is defined by relation (15).

1.5 Anisotropic Diffusivity

In the case of a homogeneously deformed cubic
crystal with strain field ε the vacancy diffusivity
tensor obtains additional contributions [13]

Di j = D0 δi j +
3

∑
k,l=1

di jlk εkl, (18)

where di jlk is the elastodiffusion tensor. Equa-
tion (18) shows that strain causes an anisotropy of
the diffusivity tensor. A comprehensive analysis
of the point defect jump frequencies in a strained
solid and calculation of the elastodiffusion tensor
components is provided in [5].

1.6 Microstructure

The network of grain boundaries influences
vacancy transport during electromigration in
several different ways. The diffusion of point
defects inside the grain boundary is faster
compared to grain bulk diffusion due to the
fact [14] that a grain boundary generally exibits
a larger diversity of point defect migration
mechanisms. Moreover, formation energies and
migration barriers of point defects are in average
lower than those for lattice.

In polycrystalline metals, grain boundaries are
also recognized (together with dislocations loops)
as sites of vacancy generation and annihilation

[8, 15]. During the diffusion process vacancies
generally seek to reach a concentration C

eq
v which

is in equilibrium with the local stress distribution,

Ceq
v = C0

v exp
(
− f

tr(σ)Ω
3kB T

)
. (19)

This tendency is supported by recombination
mechanisms which are commonly modeled by
a source function G in the form introduced by
Rosenberg and Ohring [16],

G = −Cv−C
eq
v

τ
, (20)

which means production of vacancies, if their
concentration is lower than the equilibrium
value C

eq
v and their annihilation in the opposite

case. τ is the characteristic relaxation time [17].
The full understanding of the source function
G is still missing but it surely has to comprise
three processes: exchange of point defects
between adjacent grains, exchange of point defect
between grains and grain boundaries, and point
defect formation/annihilation inside the grain
boundaries.

1.7 Simulation Example

We consider an interconnect via realized in dual
damascene architecture consisting of copper,
capping, and diffusion barrier layers (Figure 1).
The copper segment is split into polyhedral grains
(Figure 2). For the solution of the governing
equations (1)-(4) an in-house finite element
method code is used. The diffusion coefficient
along the grain boundaries and the copper
interfaces to the capping and barrier layers is
assumed to be 5000 times larger than that in the
bulk regions.

The Rosenberg and Ohring recombination term G

is assumed to be active only in the close vicinity
of the grain boundaries. The vacancy concentra-
tion on both ends of the via is kept at the equi-
librium level during simulation and all materials
are assumed to be relaxed. The obtained vacancy
distribution is presented in Figure 3. Consistent
with experimantal results [18] the peak values of
the vacancy concentration develop at the intersec-
tion lines of the grain boundaries and the capping
layer.
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Figure 1: Typical dual-damascene layout used for
simulation.

Figure 2: The copper segment is split into polyhe-
dral grains and each polyhedron is sep-
arately meshed with initial mesh.

Figure 3: The peak value of vacancy concentra-
tion (displayed iso surfaces) is accu-
mulated at the grain boundary/capping
layer crossing line.

1.8 Conclusion

A careful analysis of the connection between the
local vacancy dynamics and strain build-up has
been carried out. The obtained relations have been
coupled to an electromigration model using the
concepts of stress driven diffusion and anisotropy
of the diffusivity tensor.

For a correct physical handling of the grain
boundary network as the network of high
diffusivity paths and at the same time as sites of
vacany recombination, the method of splitting of a
copper segment into grain segments is introduced.
The grain boundary segments are treated as
simulation sub-domains connected to each other
by diffusive, mechanical, and electrical interface
conditions.

A dual-damascene architecture example layout
is used to illustrate and verify the introduced
modeling approach. The obtained simulation
results qualitatively resemble the behavior
observed in experimental investigations.
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2 Efficient Calculation of Lifetime Based Direct Tunneling Through

Stacked Dielectrics

We present an efficient simulation method for life-
time based tunneling in CMOS devices through
layers of high-κ dielectrics, which relies on
the precise determination of quasi-bound states
(QBS). The QBS are calculated with the perfectly
matched layer (PML) method. Introducing a com-
plex coordinate stretching allows artifical absorb-
ing layers to be applied at the boundaries. The
QBS appear as the eigenvalues of a linear, non-
Hermitian Hamiltonian where the QBS lifetimes
are directly related to the imaginary part of the
eigenvalues. The PML method turns out to be a
numerically stable and efficient method to calcu-
late QBS lifetimes for the investigation of direct
tunneling through stacked gate dielectrics.

2.1 Introduction

The continuous progress in the development
of MOS field-effect transistors within the last
decades goes hand in hand with down-scaling
the device feature size. To enable further de-
vice down-scaling to the deca nanometer channel
length regime, it is necessary to reduce the effec-
tive oxide thicknesses (EOT) below 2nm, which
will result in high gate leakage currents. The use
of high-κ gate dielectrics provides an option to re-
duce the gate leakage current of future CMOS de-
vices while retaining a good control over the in-
version charge [19].

Gate dielectric stacks consisting of high-κ dielec-
tric layers such as Si3N4, Al2O3, Ta2O5, HfO2,
or ZrO2 have been suggested as alternative di-
electrics. Parameter values for these materials
taken from [20]-[21] are summarized in Table 1.

Apart from interface quality and reliability, the di-
electric permittivity and the conduction band off-
set to silicon are of utmost importance as they de-
termine the gate current density through the layer.
Furthermore, at the interface to the underlying sili-
con substrate, an interface layer exists which is ei-
ther created unintentionally during processing or
intentionally deposited to improve the interface

quality. Unfortunately, materials with high per-
mittivity have a low band offset and vice versa,
so that a trade-off between these parameters has to
be found. However, for investigation of tunneling
phenomena and especially for optimization pur-
poses, accurate, and yet efficient simulation mod-
els are necessary.

2.2 Calculation of Direct Tunneling using

a Lifetime Based Approach

Calculation of tunneling currents is frequently
based on the assumption of a three-dimensional
continuum of states at both sides of the gate di-
electric and the conservation of parallel momen-
tum. Then, the tunneling current can be described
by the Tsu-Esaki formula [22],

J3D = q
Z Emax

Emin

TC(Ex,mdiel)N(Ex,mD)dEx, (21)

where TC(Ex,mdiel) is the transmission coefficient
and N(Ex,mD) the supply function.

Two electron masses enter this equation: The
density-of-states mass in the plane parallel to the
interface, mD = 2m∗

t + 4
√

m∗
t m∗

l , which, equals
2.052m0 for (100) silicon with m∗

l = 0.92m0 and
m∗

t = 0.19m0 , and the electron mass in the dielec-
tric mdiel, which is commonly used as a fit param-
eter [23].

However, in the inversion layer of a MOS-
structure, the strong electric field leads to quan-
tum confinement. Whenever electrons are con-
fined or partially confined in movement, this gives
rise to bound or quasi bound states (QBS), and the
assumption of continuum tunneling is no longer
valid. In the inversion layers of MOS-FETs, a ma-
jor, if not the dominant, source of tunneling elec-
trons is represented by quasi bound states [24].

The QBS tunneling current is proportional to

∑ni/τi where ni and τi denote the carrier concen-
tration and the lifetime of the QBS with index i,
respectively.
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Figure 4: The potential well of an nMOS inver-
sion layer and its eigenstates assuming
closed boundary conditions. The inset
displays the wave function of the first
QBS on a logarithmic scale.

Table 1: Dielectric permittivity, band gap, and
conduction band offset of dielectric ma-
terials.

Permittivity Band gap Offset
κ/κ0 [1] Eg [eV] ∆EC [eV]

SiO2 3.9 8.9 – 9.0 3.0 – 3.5
Si3N4 7.0 – 7.9 5.0 – 5.3 2.0 – 2.4
Ta2O5 23.0 – 26.0 4.4 – 4.5 0.3 – 1.5
TiO2 39.0 – 170.0 3.0 – 3.5 0.0 – 1.2
Al2O3 7.9 – 12.0 5.6 – 9.0 2.78 – 3.5
ZrO2 12.0 – 25.0 5.0 – 7.8 1.4 – 2.5
HfO2 16.0 – 40.0 4.5 – 6.0 1.5

To take into account the tunneling current from
both, continuum and quasi-bound states, (21) has
to be replaced by

J = J2D + J3D =

= kBTq

πh̄2 ∑i,ν
gνm‖

τν(Eν,i(mq))
ln

(
1+ exp

(
EF−Eν,i

kBT

))
+

+q
R Emax TC(Ex,mdiel)N(Ex,mD)dEx. (22)

Here, the symbols gν, m‖, and mq denote the val-
ley degeneracy, parallel, and quantization masses
respectively (g = 2: m‖ = mt, mq = ml and g = 4:
m‖ =

√
mlmt, mq = mt), τν(Eν,i) is the lifetime of

the quasi-bound state Eν,i, and the integration in

the Tsu-Esaki formula starts from = Elim as indi-
cated in Figure 4. The following considerations
are focused on the tunneling current J2D originat-
ing from the QBS.

Within our simulation framework the QBS are ob-
tained from the single particle, time-independent,
effective mass SCHRÖDINGER equation:

− h̄2

2
∇ ·

(
m̃−1∇Ψ(x)

)
+V (x)Ψ(x) = EΨ(x).

(23)
Several methods have been proposed to calculate
the quasi-bound states and their respective
lifetimes [25]. In a first approximation the
energy levels of the QBS can be estimated by
the eigenvalues of the Hamiltonian of the closed
system as displayed in Figure 4. Since closed
boundaries are assumed, no information about the
broadening and the associated QBS lifetimes is
available. It is to note that bound states cannot
carry any current, since their wavefunctions Ψ
fulfill the relation: Ψ∇Ψ∗−Ψ∗∇Ψ = 0.

A semi-classical approximation based on
corrected closed-boundary eigenvalues, which
uses a classical formulation of the lifetime (escape
time) is pointed out in [26]. However, using the
closed-boundary eigenvalues for the calculation
of open-boundary QBS lifetimes seems to be
questionable.

A more rigorous way to apply open boundary
conditions to (23) is the quantum transmitting
boundary method (QTBM) [27] where a
computationally intensive scanning of the
derivative of the phase of the reflection coefficient
[25] or the reflection coefficient itself [28] yields
the desired QBS lifetimes. These methods are
especially demanding in the presence of strong
confinement (high lifetimes).

2.3 Perfectly Matched Layer Method

Recently, a method based on absorbing boundary
conditions (known as the Perfectly Matched Layer
(PML) method) for SCHRÖDINGER’s equation
has been applied for band structure calculations in
III-V heterostructure devices [29]. In the present
work the PML formalism which is often used in
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played in the perfectly matched layer
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electromagnetics, has been applied to determine
the energy levels and the lifetime broadening of
QBS in MOS inversion layers. In contrast to
the QTBM, the Hamiltonian of the system is
still linear. Thus, all QBS are calculated in one
step and no iteration or scanning procedures are
needed.

The basic principle is to add non-physical
absorbing layers at the boundary of the simulation
region (physical region). This procedure prevents
reflections at the boundary of the physical
region. The artificial absorbing layers allow the
application of Dirichlet boundary conditions, and
the QBS are determined by the eigenvalues of the
non-Hermitian Hamiltonian of the system. This
yields the desired QBS which are the eigenstates
of the open system, although Dirichlet boundary
conditions are applied. The absorbing property
of the PML region is achieved by introducing
stretched coordinates

x̃ =

Z x

0
sx(τ)dτ (24)

in (23). The evaluation of the gradient operator ∇
in one dimension yields:

∂
∂x̃

=
1

sx(x)

∂
∂x

. (25)

In the artificial layers the stretching function sx(x)
is given as sx(x) = 1+(α+ ıβ)xn, with α = 1,
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Figure 6: Comparison of the CPU time demand
for the PML, and the QTB methods.

β = 1.4, and n = 2, while it is unity in the physical
region as displayed in Figure 5. Adding absorbing
layers at the boundary of the physical simulation
region, the Hamiltonian becomes non-Hermitian
and admits complex eigenvalues E = Er + ıEi.
The QBS lifetimes are related to the imaginary
parts of the eigenvalues as τi = h̄/2Ei.

To better clarify the PML method, let us assume a
constant potential V (z) in the PML region. Then,
within this region, the wave function can be writ-
ten as a plane wave Ψ(x) = Ψ0 exp(ık̃xx) with the
wave vector k̃x = kx/sx. Considering two points in
the PML region x1, x2 = x1 + dx the wave vector
at the point x2 can be approximated as

kx(x2) ≈
sx(x2)

sx(x1)
kx(x1) = (1+(α+ ıβ)dx) . (26)

Therefore, the parameter α scales the phase ve-
locity of the plane wave, while β acts as a damp-
ing parameter. Since this damping coefficient is
greater than zero in the absorbing region, the en-
velope of the wave functions decay to zero, as can
be seen in Figure 5.

These parameters, as well as the thickness of the
absorbing layer can be varied over a wide range
with virtually no influence on the results, as long
as there are no reflections at the boundaries. How-
ever, to achieve this goal, the complex stretching
function and its first derivative have to be continu-
ous.
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In the gate region, using QTBM or assuming
closed boundary conditions results in a
superposition of two plane waves in opposite
directions, which can bee seen in the inset of
Figure 4. In contrast, when using PML, there
are no reflected waves. The wave function is a
traveling wave with a constant envelope function.
In the absorbing layer, the wave functions are
gradually decaying to zero (Figure 5). The QBS,
however, are reproduced correctly.
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Figure 7: The band edge energy [eV] of the
nMOS device with a stacked gate di-
electric evaluated at a gate bias of 1.5
V and a drain voltage of 0 V.
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Figure 8: The band edge energy [eV] of the
nMOS device with a stacked gate di-
electric evaluated at a gate bias of 1.5
V and a drain voltage of 0.6 V.

For an arbitrary potential well a comparison
between the PML method and the established

methods has been carried out in [30]. Very
good agreement between the established QTBM
and the PML formalism has been obtained.
Furthermore, the computational effort of the PML
and QTBM approaches was compared.

Figure 6 shows the CPU time necessary to calcu-
late 1, 3, and 30 quasi-bound states with the QTB
and PML methods as a function of the spatial res-
olution. For the QTBM, an equidistant grid in
energy space was used to determine the lifetime
broadening of the QBS. Although the dimension
of the system increases due to the additional points
in the PML region, the computational effort of the
PML method has shown to be in almost all cases
lower than that of the QTBM.

2.4 Application to Device Simulation

With the described method, the gate leakage
currents of nMOS transistors with a gate
length of 50nm have been evaluated. The
gate current density has been evaluated for a
stacked SiO2-Si3N4 and a single SiO2 layer
gate dielectric having nearly the same EOT. A
doping of NA=3 × 1017cm−3 in the bulk and
ND=1 × 1019cm−3 in the poly-silicon gate was
assumed. For the investigation of gate leakage
currents in the whole device, the conduction
band edge has been acquired from the device
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Figure 11: The gate current density for a single
SiO2 layer as well as for a stacked
SiO2-Si3N4 dielectric calculated from
the Tsu-Esaki formula and the lifetime
based approach.

simulator MINIMOS-NT [31]. It is displayed
for strong inversion at a gate bias of 1.2 V and
VDS=0.0V in Figure 7, and at drain bias of 0.6 V
in Figure 8. Several one-dimensional cuts through
the simulation region are shown in Figure 9.

As a post-processing step on these cuts the QBS
energy levels and the related lifetimes have been
evaluated using the PML formalism. Based on an
accurate computation of the QBS lifetimes, the
tunneling current has been estimated according

to (22). For the stacked gate dielectric some of
the extracted quasi-bound states are shown in
Figure 10 considering the transversal mass as
the quantization mass at VGB=1.2V. The energy
levels, the QBS lifetimes, and their contribution
to the total current density are listed in Table 2.

Table 2: The QBS of the MOS capacitor for a
gate bias of 1.2V, the corresponding life-
times, and their contribution to the total
gate current density.

QBS Er [eV] τl [s] JG [A cm−2]

1 0.054 2.1×10−4 3.2×10−3

2 0.210 8.5×10−5 2.0×10−5

3 0.326 3.7×10−5 5.1×10−8

5 0.507 8.5×10−6 1.9×10−10

The resulting IV-characteristics as a function of
the gate voltage for zero drain bias of the two
structures are compared in Figure 11. It can be
seen that the gate current leakage of the stacked
dielectric is considerably smaller. Furthermore,
we have to point out that the Tsu-Esaki approach
overestimates the gate current leakage under
inversion conditions. Thus, the use of the
more sophisticated lifetime based approach
is mandatory for accurate modeling of direct
tunneling through stacked gate dielectrics under
inversion conditions.

2.5 Conclusion

We presented an efficient approach for the
estimation of lifetime based tunneling currents
through stacked gate dielectrics. The lifetimes
of quasi bound states (QBS) have been evaluated
with the perfectly matched layer (PML)
formalism. The traditional approach requires
a computationally very demanding scanning
procedure.

The QBS lifetimes appear as the complex eigen-
values of a non-Hermitian Hamiltonian. Since the
equation to be solved is linear, highly efficient al-
gorithms are available. Moreover, the PML ap-
proach was used to evaluate QBS in the conduc-
tion band on several cuts of the MOS inversion
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layer and its contribution to the total gate leakage
current was determined. For typical device param-
eters, the QBS tunneling is the dominant tunneling
component. The PML formalism represents an ef-
ficient and numerically stable method to determine
QBS. Therefore, it is appropriate for integration in
a device simulator for the investigation of direct
tunneling phenomena.
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3 On-Chip Interconnect Simulation of Parasitic Capacitances in Periodic

Structures

Parasitic capacitances determine significantly the
performance of todays complex on-chip intercon-
nect structures. This article handles the implemen-
tation of periodic boundary conditions for electri-
cal field calculation and parasitic capacitance ex-
traction in interconnect structures. Various exam-
ples show the impact of these convenient boundary
conditions.

3.1 Introduction

The numerical capacitance calculation uses com-

monly the energy method C = U2

2W
, where U is the

voltage applied between the conductors and W is
the electric energy stored in the interior of the di-
electric VD. W can be derived from the electric
field ~E:

W =
Z

VD

~E ·~DdV = ε0

Z

VD

~E · (ε̃r ·~E)dV. (27)

~E is given by ~E = −~∇ϕ and ϕ is the solution of
the equation:

~∇ · (ε̃r ·~∇ϕ) = − ρ
ε0

. (28)

The insulators are free of electric charge (ρ =
0). Therefore, the solution of (28) is completely
extracted from the data, defined on the bound-
ary ∂VD. On one part of this boundary Dirich-
let conditions (ϕ(~r) = ϕ0) are applied and on
the other part homogeneous Neumann conditions
(~n.~∇ϕ(~r) = 0) [32].

For the numerical solution of the involved par-
tial differential equation (28) the finite element
method (FEM) [33] is applied. The simulation
area is discretized in tetrahedrons. The algorithm
for the linear algebraic equations arising from the
finite element discretization is based on the iter-
ative conjugate gradient method, which uses in-
complete Cholesky preconditioning technique to
speed up the iteration convergence [34]. The accu-
rate numerical calculation of boundary value prob-
lems such as (28) requires an appropriately fine

discretization. In large areas this leads to gener-
ation of a lot of simulation nodes, which means
sizeable memory consumption and unacceptably
long duration of the simulation process.

Often the interconnects represent regular struc-
tures (i.e. on-chip interconnect buses, DRAM
cells) which can be described through mirroring
and periodic spatial continuation of a given sub-
space [35]. A large simulation domain can be
composed from numerous sub-domains [36].

A smart simplification is to simulate only in this
small sub-domain by applying boundary condi-
tions corresponding to the way how the whole do-
main is composed from the sub-domain pattern
(by mirroring or periodic extension). Therefore
the simulation duration and memory consumption
are decreased heavily. To use this feature the sim-
ulation software has to provide mirroring and pe-
riodic functionality. The mirroring can be eas-
ily accomplished by applying homogeneous Neu-
mann boundary conditions at the mirroring sur-
face. However, the periodic boundaries require
special treatment.

We define two faces A1p ⊂ ∂V and A2p ⊂ ∂V as
periodic boundary, if:

• Each node from A1p is uniquely mapped to
another node from A2p.

• If~r1i is the position pointer to a simulation
point of A1p and~r2i is the position pointer to
the corresponding simulation point of A2p

then ϕ(~r1i) = ϕ(~r2i) for each point of A1p

and A2p.

• Each node of A1p has its own neighbor
nodes and the neighbor nodes of the corre-
sponding node from A2p.

Although each two corresponding periodic points
are separated in the space, due to the periodic con-
dition, they should behave as if they were attached
to each other.



3 On-Chip Interconnect Simulation of Parasitic Capacitances in Periodic Structures 12

3.2 Domain Discretization

The discretization of the volume of interest is usu-
ally the first step of the finite element analysis. In
this case the simulation domain is subdivided into
a number of small volume elements, in our case
tetrahedral elements. Therefore the surface is bro-
ken into a number of triangular elements.

For the sake of clarity this paragraph is restricted
to parallelepiped structures. Of course periodic
boundary conditions can be applied to an arbitrary
pair of faces with unique bidirectional node
mapping. If at two opposite parallel faces
periodic boundary conditions are applied, the
grid generated has to guarantee that the surface
grids at these faces are identical. Two different
three-dimensional grid generation approaches
are used in our interconnect simulation software
Smart Analysis Programs.

The first one is a fully unstructured grid
generation approach which uses the program
delink [37, 38]. The second approach is a layered
based method which extends two-dimensional
grid generator [39] into the third dimension by
means of linear extrusion. Both approaches do
not fulfill the above mentioned requirements for
periodic boundaries a priori. To extend the grid
generator for periodic boundaries an iterative
approach is used.

At first the simulation domain is meshed without
any special treatment for periodic boundaries. Af-
terwards the periodic boundary faces are checked
for conformity. If they are not conform the peri-
odic nodes are merged. Therefore at the periodic
surfaces new points are generated which are fed
into the grid generator as additional input.

These steps are repeated until conformity is
reached. In the layer based meshing approach this
iteration procedure must only be applied to the
two-dimensional grid generation process. The
conformity of the side walls is preserved by the
following extrusion step.

In the fully unstructured meshing method the con-
formity of the nodes on the periodic faces is not
sufficient, because the same set of boundary nodes
can lead to different boundary meshes (at least for

cospherical points). Therefore also edge confor-
mity has to be guaranteed. Because of these ad-
ditional difficulties the layer based grid genera-
tion method is preferred for problems with peri-
odic boundaries.

3.3 Assembling

If due to the discretization N points are created,
the electric potential ϕ in VD is approximated by
the sum:

ϕ ≈ ϕ̃ =
NU

∑
j=1

c jN j(~r)+
N

∑
j=NU+1

c jN j(~r). (29)

The shape function N j has the value 1 only on the
node j (for ~r = ~r j). N j is different from 0 only
in the elements directly attached to the node j and
is 0 otherwise. Therefore the weighting factor c j

represents the potential on the node j.

The points which do not belong to ∂VD1 are the
unknown nodes and are numbered by 1 ≤ j ≤ NU .
The Dirichlet (known) nodes (at ∂VD1) are num-
bered by NU + 1 ≤ j ≤ N. Using (29) FEM leads
to a linear equation system for the unknown c j.

In general the grid generation software does
not order the simulation nodes as in (29).
To implement the desired node ordering a
supplemental auxiliary index array with the
length N is allocated. This additional index array
is used by the assembling procedure. The first NU
entries of this index array refer to the nodes in VD

without ∂VD1.

The remaining entries refer to the nodes on the
Dirichlet boundary ∂VD1 (from NU + 1 till N).
The additional index assignment of the simulation
nodes gives advantages to the implementation
of the periodic boundary conditions. Each two
corresponding points of the plains A1p and A2p

get the same index in the additional index array.

Thus, they are assembled to the same row in the
linear equation system. Due to the element-by-
element processing of the simulation volume each
periodic point has not only its neighbor nodes but
it is also connected to the neighbor nodes of the
corresponding periodic point.
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3.4 Conceptual Formulation

In the presented example which is considered part
of a representative on-chip bus structure the sim-
ulation area consists of a SiO2 rectangular paral-
lelepiped with two parallel conductors inside as
shown in Figure 12. The z axis is oriented such
that the x y and z axes build a right aligned coordi-
nate system. On one conductor a voltage of 1 V is
applied, while the other is set to 0 V. The conduc-
tors in this simulation area are shown from another
viewing angle in Figure 13.

On the interface between the dielectric and the
electrodes Dirichlet conditions are applied, which
comply with the potential of the electrodes. At the
boundaries parallel to the xy plane homogeneous
Neumann conditions are applied. For the
remaining outer faces different combinations of
homogeneous Neumann conditions and periodic
boundaries are investigated. Homogeneous
Neumann conditions influence the electric field
in the simulation domain, as if the simulation
domain would be mirrored with respect to the
face, at which the homogeneous Neumann
conditions are applied.

It is convenient to combine opposite faces to pe-
riodic boundaries. In this case the electric field
in the simulation area is influenced as if the sim-
ulation area would be shifted along the direction
perpendicular to these faces by the corresponding
length of the simulation area. That way the sim-
ulation domain appears as if it could be a part of
a structure, which is constructed by mirroring of
the simulation domain along the z direction and
by periodic or mirrored spatial continuation of the
simulation domain along the x and y directions.
Such a structure could be for instance an intercon-
nect bus. The total capacitance is the sum of the
capacitances from all parts.

3.5 The Electric Field

The simulation results are evaluated by visualiza-
tion of the electric field using VTK[40]. The dif-
ferences between the investigated cases are well
shown by the potential iso faces and by the an-
gles between these potential iso faces and the outer

x

y

Figure 12: The Simulation Area.

boundaries. The simulated potential distribution
confirms with the expected one under considera-
tion of the corresponding boundary conditions.

3.5.1 Mirroring along the x and y axes

At the boundary faces of the simulation area
parallel to yz and xz planes homogeneous
Neumann conditions are specified. Therefore the
simulation domain is mirrored in ~x, −~x, ~y and
−~y directions. The mirror planes are the planes,
at which homogeneous Neumann conditions
are defined. The potential distribution and the
corresponding iso faces are shown in Figure 14
and Figure 15. As expected the potential iso faces
are perpendicular to the outer bounds. The iso
faces should wrap round an electrode and its
imaginary mirror images. Therefore iso faces
can be seen only between the two electrodes in

Figure 13: The Electrodes.
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the simulation area. The other cases should be
compared to this one to indicate the changes
caused by the substitution of the Neumann
boundaries for the periodic boundaries.

3.5.2 Periodicity along the x and Mirroring

along the y Axis

In this case, at the boundary faces of the simula-
tion area parallel to the yz plane a periodic con-
dition is defined. That is as if the simulation do-
main would be moved in~x and −~x direction by the
length of its x dimension. In −~y and ~y direction
the simulation domain is mirrored. This behavior
can be observed in Figure 16 and Figure 17.

The electric field looks like, as if the one bound-
ary parallel to yz would be directly connected to
the opposite one. The stamp of the one of the
electrodes which is lying on the one of the peri-
odic faces can be seen on the other periodic face.
The iso faces are not any more perpendicular to the
boundaries parallel to the yz plane. Of course they
are still perpendicular to the boundaries parallel to
the xz plane.

3.5.3 Mirroring along the x and Periodicity

along the y Axis

An interconnect bus structure is modeled, which
is built by mirroring the simulation domain from
Figure 12 along the x axis and by periodic spatial
iteration along the y axis. This case is similar to
the previous one. As shown in Figure 18 and Fig-
ure 19 the potential iso faces are not perpendicular
to the boundaries parallel to the xz plane, but are
still perpendicular to the boundaries parallel to the
yz plane. This time the boundaries parallel to the
xz plane seem to be connected to each other.

3.5.4 Periodicity along the x and y Axes

In this case periodic boundaries are applied at the
faces parallel to the xz and yz planes. That way
the structure of Figure 12 is spatially continued
periodically in ~x, −~x, ~y and −~y directions. The
potential distribution and the corresponding iso

faces are shown in Figure 20 and Figure 21.
Each boundary parallel to the z axis looks so as
if it would be connected to the opposite one.
They also lie not any more perpendicular to the
potential iso faces. Each electrode is placed
among the second electrode in the simulation area
and the imaginary periodic images. The iso faces
in the simulation area look correspondingly.

As mentioned above the periodic boundary condi-
tion is not applied at the faces parallel to the xy
plane. For the specific simulation domain of Fig-
ure 12 in order to have a continuous interconnect
structure in z direction only mirroring (homoge-
neous Neumann boundary) can be applied.

3.6 Capacitance

Table 3 shows the extracted capacitance values de-
pending on the different boundary conditions ap-
plied. C0 is the capacitance between the conduc-
tors of Figure 12 if at all boundary faces homoge-
neous Neumann conditions are applied. The ca-
pacitance of the three other cases is relative to it.

Table 3: The Capacitance Values Extracted Us-
ing Different Boundary Conditions.

x mirroring and y mirroring C0

x periodic and y mirroring 1.33C0

x mirroring and y periodic 1.07C0

x periodic and y periodic 1.69C0

The smallest capacitance occurs if no periodic
boundaries are specified. The biggest capacitance
is in the case of x and y periodicity. The
calculated capacitance values refer only to the
small simulation area as defined in Figure 12.
This simulation area is used to construct the
whole domain. The capacitance of the whole
area is the capacitance of the small simulation
domain multiplied by the number of all small
simulation domains needed to construct the
complete structure.
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Figure 14: The Potential Distribution without
Periodicity.
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Figure 15: The Iso Faces of the Potential Distribu-
tion without Periodicity.
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Figure 16: The Potential Distribution with x
Periodicity.
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Figure 17: The Iso Faces of the Potential Distribu-
tion with x Periodicity.
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Figure 18: The Potential Distribution with y
Periodicity.
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Figure 19: The Iso Faces of the Potential Distribu-
tion with y Periodicity.
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Figure 20: The Potential Distribution with xy
Periodicity.
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Figure 21: The Iso Faces of the Potential Distribu-
tion with xy Periodicity.
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4 Three-Dimensional Analysis of Leakage Current in Non-Planar Oxides

We demonstrate the applicability of fully
three-dimensional device simulation with the
investigation of tunneling currents through
oxides and show its benefit for the understanding
of physical phenomena especially in the
nanometre regime. We compare leakage
current measurements from three oxides with
different thicknesses (7 nm, 15 nm, and 50 nm),
measured by an atomic force microscope
(AFM), with simulated Fowler-Nordheim (FN)
current distributions and show the necessity of
including surface roughness as an essential part of
three-dimensional simulation.

4.1 Introduction

During the investigation of gate leakage mea-
surements of oxides with different thicknesses,
as shown in Figure 22, it became apparent that
taking only the flatband voltage of each of the
measured devices into account is insufficient for
understanding the measured data. This is shown
in Figure 22 where the tunneling currents do not
overlap with the theoretical Fowler-Nordheim
(FN) curve.

Although the regions indicated in the figure ex-
hibit the characteristics of FN tunneling the curves
should overlap for this tunneling mechanism. It
was suspected that three-dimensional effects due
to surface roughness are at least partially responsi-
ble for the observed discrepancy. This spawned in-
terest on how to describe these three-dimensional
effects.

To investigate the influence of surface roughness
on the electrical characteristics of oxides, height
data sets obtained from AFM measurements
were used as input parameters for modeling. The
measured samples provided by austriamicrosys-

tems corresponded to the ones subject to the
leakage current investigation and were measured
at the Institute for Solid State Electronics at the
Technical University of Vienna.
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Figure 22: Comparison of the measured oxide
tunneling currents. The measurements
were performed at austriamicrosys-

tems.

4.2 AFM Measurements

To overcome the difficulties with raw data sets
from AFM measurement a pre-processing module
(AFMStructureBuilder: ASBuilder) has been
developed to correct the raw data sets and to
perform the three-dimensional meshing step and
contact building.

4.2.1 Raw Data Sets

The raw data set from AFMs measurement
are used although some post-processing steps
could be done within the measurement software.
This is because these steps must be done
very accurately and in correlation with the
following device simulation steps for a detailed
investigation. ASBuilder was developed with
these considerations in mind. Figure 23 shows an
output of the measurement software.

To enhance the raw data set ASBuilder can fil-
ter the data set with different options designed to
compensate for different effects encountered dur-
ing the measurement [41].
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Figure 23: Two-dimensional height distribution
of the AFM measurement (left: 7 nm,
middle: 15 nm, right: 50 nm).

• Piezo drift
Due to heating of the AFM tip during the
measurement period the piezo crystal drift
results in an z-offset of the measured data
set. Within ASBuilder this piezo drift can
be recomputed and compensated.

• Fast-scan-line noise
To reduce fast-scan-line noise a discrete
Fourier filter is used to suppress this kind
of noise.

• Spike filtering
To filter noise spikes gauss filters with
different kernels can be applied within
ASBuilder.

Figure 24: A detailed view of the height distribu-
tion (top: 7 nm, middle: 15 nm, bot-
tom: 50 nm).

4.3 Further Processing of Data Sets

For further processing ASBuilder creates a
surface triangulation of the corrected and adjusted
height distribution. In order to accomplish
this ASBuilder reads in the height distribution
data set, corrects the data set and assembles a
two-dimensional height distribution matrix. From
this matrix an unstructured two-dimensional
mesh is generated where the data set is meshed
(ASBuilder) with a so called height-map meshing
step where the height distribution is triangulated
and elevated into three dimensions. The result can
be seen in Figure 24.

The histograms of the height distributions
presented in Figure 25 show the characteristics
of the three different oxides. Here the 7 nm
oxide has the flattest distribution which means
that the surface roughness is equally distributed
between the complete range of 6 nm to 8 nm. The
presumably high fluctuations of the 15 and 50 nm
oxide are insignificant when compared to the
overall thickness of the oxide, while the same
does not hold for the 7 nm oxide.
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Figure 25: Histograms of the height distributions.

4.3.1 Building the Three-Dimensional Simu-

lation Structures

To investigate oxide reliability in detail the
prepared and triangulated surfaces of the
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oxides are meshed by ASBuilder [42] into a
three-dimensional object with a bottom and top
metallic contact.

With this pre-processing steps of ASBuilder a
completely three-dimensional object with the
non-planar oxide element and two planar contacts
is created which can be used as input data for
any existing device simulation software such as
Minimos-NT [31] to calculate the electric field
distribution required for the modeling of FN
tunneling.

Figure 26: Three-dimensional oxide structure.

4.4 Simulation Methodology

After the extensive preparations outlined above
several simulation steps need to be performed.
First, the electric field distribution is calculated.
The results of the three-dimensional electric
field calculation are shown in Figure 27 and
28. Figure 27 depicts the absolute values of the
electric field, while Figure 28 shows a cut through
the three-dimensional simulation domain. Both
figures illustrate the influence of the encountered
surface roughness on the electric field. The field
clearly shows peaks in the regions of thinner
oxide inducing heightened electrical stress in
these regions.

Due to the thickness of the oxides and the strong
electric fields the leakage current is modeled as
FN tunneling current. It is evaluated using the
previously determined electric field distribution.
The FN tunneling current is modeled by the well
known expression [43, 44]

J = a |E |2 exp(− b

| E |). (30)

The parameters a = 994.63× 10−9 A/V2 and b =
2.64×1010 V/m were calibrated for the non-planar
case of each oxide thickness and then used in the
subsequent simulations.

Figure 27: Results of a three-dimensional simu-
lation of the electric field distribution
for a 50×50 nm2 region of a 7 nm ox-
ide. The values of the electric field are
in V/cm.

Figure 28: Cut through the simulation domain of
a 50×50 nm2 region of a 7 nm oxide.

4.5 Comparison of the Measured

Leakage Currents

The area below the 50 nm oxide is ohmically
connected to the bulk of the wafer, while the areas
corresponding to the thinner oxides are insulated
by pn-junctions. The measured structures are
schematically presented in Figure 29 for the
50 nm oxide and in Figure 30 for the 7 and 15 nm
oxides. This explains the differing noise levels
visible in the measurement data (Figure 22) as
the measurements of the 7 and 15 nm oxides also
include noise from this junction.

The measured data includes several effects that
complicate the analysis. The flatband voltage is
one such interference within this measurement.
The pn-junctions included in the 7 and 15 nm
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Figure 29: Structure of measurement arrange-
ment (50 nm).

Figure 30: Structure of measurement arrange-
ment (7 nm and 15 nm).

structures contribute another parasitic effect
within the measurement.

Both of these effects need to be taken into account
in order to enable a correct modeling of the leak-
age current. Figure 31 shows the influence of the
flatband voltage. While the influence on the 50 nm
oxide is marginal, there is a significant impact for
the thinner oxides. The compensation of the influ-
ence of the pn-junctions on the thinner oxides is
shown in Figure 32. Again the influence is larger
for smaller oxide thicknesses.

E ′
ox =

V −Vpn

tox
(31)

After amending for these effects the measurement
curves almost overlap as can be observed in Figure
34. This is an indication of a common mechanism
of the leakage current which is readily found in FN
tunneling.

4.6 Simulation Results

After considering the flatband voltage, the
pn-junction voltage and the previously determined
correction voltages the regions depicted in
Figure 22 overlap, as can be seen in Figure 34,
and can then be simulated with the FN tunneling

model. The result obtained from this simulation is
also depicted in Figure 34.

The agreement between the measured leakage
current and the simulation result is excellent.
Using the parameters obtained from the non-
planar case, a simulation with planar surfaces is
performed as well. This is done by calculating the
average height of the oxide from the distribution
and assuming a parallel plate capacitor. This
corresponds to an effective thickness extracted
from CV measurements. The results of this
computation is shown in Figure 33. As expected
the non-planar curves overlap. The discrepancy
between the planar and non-planar case increases
with decreasing oxide thickness.
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Figure 31: Comparison of the original data set
and the corrected set obtained by in-
clusion of the flatband voltage.

This indicates that the relative roughness is
responsible for this deviation which, as already
stated above, increases as the oxide thickness is
reduced. From this it is evident that non-planar
effects are increasingly important as oxide
thicknesses shrink. From the comparison of the
fully three-dimensional and the planar simulations
correction voltages can be derived.

The observed tunneling current is not only impor-
tant for the overall power consumption of devices
but also for the reliability of the devices [43], as
the tunneling charge carriers are responsible for
damaging the oxide and deteriorating the perfor-
mance of the device.
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Figure 32: Comparison of the original data set
and the data corrected by the pn-
junction.
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Figure 33: Comparison of the influence of three-
dimensional surface roughness effects.

4.7 Conclusion

Due to the growing complexity of the structures
of modern semiconductor devices and the
ongoing shrinking to smaller dimensions, device
simulations in two dimensions are no longer
sufficient because of dominant three-dimensional
effects. This is especially true for oxide properties
due to the reduction of oxide thickness to only a
few atomic layers.

In particular we have shown that by considering
only the effective oxide thickness obtained for
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Figure 34: Final simulation compared to cor-
rected measurement data sets.

instance from CV measurements the estimated
FN currents are significantly underestimated
due to the non-planarity of the oxide. This
effect increases for decreasing oxide thicknesses
and has to be considered for oxide reliability
considerations.



5 The Effect of Degeneracy on Electron Transport in Strained Silicon Inversion Layers 22

5 The Effect of Degeneracy on Electron Transport in Strained Silicon

Inversion Layers

The effect of degeneracy both on the phonon-
limited mobility and the effective mobility includ-
ing surface-roughness scattering in unstrained and
biaxially tensile strained Si inversion layers is an-
alyzed. We introduce a new method for the inclu-
sion of the Pauli principle in a Monte Carlo al-
gorithm. We show that incidentally degeneracy
has a minor effect on the bulk effective mobility,
despite non-degenerate statistics yields unphysi-
cal subband populations and an underestimation
of the mean electron energy. The effective mobil-
ity of strained inversion layers slightly increases
at high inversion layer concentrations when taking
into account degenerate statistics.

5.1 Introduction

Strained Si has emerged as a promising ma-
terial for the improvement of Si MOS tech-
nology because of its enhanced carrier mobil-
ity [45] [46] [47]. Strain can be induced by epitax-
ially growing thin Si layers on relaxed Si1−yGey

substrates, or alternatively, by processing addi-
tional cap layers over the transistors. The latter
method is especially suitable for mass production
because it requires only a slight modification of
the process flow [48].

Surprisingly, from a theoretical viewpoint the mo-
bility enhancement caused by strain is still an issue
of discussion. The reason for this is manifold: It
was claimed that using the well established mod-
els for scattering in the two dimensional electron
gas (2DEG) the mobility gain of strained Si (SSi)
at low effective fields should be compensated by
more pronounced surface roughness scattering at
large effective fields [49].

Due to this fact, only with the assumption of much
smoother strained Si-SiO2 interfaces one should
be able to get qualitative agreement with experi-
mental data. Even though it seemed to be unphys-
ical to change the smoothness of the strained Si-
SiO2 interface, the Monte Carlo (MC) community
has adopted this assumption [50] or simply not re-
sponded to the troubling fact.

When trying to clarify this dissatisfactory status
two main difficulties arise: First, there exists a va-
riety of surface roughness scattering models, and
it is not clear which approximations to the gen-
eral expression given by Ando [51] are allowed.
Second, there is a discordance whether and how
degeneracy effects should be included in transport
calculations of inversion layers.

In this paper, the ways to include the Pauli prin-
ciple in a MC algorithm are revised and criti-
cally compared to each other. The usual method,
where the Pauli blocking factor 1− f (k) is approx-
imated using the equilibrium distribution function
fFD(k), can be shown to lead to unphysical sub-
band populations, kinetic energies, and mobilities.
The reason being that at high degeneracy the error
ε(k) = f (k)− fFD(k) is dominant. A new MC al-
gorithm accounting for the Pauli exclusion princi-
ple is proposed which is less sensitive to the error
ε(k).

The paper is organized as follows: Section II de-
scribes the new approach to implement the Pauli
exclusion principle in the MC method. It is shown
that in the low field limit the proposed algorithm
yields the same mobility as the Kubo Greenwood
formula, while other algorithms do not. We use the
new method to extract velocity profiles and illus-
trate the large effect of degeneracy on the electron
system. Finally, the simulated effective mobility
curves for unstrained and biaxially tensile strained
Si on relaxed Si1−yGey substrates are presented in
Section III.

5.2 Inclusion of the Pauli Principle in

Monte Carlo Simulations

In transport calculations of the 2DEG forming in
the channel of MOSFETs the inclusion of the Pauli
principle is expected to be important since the low-
est subband may lie well below the Fermi level in
the regime of moderate and high effective fields
(high inversion layer concentrations). This leads
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to modified subband populations and an elevated
mean kinetic energy of electrons as compared to
the nondegenerate case. A change in the mobility
is therefore to be expected.

The proposed algorithm is based on the following
reformulation of the degenerate scattering opera-
tor.

Q[ f ]k = (32)

=
R

fk′(1− fk)Sk′,k dk′− R

fk(1− fk′)Sk,k′ dk′

=
R

fk′Sk′,k − fkSk,k′ + fk fk′(Sk,k′ −Sk′,k)︸ ︷︷ ︸
additional term

dk′.

The last term represents a nonlinear correction
to the non-degenerate scattering operator. To lin-
earize the scattering operator it is common to keep
one factor of the product fk fk′ constant and to treat
the other as the unknown.

Near thermodynamic equilibrium, f can be
approximated by the Fermi-Dirac distribution
function fFD. The key point of the new method is
that a symmetric approximation with respect to k

and k′ is employed.

f (k) f (k′) ≈ 1

2

(
f (k) fFD(k′)+ fFD(k) f (k′)

)

(33)
Using this approximation the scattering operator
can be expressed in terms of a modified transition

rate Ŝk,k′ and scattering rate λ̂k as

Q[ f ]k =

Z

f (k′)Ŝk′,k dk′− f (k)̂λk, (34)

with

Ŝk,k′ = Sk,k′

(
1− 1

2
fFD(k′)

)
+ Sk′,k

1

2
fFD(k′)

λ̂k =
Z

Ŝk,k′ dk′. (35)

A simple error analysis shows the advantage of
this formulation. Consider a highly degenerate
state k, characterized by f (k) ≈ 1. A direct ap-
proximation of the blocking factor (1− f (k)) can
give completely wrong results, because the ap-
proximation of the blocking factor is determined
by the error, 1− ( fFD + ε)≈ ε. In the formulation
e:modt ransrate,however,becauseo f ε ≪ 1
the effect of the error will be negligible,
1− ( fFD + ε)/2 ≈ 1/2.

The modified transition rate e:modt ransrateisgivenbyalinearcombina

and backward rate Sk′,k. The latter can be ex-
pressed in terms of the forward rate by means
of the principle of detailed balance. The
modified scattering rates for phonon emission and
absorption become,

λ̂em = λem ·
(

1− 1

2

fFD(ε f )

N0 + 1

)

λ̂ab = λab ·
(

1+
1

2

fFD(ε f )

N0

)
, (36)

where ε f denotes the final energy and N0 the equi-
librium phonon distribution function,

N0 =
1

exp
(

h̄ω0
kBT

)
−1

. (37)

For elastic scattering mechanisms the modified
scattering rates do not change from the classical

ones, λ̂k = λk. In the simulation of the 2DEG to
a good approximation one can assume scattering
with surface roughness, impurities, and acoustical
phonons to be elastic.

To implemenent the Pauli principle in a conven-
tional MC program for non-degenerate statistics
the only modifications necessary are the replace-
ment of the classical scattering rates by the modi-
fied ones.

5.2.1 Comparison of Algorithms

The new algorithm has been compared to two
other methods found in the literature [52, 53]. The
first algorithm to include the Pauli principle in the
MC technique [52] is based on a self-consistent
iterative algorithm that uses a rejection technique
to account for the occupation probability of
the final state at each scattering event. Since
this auxiliary self-scattering mechanism is
proportional to the occupation of the final
states, the algorithm prevents a large number of
classically allowed transitions.

A different approach to include degeneracy in
MC simulations was given in [53]. Inelastic
scattering rates are multiplied with a factor of
(1− fFD(ε f ))/(1− fFD(εi)), where εi (ε f ) denotes
the initial (final) electron energy. This additional
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Figure 35: The simulated effective mobility us-
ing the new algorithm (solid line)
is compared to results of a non-
selfconsistent version of Bosi’s algo-
rithm [52] (dotted line), the algorithm
proposed by [53], and to the mobility
calculated with the Kubo-Greenwood
formalism (open circles).

factor stems from the use of Fermi-Dirac statistics
within the relaxation time approximation [54].

In the limit of vanishing field the mobility can also
be calculated using the relaxation time approxima-
tion. Thus we compare our MC algorithm and a
modified method from [52] and [53] to the mobil-
ity calculated from the Kubo-Greenwood expres-
sion [55]. From Figure 35 it can be seen that the
new method yields the closest agreement, whereas
a non-selfconsistent implementation of the algo-
rithm proposed in [52], where f (k) has been ap-
proximated by the equilibrium distribution func-
tion fFD(k), and the algorithm proposed by [53]
overestimate the effective mobility.

5.3 Results

We calculate the mean velocities as a function of
total energy in the small-field limit. Note that the
overall mobility will be proportional to the integral
of this function.

A very interesting behavior can be observed
when comparing the mean velocities resulting
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Figure 36: Mean velocities resulting from simu-
lations with (lines) and without (sym-
bols) inclusion of the Pauli principle
for an inversion layer density Ns ≈
1011 cm−2 (grey) and Ns ≈ 1.513 cm−2

(black).

from simulations with classical and Fermi-Dirac
statistics. The upper plot of Figure 36 shows that
when considering only phonon scattering the
mean velocities (grey open symbols) coincide
for both simulation modes in the non-degenerate
regime (E f −E0 ≈ −0.13 eV). At high inversion
layer concentrations, where the 2DEG is highly
degenerate (E f −E0 ≈ 0.8 eV), a shift of the mean
velocity distribution (black closed circles) toward
higher energies and a decrease of its peak can
be observed as compared to the non-degenerate
mean velocity (black closed diamonds).

The coincidence of the mean velocities in the
non-degenerate regime is merely a test that the
degenerate-algorithm converges to the classical
algorithm for the non-degenerate 2DEG. At
high inversion layer concentrations the different
mean velocities can be interpreted as follows:
In non-degenerate simulations electrons will
have an equilibrium energy of kBT whereas the
mean energy in the degenerate case can be more
than twice as much. Since phonon scattering
is merely proportional to the density of states,
which is an increasing step-like function in the



5 The Effect of Degeneracy on Electron Transport in Strained Silicon Inversion Layers 25

2DEG, electrons being at higher energies – as it is
the case in degenerate simulations – experience
more scattering and thus the phonon-limited
mobility is strongly decreased when including the
Pauli exclusion principle in the simulation (see
Figure 37).

The lower plot of Figure 36 shows the mean
velocities when surface roughness scattering
has been included in simulations. In the
non-degenerate regime (grey symbols) surface
roughness scattering does not play an important
role, and the mean velocities compare well with
the simulation results with only phonon scattering
included. Interestingly now even in the degenerate
2DEG the mean velocities (black closed symbols)
do not differ as much and the large peak in the
mean velocity at low energies that could be
observed before when the Pauli principle was not
included is here suppressed. This stems from the
influence of surface roughness scattering which
is more effective at small energies in contrast to
phonon scattering.

Finally from Figure 36 one can also observe that
due to degeneracy electrons at energies below the
Fermi level have smaller velocities which corre-
sponds to the general picture that these electrons
have little contribution to transport.

The new algorithm is used to extract the effective
mobility in unstrained and biaxially tensile
strained Si inversion layers. For the simulations a
one-dimensional Schrödinger-Poisson solver [56]
is used with modifications to account for the
energy splitting between the twofold and the
fourfold conduction-band minima and for the
change of the band-gap [49]. From these results
the matrix elements for phonon and surface
roughness scattering and the form factors are
calculated following [57].

Screening of the surface roughness scattering was
included according to [57] while impurity scatter-
ing has been ignored as we mainly focus on the
high-density (high effective field) region. A non-
parabolic bandstructure (α = 0.5 eV−1) was used
leading to a 20% reduction of the phonon-limited
mobility at 300 K in agreement with [49]. For all
simulations presented here a uniform doping con-
centration of 2×1016 cm−3 has been assumed.
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Figure 37: Calculated phonon-limited and effec-
tive mobility compared to the univer-
sal mobility curve with and without
degeneracy effects for unstrained Si
(upper curve) and biaxially strained Si
(lower curve).

The simulated mobility curve for unstrained Si in
the upper plot of Figure 37 shows good agreement
with the universal mobility curve by Takagi [58].
Surprisingly, the effective mobility resulting from
simulations with degenerate statistics are in close
agreement to those using classical statistics even
though the phonon-limited mobility experiences a
noticeable reduction when using degenerate statis-
tics.

As previously discussed, this close agreement
can only be understood from the cancellation
of two effects: Degeneracy leads to an increase
of the mean kinetic energy. This leads to an
increase in phonon scattering and a decrease in
the mobility. At the same time electrons with
larger kinetic energies experience less effective
surface-roughness scattering, thus the surface
roughness limited mobility is increased. In
unstrained Si by chance these two effects cancel
each other at all effective fields, and the difference
between a simulation with non-degenerate and
degenerate statistics is very small.

Having calibrated our model against the
unstrained universal mobility curve, a simulation
of biaxially strained Si on relaxed Si1−yGey
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Figure 38: Comparison of simulations results for
the effective mobility of biaxially
strained Si on Si1−yGey with y = 0.25
with published data from different ex-
perimental groups for various sub-
strate compositions of Ge.

substrates with y = 0.25 was performed. From
Figure 37 it can be observed that in SSi inversion
layers, where the ratio between phonon and
surface roughness scattering is different – due to
suppressed intervalley transitions – simulations
with degeneracy effects yield higher mobilities
µsr,deg > µsr,nondeg.

Our simulation results for the inversion layer
mobility in biaxially strained Si on Si1−yGey for
various Ge contents suggest a saturation of the
mobility enhancement at y ≈ 25%. As can be
seen from Figure 37 the anomalous intersection
of the strained and unstrained mobility curve
from [49] was not observed, however Figure 38
indicates that the predicted mobility for SSi is still
underestimated.

5.4 Conclusion

By means of MC simulations we are able to
deduce the effect of degeneracy both on the
phonon-limited mobility and the effective mobil-
ity including surface-roughness scattering. It is
shown that in the unstrained case the inclusion of
the Pauli principle leads to a noticeable reduction
of the phonon-limited mobility, but has almost no

impact on the effective mobility. The effective
mobility of strained inversion layers increases
slightly at high inversion layer concentrations
when taking into account degenerate statistics.
Thus a correct treatment of degenerate carrier
statistics of the 2DEG of strained Si inversion
layers is important.

However, this study cannot explain the experimen-
tal mobility enhancement for SSi, which is still
underestimated at large effective fields, where sur-
face roughness scattering dominates. Thus a care-
ful revision of surface roughness scattering might
be needed to achieve the correct mobility enhance-
ments.
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