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1 Numerical and Analytical Modeling of the High-Field Electron Mobility
in Strained Silicon

We have performed a detailed analysis of the elec-
tron transport at high electric field in strained
Si for different field directions and stress/strain
conditions using Full-band Monte Carlo simula-
tions. A phenomenological model describing the
velocity-field relationship for electrons in biaxi-
ally or uniaxially strained Si has been developed.
The model is suitable for incorporation into any
device simulator for performing TCAD tasks.

1.1 Introduction

The introduction of strain in Si channels, result-
ing in significant mobility enhancements, is be-
coming increasingly important for developing next
generation CMOS technologies. The strain in Si
can be generated either globally, using an epitax-
ial layer on a relaxed substrate [1][2][3], by me-
chanical stressing [4][5], or can be induced during
the processing steps [6][7]. Biaxially strained Si
layers (two surface dimensions being stressed) us-
ing relaxed SiGe substrates have shown large en-
hancements of electron mobility but suffer from
several integration issues. There has thus been a
interest towards uniaxially straining Si (one sur-
face dimension stressed) which not only enhances
the electron mobility but also exhibits superior
hole mobility enhancements for PMOS devices
[8]. In this work, we studied electron high-field
transport in strained Si using Full Band Monte
Carlo (FBMC) simulations. The band structure
of strained Si was calculated using the empiri-
cal pseudopotential method [9] for biaxial tensile
strain and uniaxial stress along the substrate nor-
mal. A [100] substrate is considered. We propose
an empirical model to describe the velocity-field
relationship as obtained from FBMC simulations.

1.2 Monte Carlo Results

Figure 1 and Figure 2 show the velocity-field char-
acteristics as obtained from FBMC simulations for
biaxially strained Si grown on a relaxed SiGe sub-
strate for different Ge content and field along [100]

and [001] directions, respectively. The figures
show an increase (decrease) in the total velocity
with increasing strain for field along [100] ([001])
direction. For the [100] field direction, the total
velocity shows a region of small negative differen-
tial mobility.
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Figure 1: Electron velocity versus field (along
[100]) in strained Si on SiGe with in-
creasing Ge content obtained from MC
simulations.
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Figure 2: Electron velocity versus field (along
[001]) in strained Si on SiGe with in-
creasing Ge content obtained from MC
simulations.
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Figure 3: Repopulation effect within the double
valley in the equilibrium state (top) and
at high-field (bottom)

The velocity-field characteristics shown in
Figure 2 exhibit an untypical form for high strain
levels. This phenomenon can be explained by
the repopulation of valleys induced by the field.
The velocity-field curve in Figure 2 is associated
with the ∆2 valleys which move down in energy
with increasing strain and have the longitudinal
mass in the field direction. These valleys are
located at a scaled distance of 0.85 and 1.15
from the center of the first Brillouin zone and
are separated by an energy barrier of 129 meV at
the X-point as shown in Figure 3. Repopulation
effects within this double valley together with the
high population of the double valley, lead to the
particular shape of the v(E) curve.

1.3 Low field mobility

A key parameter in the modeling of the field
dependent mobility is the accurate determination
of the low-field mobility. Strain induced
enhancement of the low-field mobility can be
attributed to two complementary effects. Firstly,
the inter-valley phonon scattering is reduced due
to decreased number of final available states.
Secondly, due to the energy lowering of the
∆2 valleys, the electrons prefer to occupy this
valley and therefore experience a lower in-plane
effective conductivity mass.

The low-field mobility for electrons in strained Si
can be calculated using the model developed in
[10]. It describes the mobility tensor for electrons
in strained Si layers as a function of strain. It in-
cludes the effect of strain-induced splitting of the
conduction band valleys in Si, inter-valley scatter-
ing, doping dependence and temperature depen-
dence.

The variation of the in-plane mobility with
increasing strain for biaxially strained Si, as
calculated from MC simulations and the analytical
model is shown in Figure 4.
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Figure 4: Variation of in-plane mobility for biax-
ial tensile and compressively strained Si
with increasing strain.

Tensile strained Si enhances the electron mobility
whereas compressive strain results in a reduced
mobility. There is a minimum in the mobility
occurring for the case of compressively strained
Si. This can be explained by the interplay
between the increased conductivity mass of the
∆4 valleys (which move down in energy for
compressive strain) in the transport direction, and
the decreasing inter-valley scattering.

1.4 high field model

The high field behavior is modeled using direct fits
of empirical expressions to the MC data. This ap-
proach has been chosen after a more physically-
based, three-valley model had been investigated.
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However, one problem of such model would be
its complexity. For instance, a nonlinear system
for nine unknowns, namely the valley populations,
valley velocities and valley temperatures, would
have to be solved numerically. The peculiar shape
of the v(E) curves in Figure 2 would pose another
problem. While the physically-based high-field
model could deal with arbitrary strain conditions,
the chosen empirical model can not. Therefore, we
restricted our study to such strain conditions where
only one pair of X-valleys is shifted with respect to
the four-fold degenerate X-valleys. These condi-
tions include biaxial stress and uniaxial stress ap-
plied along the principal axes of the crystal ({100}
directions for Si).

If the velocity is governed by the transversal mass
mt , the velocity along the field direction is mod-
eled phenomenologically using the expression

v(E) =
2µ0E

1+

[

1+
(

2µ0E
vs −m ·E

)β
]1/β . (1)

This expression is an extension of the standard
mobility model used in [11]. Here µ0 is the low
field mobility and vs is the saturation velocity.
The parameter β governs the velocity transition
from low to high fields whereas m accounts for
the small negative differential mobility occurring
in strained Si for higher strain levels.

If the velocity is governed by the longitudinal
mass, ml ,the velocity along the field direction is
modeled using the expression

v(E) =
2µ0E

1+

[

1+

(

2µ0E

vs(1−ξ)

)β
]1/β +

vsξ
(E/E0)

γ

1+(E/E0)γ (2)

The additional term incorporated in (2) models
the velocity kink occurring due to repopulation
effects within the X-valleys. The parameter ξ < 1
is used to signify the velocity plateau occurring
approximately at vs(1 − ξ). E0 and γ are fit
parameters. The empirical dependences of all
parameters on the valley splitting are described by
simple analytic expressions. In all cases a linear

or quadratic expression is sufficient, except for ξ,
which is modeled by a rational expression.

ξ =
∆E/ξ0

1+(∆E ·ξ1/ξ0)2 (3)

Here, ξ0 and ξ1 are constants. The parameter
variation for biaxially tensile strained Si and [001]
field direction are plotted in Figure 5.

0 0.1 0.2 0.3
∆Ε (eV)

7

8

9

10

11

12

13

E
0 (

10
4  V

/c
m

)

0 0.1 0.2 0.3
∆Ε (eV)

1

1.5

2

2.5

3

3.5
β

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

ζ

0 0.1 0.2 0.3
2

2.5
3

3.5
4

4.5
5

γ

0 0.1 0.2 0.3
∆Ε (eV)

8.5

9

9.5

10

10.5

v s(1
06 cm

/s
)

Figure 5: Variation of parameters with strain in-
duced valley splitting for biaxially ten-
sile strained Si and field along [001] di-
rection.
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Figure 6: Electron velocity versus field charac-
teristics for unstrained Si and strained
Si on Si0.6Ge0.4.

Figure 6 shows the v(E) characteristics for
unstrained Si and strained Si on Si0.6Ge0.4 as
obtained from the MC simulations and from our
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Figure 7: Electron velocity versus field char-
acteristics for Si under uniaxial stress
(1GPa) along [001] and field along
[100].
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Figure 8: Electron velocity versus field char-
acteristics for Si under uniaxial stress
(1GPa) along [001] and field along
[001].

model. Biaxial tensile strain increases (decreases)
the in-plane (out-of-plane) electron velocity for
the complete field range shown. Figure 7 shows
the v(E) characteristics for a 1GPa stressed Si
layer for field along [100]. From this figure it
can be seen that the application of a uniaxial
compressive stress also enhances the in-plane
velocity. Conversely, applying uniaxial tensile
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Figure 9: Electron velocity versus field char-
acteristics for Si under uniaxial stress
(1GPa) along [001] and field along
[111].
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Figure 10: Electron velocity versus field char-
acteristics for Si under uniaxial stress
(1GPa) along [001] and field along
[110].

stress results in an enhanced out of plane velocity,
as shown in Figure 8.

The v(E) characteristics for the [111] field direc-
tions is shown in Figure 9 and . From the figure it
is observed that for [111] field direction, there is
almost no change in the v(E) characteristics for
tensile and compressively strainer Si. Figure 10
shows the v(E) characteristics for [110] field
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direction. It is observed that this field direction
gives the highest electron velocity in comparison
to [100] and [111] directions.

1.5 Conclusion

We have investigated the high-field transport
behavior in strained Si for different field direc-
tions and stress/strain conditions using FBMC
simulations. A phenomenological approach to
describe the velocity-field characteristics has been
proposed which shows good agreement with the
simulations results. The explicitness of the model
enables its implementation into any conventional
device simulator for performing TCAD tasks.
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2 An Analytical Model for Organic Thin Film Transistors

An analytical model that describes the DC char-
acteristics of organic thin film transistors (OTFTs)
is presented. The model is based on the variable
range hopping theory, i.e. thermally activated tun-
neling of carriers between localized states. As
verified by published data, the model provides an
accurate and efficient prediction for transfer char-
acteristics and output characteristics of OTFT via
simple formulations.

2.1 Introduction

In recent years, organic thin transistors (OTFTs)
have found important application in large-area,
low performance and low-cost integrated circuits.
Such applications include driving devices for ac-
tive matrix flat panel displays, organic light iden-
tification tags, sensors, etc. The key traits distin-
guishing field effect transistors with organic ac-
tive layer from conventional FETs are their poten-
tial for low-cost and low-temperature processing,
and their compatibility with flexible substrates. As
OTFT applications increase, a more accurate and
yet simple model of device characteristics is nec-
essary for understanding, improving, and applying
these devices. Up to now, many of the numeri-
cal or analytical OTFT models use the same ex-
pressions as used for for MOS crystalline devices.
However, OTFTs present several differences with
respect to crystalline MOSFETs because of the
low conductivity of organic semiconductors. Fur-
thermore, OTFTs are primarily operated as ac-
cumulation field effect transistors as opposed to
the usual inversion mode of crystalline MOSFETs.
OTFTs are normally conducting at zero gate volt-
age, and the field-effect mobility usually increases
with the gate voltage [12].

In this paper, we derive a basic expression for
the sheet conductance based on the variable range
hopping (VRH) theory. This theory describes
thermally activated tunneling of carriers between
localized states (electrons in conduction states)
around the Fermi level in the tail of a Gaussian dis-
tribution. It has been used to calculate the mobility
of OTFTs successfully. After some simplification

for the surface potential, simple and efficient an-
alytical expressions for the transfer characteristics
and output characteristics are obtained. The model
does not require as input parameters the explicit
definition of the threshold and saturation voltage,
which are rather difficult to evaluate for this kind
of device. The obtained results are in good agree-
ment with experimental data.

2.2 Variable Range Hopping Transport in
Organic Semiconductors

Because most organic films have an amorphous
structure, and disorder is dominating the charge
transport, variable-range-hopping in positionally
and energetically disordered systems of localized
states is widely accepted as the conductivity mech-
anism in organic semiconductors. Different from
hopping, where the charge transport is governed
by the thermally activated tunneling of carriers be-
tween localized states, rather than by the activation
of carriers to the extended-state transport level, the
concept of variable range hopping means that a
carrier may either hop over a small distance with
high activation energy or hop over a long distance
with a low activation energy. In an organic thin
film transistor with a typical structure shown in
Figure 11, an applied gate voltage gives rise to an
accumulation of charge carriers in the region of the
organic semiconductors close to the insulator. As
the charges in the accumulation layer fill the low-
energy states of organic semiconductors, any addi-
tional carrier in the accumulation layer will require
less activation energy to hop to a neighboring site.
This results in a higher mobility with increasing
gate voltage. Connecting percolation theory, Vis-
senberg [13] studied the influence of temperature
and the influence of the filled states on the conduc-
tivity based on the variable range hopping theory.
The expression of the conductivity as a function of
the temperature and carrier concentration is

σ(δ,T ) =

= σ0

[

πNtδ(T0/T )3

(2α)3BcΓ(1−T/T0)Γ(1+T/T0)

]T0/T

,

(4)
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Figure 11: Schematic structure of an organic thin
film transistor.

where σ0 is a prefactor, α is an effective overlap
parameter, which governs the tunneling process
between two localized states, and Bc

∼= 2.8 is the
critical number of bonds per site in the percolat-
ing network [14], T0 is the effective temperature,
Nt is the number of states per unit volume and δ
is the fraction of the localized states occupied by a
carrier.

The carrier concentration is δNt , and can be ex-
pressed in equilibrium as

ρ(V ) = Ntδ(V ) = Ntδ0 exp

(

qΦ
KBT0

)

, (5)

where Φ is the electrostatic potential and KB is the
Boltzmann constant, and the δ0 is the carrier occu-
pation far from the organic-insulator interface.

2.3 Sheet Conductance of the OTFT

From the developed model for amorphous TFT,
the drain current ID can be expressed as

ID =
W
L

Z VG−VFB

VG−VFB−VD

GS(V )dV, (6)

where W is the channel width, L is the channel
length, VFB is the flat-band voltage, and GS is the
sheet conductance of the channel with VD = 0.
The potential V is defined as VG −VFB −V0(y),
where V0(y) is the potential at the edge of
the space-charge layer where there is no band
bending. The basic definition of channel
configuration and the variables for the OTFT
investigated are illustrated in Figure 12.

∆

V(x,y)

V0

x

source

channel

drain

          y

   y

       L

(x,y)

Figure 12: Geometric definition.

The electrostatic potential in the space charge
layer at the point (x,y) in the channel is expressed
as V (x,y) = V0(y) + Φ(x,y), where the Φ(x,y) is
the amount of the band bending in the channel.
The conductance for an element of channel length
∆y and the width W can be written as

Gs =
W
∆y

Z t

0
σdx =

W
∆y

σ(δ0,T )

σ0

Z t

0
exp

(

qΦ
KBT

)

dx

(7)
where t is the thickness of organic layer. Changing
the variable of integration yields

GS = A
Z Φs(y)

Φ(t(y))

exp(qΦ/kBT )

∂Φ/∂x
dΦ (8)

where Φs(y) is the surface band bend-
ing and A = σ(δ0,T ). With the identity
Γ(1+ x)Γ(1− x) = πx/sin(πx) we obtain

A = σ0

[

Ntδ0(T0/T )4 sin(πT/T0)

Bc(2α)3

]T0/T

(9)

In order to solve (8), we need to get an expres-
sion for Φ(x). By solving Poisson’s equation in
the gradual channel approximation

∂2Φ(x)
∂x

= −ρ(x)
ε0εs

, (10)

we obtain the electric field.

−Fx =
∂Φ
∂x

≈
√

2kBT0Ntδ0

ε0εs
exp

[

qΦ(x)
2kbT0

]

(11)

From (8) and (2.3), we obtain

Gs = A
Z Φs

Φ(t)
exp

[

qΦ
kB

(

1
T
− 1

2T0

)]

dΦ (12)
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An expression for Φs is required. The surface
charge density Qs is related to Φs by

Qs = −ε0εsFs =

=
√

2kBT0Ntε0εsδ0 exp (qΦs/2kBT0) .
(13)

The surface band bending is related to the applied
gate voltage by

VG = VFB +Vi +Φs (14)

where Vi is the voltage drop across the insulator,

Vi =
Qs

Ci
(15)

where Ci = εi/di is the insulator capacitance per
unit area. From the equations above, an expression
for Φs is obtained

VG −VFB −Φs = γexp(qΦs/(2kBT0)) (16)

For an accumulation mode OTFT, the surface po-
tential is negative, Φs ≤ 0, corresponding to VG ≤
0.

VG =VFB +Φs−
√

2kBT0δ0Ntε0εs

Ci
exp

(

− qΦs

2kBT0

)

(17)
In order to reduce computation time, an explicit
yet accurate relation between surface and gate
voltage is preferable. In (16), we can get Φs

using a numerical approach. However, in the
accumulation mode, it holds exp(−Φs) � Φs,
so that an approximate expression of surface
potential can be obtained as

Φs = −2kBT0

q
ln

[

(VFB −VG)Ci√
2KbT0δ0Ntε0εs

]

(18)

A comparison between numerical calculation and
approximate calculation are shown in Figure 14
and Figure 15. As can be seen, the agreement is
very satisfactory. Parameters are from [15, 16].

With the simplified surface potential and (11), we
can get the simplified sheet conductance as

Gs = β

[

(

VG −VFB

γ

)2T0/T−1

−1

]

(19)

For a thick organic semiconductor layer, Φ(t) = 0
and the constants β is

β = σ0

√

2ε0εsKBT0

δ0Nt

kBT
q(T −2T0)

γ =
(2α)3Bc2kBT0ε0εs

C2
i (T0/T )3 sin(πT/T0)
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Figure 13: The electrostatic surface potential as a
function of gate voltage obtained by
the implicit relation (16) and the ap-
proximation (17) (solid line).
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Figure 14: Sheet conductance from numerical
calculation (symbols) and the approx-
imation.

2.4 Drain Current

The drain current can be calculated by substituting
the expression of Gs into (6), and we can get

ID = β
W
L

[(

VG −VFB

γ

)2T0/T

−

−
(

VG −VFB −VD

γ

)2T0/T ]

(20)

in the triode region (VGS −VFB ≥VDS) and



2 An Analytical Model for Organic Thin Film Transistors 9

ID = β
W
L

(

VGS −VFB

γ

)2T0/T

(21)

in saturation (VGS −VFB ≤VDS).

2.5 Results and Discussion

This model has been confirmed by comparisons
between experimental data and simulation results.
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Figure 15: Measured (symbols) and calculated
currents of a pentacence OTFT at
room temperature.
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Figure 16: Measured (symbols) and calculated
transfer characteristics of a pentacence
OTFT at different temperature at VD =
−2V .

Input parameters are taken from [15]:
W = 20,000µm, L = 10µm, εs = 3, Ci =

17F/(µm)2, δ0 =3.5 S/m, α−1 = 3.1 × 10−10m,
T0 = 385 K.

In Figure 15 and Figure 16, the transfer
characteristics of a pentacene OTFT are given
for VFB = 1V and different gate voltage and
different temperature. Both figures show a good
agreement between the analytical model and
experimental data. Here we also model the trans-
fer characteristics of a PTF OTFT, where some
parameters are different from those for pentacence
T0 = 382,δ0 = 5.6S/m;α−1 = 1.5×10−10m.

The modeled output charateristics of the
pentacene OTFT is shown in Figure 18.
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Figure 17: Measured (symbols) and calculated
transfer characteristics of a PTV
OTFT at room temperature at VD =
−2V .
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Figure 18: Modeled output characteristics of a
pentacene OTFT.
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2.6 Conclusion

An analytical expression has been derived for the
sheet conductance of organic thin film transistors
on the basis of the variable range hopping
transport theory. With a suitable approximation
for the surface potential a simple analytical
model for the DC characteristcs is derived. The
derivation is similar to that presented in [16],
however, the present work focuses on the surface
potential approximation. A simplified model,
obtained in [16] as a reduction of a more complex
model, is derived in a direct way. The model
shows close agreement with experimental data.
The resultant equations can be employed in CAD
circuit analysis programs.
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3 Optimal Design for Carbon Nanotube Transistors

A numerical study of carbon nanotube field effect
transistors is presented. To investigate transport
phenomena in such devices the non-equilibrium
Green’s function formalism was employed. Phe-
nomena like tunneling and electron-phonon inter-
actions are rigorously taken into account. The ef-
fect of geometrical parameters on the device per-
formance was studied. Our results clearly show
that device characteristics can be optimized by ap-
propriately selecting geometrical parameters.

3.1 Introduction

A carbon nanotube (CNT) can be viewed as a
rolled-up sheet of graphite with a diameter of a
few nano-meters. Depending on the chiral angle
the CNT can be either metallic or semiconduct-
ing. Semiconducting CNTs can be used as chan-
nels for field-effect transistors (FETs). CNTFETs
have been studied in recent years as potential al-
ternatives to CMOS devices because of their capa-
bility of ballistic transport.

Depending on the work function difference be-
tween the metal contact and the CNT, carriers
at the metal-CNT interface encounter different
barrier heights. Devices with positive [17] and
zero [18] barrier heights were fabricated. The bar-
rier height is defined as the potential barrier which
is seen by carriers at the Fermi level in the metal.
Therefore, in a device with zero barrier height, car-
riers with energies above the Fermi level of the
metal reach the channel by thermionic emission
and carriers with energies below the Fermi level
have to tunnel to reach the channel.

Devices with positive barrier heights have lower
on-current and also suffer from ambipolar behav-
ior [19, 20], while devices with zero barrier height
theoretically [21] and experimentally [22] show
better performance. In this work we focus on de-
vices with zero barrier height for electrons. The
barrier height for holes is given by the band gap of
the CNT. Since the dispersion relations for elec-
trons and holes are the same, our discussions are
valid for holes as well.

Using the non-equilibrium Green’s func-
tion (NEGF) formalism quantum phenomena like
tunneling, and scattering processes can be rigor-
ously modeled. Here we extended our previous
work [23] by including the effect of electron-
phonon interaction in the calculations, considering
large signal dynamic response, and investigating
the influence of geometrical parameters. In the
next section our methodology is described. Then
the effect of different geometrical parameters on
the device characteristics is analyzed, and meth-
ods for performance optimization are suggested.

3.2 Approach

In this section the models used to study the static
and dynamic response of CNTFETs are explained.

3.2.1 Static Response

Based on the NEGF formalism we investigated
the effect of device geometry on the performance
of carbon nanotube field-effect transistors. We
have solved the coupled system of transport and
Poisson equations numerically. Due to quantum
confinement along the tube circumference, carrier
have bound wave functions around the CNT and
can propagate along the tube axis. Under the as-
sumption that the potential profile does not vary
around the circumference of the CNT, sub-bands
will be decoupled. In this work we assume bias
conditions for which the first sub-band contributes
mostly to the total current. In the mode-space ap-
proach [24] the transport equation for each sub-
band can be written as:

GR,A
r,r′ (E) = [EI−Hr,r′(E)−ΣR,A

r,r′ (E)]−1 (22)

G<,>
r,r′ (E) = GR

r,r′(E)Σ<,>
r,r′ (E)GA

r,r′(E) (23)

In (22) an effective mass Hamiltonian was as-
sumed. All our calculations assume a CNT with
a band gap of Eg = 0.6 eV corresponding to a
CNT with a diameter of dCNT = 1.6 nm, and m∗ =
0.05m0 for both electrons and holes.
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Figure 19: The device structure. The device is
250 nm extended into the third dimen-
sion. εr = 15.

A recursive Green’s function method is used for
solving (22) and (23) [25]. The total self-energy
in (22) consists of the self-energies due to the
source contact, drain contact, and electron-
phonon interaction, ΣR = ΣR

S + ΣR
D + ΣR

el−ph. The
self-energy due to electron-phonon interaction
consists of the contribution of elastic and inelastic
scattering mechanisms, Σ<,>

e−ph = Σ<,>
el + Σ<,>

inel .
Assuming a single sub-band the electron-phonon
self-energies are simplified to (24)-(27).

Σ<,>
el,(r,r)(E) = DelG

<,>
r,r (E) (24)

Σ<
inel,(r,r)(E) = ∑

ν
Dν

inel

[(nB( h̄ων)+1)G<
r,r(E + h̄ων)

+nB( h̄ων)G
<
r,r(E − h̄ων)]

(25)

Σ>
inel,(r,r)(E) = ∑

ν
Dν

inel

[(nB( h̄ων)+1)G>
r,r(E − h̄ων)

+nB( h̄ων)G
>
r,r(E + h̄ων)]

(26)

ℑm[ΣR(E)] =
1
2i

[Σ> −Σ<] (27)

where nB is given by the Bose-Einstein distribu-
tion function. In general electron-phonon interac-
tion parameters (Del,inel) depends on the diameter
and the chirality of the CNT. The calculation of
these parameters is presented in [26]. The imagi-
nary and real parts of the self-energy broadens and
shifts the density of states, respectively. We ne-
glected the real part of the self-energy.

The transport equations (22) to (27) are iterated
to achieve convergence of the electron-phonon
self-energies, resulting in a self-consistent
Born approximation. Then the coupled system

of transport and Poisson equation is solved
iteratively. The carrier concentration and the
current density at some point r of the device can
be calculated as (28) and (29).

nr = −4i
Z

G<
r,r(E)

dE
2π

(28)

jr =
4q

h̄

Z

Tr[Σ<
r,rG>

r,r(E)−Σ>
r,rG<

r,r(E)]
dE
2π

(29)

In CNTs elastic scattering is caused by acoustic
phonons and inelastic scattering occurs due to
zone boundary (ZB), optical (OP), and radial
breathing (RBM) phonon modes. In CNTs
with diameters in the range dCNT = 1−2 nm,
the energies of the these phonon modes are
h̄ωZB ≈ 160 and 180 meV, h̄ωOP ≈ 200 meV, and
h̄ωRBM ≈ 30 meV respectively [27, 28]. Due to

small occupation number of high energy phonons,
such as OP and ZB phonon modes, they do not
degrade the performance considerably, whereas
the RBM phonon mode can have a detrimental
effect. However, due to weak electron-phonon
coupling the RBM mode has a negligible effect
at room temperature. The electron-phonon
coupling is also weak for acoustic phonon (AP)
modes. Therefore, short CNTFETs can operate
close to the ballistic limit. Figure 20 shows
excellent agreement between simulation results
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Figure 20: Comparison of the simulation results
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put characteristics. The results for the
bias point VG = −1.3 V are compared
with the ballistic limit.



3 Optimal Design for Carbon Nanotube Transistors 13

and experimental data [22]. The result for the
bias point VG = −1.3 V is compared with the
ballistic limit, which confirms the validity of
nearly ballistic transport in short CNTFETs.

3.2.2 Dynamic Response

To investigate the dynamic response of the device
we consider the device delay time defined as:

τ =
CGVDD

Ion
(30)

Here, CG = CGS + CGD + CGG with
CGG

−1 = CIns
−1 + CQ

−1. The quantum capaci-
tance is given by CQ = 8q2/hνF ≈ 400aF/µm,
including the twofold band and spin degener-
acy [29, 30]. The insulator capacitance, occurring
between the tube and a plane, is given by [31]:

CIns =
2πκε0

cosh−1(TIns/RCNT +1)
(31)

For the geometry parameters given in Figure 19
CIns≈ 400aF/µm. For a device with 50 nm
channel length CGG ≈ 10aF. To calculate the
gate-source and gate-drain parasitic capacitances
we assumed the capacitance of two parallel plates,
CGS,GD = κε0A/LS,D, (see Figure 19). Even
with a small total area of A = 250 nm×40 nm
and a large spacer width of LGS,GD = 10 nm
the parasitic capacitances CGS + CGD ≈ 260 aF
are much bigger than CGG. As a result,
CG ≈CGS +CGD = κε0A(1/LS +1/LD).

3.3 Simulation Results

In this section the effects of the gate-source spacer,
gate-drain spacer, insulator thickness, and the in-
sulator dielectric constant on the device character-
istics are studied.

Due to ambipolar behavior, in the off-regime
the drain current of CNTFETs starts to in-
crease [19, 22, 32]. To reduce this effect we have
proposed to increase the gate-drain spacer [23].
When increasing LD, the off-current decreases,
while the on-current remains nearly unchanged,
such that the Ion/Ioff ratio increases. By increasing
LD the gate-drain parasitic capacitance decreases,
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Figure 22: Output characteristics at different gate
biases for devices with LD = 4 nm and
LD = 20 nm. LS = 4 nm.

which results in reducing the device delay
time. Figure 21 shows the effect of LD on the
device delay time versus Ion/Ioff. As shown, a
significant performance improvement is achieved.
The disadvantage of this method is that at low
drain biases electrons have to tunnel through a
thicker barrier to reach the drain contact, resulting
in a smaller drain current (Figure 22).

When increasing LS, the gate-source parasitic
capacitance is reduced, and so is the on-current.
The band edge profile near the source contact
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plays an important role in controlling the total
current. Increasing LS reduces the gate control
of the band-edge profile near the source contact.
Both the tunneling current and thermionic
emission current contribute to the total current.
Electrons with energies lower than the barrier
height have to tunnel through the source-sided
metal-CNT interface barrier to reach the channel
while electrons with energies higher than
the barrier height are injected by thermionic
emission. Since the tunneling probability
decreases exponentially with the barrier width,
the tunneling current decreases with increasing
LS. However, the thermionic emission current is
independent of the barrier width. The contribution
of the tunneling current decreases with decreasing
barrier height, while that of thermionic emission
increases. Since τ is proportional to the parasitic
capacitance and inversely proportional to the
on-current (30), there is an optimal value for LS,
which minimizes τ. As shown in Figure 23 the
optimal value of LS for the given material and ge-
ometrical parameters results in optimized device
characteristics. It can be easily shown that the
optimal value LS0, where ∂τ

∂LS
|LS0 = 0, is achieved

when 1
CG

∂CG
∂LS

|LS0 = 1
Ion

∂Ion
∂LS

|LS0 . Considering the
expression derived for CG in Section II.B, we
have 1

CG

∂CG
∂LS

= [LS(1+LS/LD)]−1.

Figure 24 shows the sensitivity of the on-current
to LS. However, the mentioned sensitivity is not
zero due to the contribution of the tunneling cur-
rent from states below the Fermi level. Since at
positive gate biases the conduction band-edge is
pushed below the source Fermi level, even in de-
vices with zero barrier height the tunneling cur-
rent can contribute to the total current. For thin-
ner insulators the width of the source-sided bar-
rier decreases, resulting in a higher tunneling cur-
rent contribution to the total current and a higher
sensitivity of the on-current to LS. The optimal
spacer width is LS≈ 6 nm at TIns = 2 nm and LD =
20 nm. Note that the optimal value for LS depends
on LD. For small values of LD the gate-drain par-
asitic capacitance dominates the gate-source para-
sitic capacitance, therefore any further decrease of
LS does not improve the delay time.

Electron-phonon interaction reduces the
on-current, both, directly and indirectly [33, 34].
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Figure 24: The sensitivity of the parasitic capaci-
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section of the curves gives the optimal
LS, which minimizes τ.

The direct effect is due to backscattering of
carriers, but scattering also redistributes the
carrier concentration profile along the device.
This redistribution affects the band-edge profile
so that it reduces the total current. To reduce the
indirect effect one should increase the gate-CNT
coupling. If thin and High-κ insulators are used
then CIns � CQ and CGG ≈ CQ, implying that
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Figure 25: The ratio of the drain current in the
presence of scattering to the ballistic
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due to direct and indirect effect of scat-
tering on the on-current are shown.
For high-κ the indirect part reduces.

the potential on the tube becomes the same
as the gate (perfect coupling). This regime
is called quantum capacitance limit in which
the device is potential-controlled rather than
charge-controlled [35]. Figure 25 compares the
ratio of the current in the presence of scattering
to the ballistic limit for different insulators. For
the given material and geometrical parameters a
κ > 20 maximizes the performance of the device.
But, with using high-κ materials not only the
on-current but also the parasitic capacitances
increase. Therefore, there is a κ which optimizes
the delay time. It can be shown that the optimized
value is achieved when 1

CG

∂CG
∂κ |κ0 = 1

Ion

∂Ion
∂κ |κ0 .

Considering the expression derived for CG in
Section II.B, we have 1

CG

∂CG
∂κ = 1

κ . Figure 26
shows the sensitivity of the on-current and
parasitic capacitances to κ. Since the curves do
not intersect at high values of κ, lower values
minimizes τ. Therefore, there is a trade-off
between device delay time and the on-current.
For a specific application this parameter can be
optimized.

5 10 15 20
κ

0

0.1

0.2

0.3
T

Ins
 =  2  nm

L
D

  = 20 nm

L
S
   =  6  nm

PSfrag replacements

− 1
CG

∂CG
∂LS

− 1
Ion

∂Ion
∂LS

1
CG

∂CG
∂κ

1
Ion

∂Ion
∂κ

Figure 26: The sensitivity of the parasitic capac-
itance and the on-current to κ. Since
the curves do not intersect at high val-
ues of κ lower values of κ minimizes
τ.

3.4 Conclusion

We showed that the device characteristics can be
optimized by appropriately selecting the geomet-
rical parameters. With increasing the gate-drain
spacer, the off-current and the gate-drain parasitic
capacitance reduce at the cost of a drain current
reduction at low bias voltages. With increasing
the gate-source spacer, the drain current and gate-
source parasitic capacitance decrease. Since the
device delay time is proportional to the parasitic
capacitances and inversely proportional to the on-
current, there is a value for the gate-source spacer
which minimizes the device delay time. The opti-
mal point is where the sensitivity of these quanti-
ties are equal. By using high-κ insulators the gate-
CNT coupling increases which results in higher
on-current, but the parasitic capacitances increase
and as a result the device delay time increases.
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4 Process and Device Simulation with a Generic Scientific Simulation
Environment

We present a high performance environment for
scientific simulation applications (GSSE). This
environment is based on the three orthogonal
concepts of topology, geometry, and quantities.
Lambda calculus is used in order to assemble var-
ious partial differential equations for TCAD and
other physical equations. We present examples
from device and process simulation which show
the applicability of our environment. Despite the
high abstraction level we can archieve high perfor-
mance.

4.1 Introduction

A general environment for TCAD equations has
to provide methods for the solution of different
physical phenomena such as carrier transport, dif-
fusion, electromagnetic wave propagation, heat
transfer, mechanical deformation, fluid flow, and
quantum effects. Due to the wide range of appli-
cations it is not trivial to develop an environment
which is capable of handling all equations within
a homogenous environment. In the field of TCAD
coupled partial differential equations and multi
quantity equations are often employed. For the
solution of these equations we use discretization
schemes such as the finite element method, the fi-
nite volume method, the finite difference method
or the boundary element method.

Each of these schemes has its merits and short-
comings and is therefore more or less suited for
different classes of equations. All of these meth-
ods have in common that they require a proper
tessellation and adaption of the simulation domain
[36, 37]. Due to the diversity of the mathematical
structures themselves, combined with efficiency
considerations, in particular in three dimensions,
the development of simulation software is quite
difficult. Supporting libraries for numerical simu-
lations exist, but no complete environment for sci-
entific computing to tackle the following issues:

• Support for different geometries and topolo-
gies

• Complete and tested discretization schemes

• Support for mathematical modeling

• High performance calculation

• (Real-time) visualization

Hence, the simulation tools are typically written
by experts specialized in other fields. In the ex-
treme case all areas of simulator development, like
software design, programming, testing, and evalu-
ation are done by one person. In the last decade
our institute has developed different simulators
and libraries, like SAP [38], Wafer-State-Server
[39], and Minimos-NT [11]. However, none of
them has shown to be perfect for the rapid progress
in scientific software development. Even the reuse
of simple code parts is difficult, due to the non-
generic library approach.

Therefore a scientific environment with high flex-
ibility and adaptivity of meshes combined with
great flexibility in numerical treatment and dis-
cretization schemes in all dimensions is called for.
It should be possible to use a common code base
which is easily adaptable to special requirements
but does not require specialized features for differ-
ent discretization schemes such as element matri-
ces like many other specialized finite element sim-
ulation environments.

On that account, we have extracted the main con-
cepts from all of our simulation tools and de-
veloped the generic and lightweight environment
GSSE which suits scientific requirements. On the
one side, generic library means that each part of
GSSE can be used separately. The complete GSSE
is based on header files only and therefore the re-
quired mechanisms can be included without incur-
ring additional dependencies. On the other hand,
generic means that all data types are parameter-
ized and can be exchanged easily, for instance the
numerical data type for quantity storage. GSSE is
designed for rapid development of simulation soft-
ware. One of the most important facts is that errors
can be easily found and even prevented. As errors
are often not obvious to detect it may already take
a lot of experience to decide if the result
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from a simulation is erroneous or not. If the result
is not correct, it might be reduced to a program-
ming bug, a logical error in the program flow, or
a badly chosen parameter. Due to this reason it
is necessary to locate an error quickly. Each of
the data structures which we provide can itself be
tested before compound data structures are tested.
Thus the development effort for the final code can
be reduced enormously.

In the following we will present some examples
of our simulations from the field of semiconductor
device and process simulation. First we solve
a simple device simulation example. Then
we benchmark a finite element example with
the electromagnetic simulation tool SAP. Both
examples will show that our environment can
perform fast calculations.

4.2 The Generic Scientific Simulation En-
vironment

Due to the large variety of available models and
differential equations, discretization schemes, and
simulation domains we had to extract the base con-
cepts of a simulation environment. The main as-
pect of software design is orthogonality as well
as modularity. Each component should be usable
without any dependences to another. If a higher
structure combines two base structures (e.g. quan-
tities on a topology) it does not depend on the
lower structures but it only relies on the concept.

Topology. Within a scientific simulation
environment it is crucial to have neighborhood
information of vertices, edges, faces, and cells
available within a constant time. For this reason
we have implemented a data structure which
covers only topological information of vertex
cell incidence and cell vertex incidence. Even
though storing one of these incidence functions is
redundant it is necessary to guarantee constant
time for traversal. Based on this incidence
information we generate inter-dimensional
objects such as edges and faces. The incidence
information of edges and faces does not need to
be stored explicitly because it can be derived from
the base traversal functions and the archetype
information.

The archetype concept implies that each cell of
the tessellation has the same topological shape or
very few different shapes. Therefore we need not
store all edge and face information but we can de-
rive it from an archetype. For this reason the un-
structured topology is highly flexible. We can use
archetypes of different dimensions and shapes.

Geometry. Even though we have a convenient
method for describing the topology of a simula-
tion domain this does not imply that we store the
coordinate information on the vertices and cells.
Topology tells us for instance if two vertices are
connected by an edge. It however does not pro-
vide any information about the real geometry of
the curve. This is the task of the geometry concept.
The basic geometry concept is the point list. The
point list contains the geometrical point coordi-
nates associated to the topological vertices. From
this information we can derive the geometry of all
edges, faces and cells. We can perform orientation
tests, volume measurements, and the calculation
of the voronoi information.

Quantity. Quantities are numerical attributes
which can be stored on all topological elements
using their handles. Using an associative storage
concept we can store values with respect to an
associative key of the topology and a quantity
descriptor key (which might be a string). The
value types of the quantities can be chosen
differently. The simplest case is a scalar floating
point value. We also provide vector and tensor
quantities as well as string quantities. The
quantity data type can be parameterized on the
data type so that it is possible to use any type as
data type for the quantity.

Based on these core concepts, a mathematical
function layer was implemented to provide easy
development of all different modeling issues on
the one side and a high performance computing
on the other side. This layer includes all necessary
functions for a convenient numerical analysis as
well as accumulation functions which will be
discussed later on in the example section. We
even have the possibility to work with linearized
functions which provide direct access to the
system matrix for line-wise entry as well as finite
element stencils.
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As we have parameterized data types for numeri-
cal calculations it is possible to introduce abstract
matrix data types with lazy evaluation concepts
which can reduce the execution time as well as
the number of temporary objects. For this reason
we use expression templates [40, 41] as well as
lambda expressions [42].

A solver interface is integrated in this environment
for the use of all different kinds of state-of-the-art
solvers called TRILINOS. For the important
visualization purpose within scientific computing,
IBM’s data explorer [43] is integrated with a few
modifications to make a real-time visualization
possible.

4.3 Device Simulation

The field of device simulation requires the
use of many different numerical techniques.
Macroscopic transport [44] models are among
the most widely employed calculations. These
models can be derived by applying the moment
method on the Boltzmann equation. Together
with the Poisson equation they form a system of
partial differential equations which are capable of
describing the behavior of semiconductor devices.
We use the simplest macroscopic model, the drift
diffusion transport equations. In the following
we show how the equations can be discretized
in our environment by the means of the finite
volume method. The discretization formula for
the Poisson equation yields

∑
edge vertex

(Ψ j −Ψi)
A
d

= V (n− p+NA−ND)q (32)

Based on this discretization formula we obtain the
final discretization routine (32) we can write the
following statement in the GSSE.

eqn = (sum<vertex_edge>[
diff<edge_vertex>(0.0)[potential]*
A/d] - q * volume *
(n - p + N_A - N_D))(v);

The same assembly routine can be applied to the cur-
rent relations using the Scharfetter-Gummel discretiza-
tion [45] (generation and recombination rates are omit-
ted here).

Jw =
1
λ

(n jB (λ)−niB (−λ)) , (33)

where B is the Bernoulli function. Using the method
of finite volumes we have discretize the current integral
on the boundary of the control volumes. If we consider
the stationary case as well as zero recombination we
obtain the following code snippet for our discretization
scheme.

eqn = sum<vertex_edge>(0.0)[
area/distance * diff<edge_vertex>()

[n * bern(d_psi/u_th) ]
[n * bern(-d_psi/u_th)]](v);

Both discretization terms need quantities which are
located on topological elements (Figure 27). The
potential and charge terms as well as the box volume
are stored on the vertices. The distance (d) and area
(a) as well as the potential difference dψ are stored on
the edges. The sum as well as the difference operations
change the locality. The expression within the
brackets gives the kind of traversal; vertex edge
iterates over all edges which cover a vertex, whereas
edge vertex iterates over all vertices which are
covered by an edge. The formula in the square brackets
are evaluated on all elements of the traversal and
accumulated. bern denotes the Bernoulli function
B which is used in the Scharfetter-Gummel current
relation. From this specification the Jacobian matrix
and the right hand side are assembled automatically.
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Figure 27: The local patch of a vertex. We out-
lined the vertices as well as the edges.

An automatic derivation of the linearized function,
which is very error prone if done by hand, can be
achieved by using an associative data structure. This
data structure contains matrix entries as well as a
right hand side value. For structures which are called
linearized equations, we have implemented basic
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operations such as addition and multiplication as
well as other numerical functions such as the already
demonstrated Bernoulli function. This method can be
used in order to assemble linear as well as nonlinear
equations which include discrete couplings between
single topological elements. The complete application
does not need more than 100 lines of code, the core is
only about 25 of these lines.

4.4 Process Simulation

In general, three-dimensional process simulation steps
need special surface treatment and must provide the
ability to handle surface elements of arbitrary complex-
ity containing degenerated or even faulty elements.

For the solution of problems in process simulation as
well as interconnect simulation finite element methods
are commonly used. In the following example we ap-
ply the finite element method to the Laplace equation in
order to calculate capacitances as well as resistances of
interconnect structures. In the following we will calcu-
late two simple structures in order to evaluate the cor-
rectness of our simulation and to show the performance
of the environment. The example is a single intercon-
nect line. Even though it is very simple it shows the
applicability of the GSSE as well as the performance.

4.5 Runtime Efficiency

To compare the runtime efficiency of the generic
scientific environment we used the fastest (Poisson
only) simulation tools from our institute (SAP) and run
different application benchmarks with an automatic
benchmark system.

As our environment is on a high semantic level and also
does not impose a high abstraction penalty it is easy to
make special optimizations if simpler partial differen-
tial equations have to be discretized:

• There is only one solution quantity

• We only apply one kind of differential equation

Even though these conditions are not always met we
can gain performance if any of them is fulfilled. The
genericity of our environment allows us to use these
simplifications for all kinds of differential equations.

For the testing of the finite element code we divide the
simulation time into the following parts. Each of the
parts is measured independently in order to show the
differences.

• Preparation (I/O, memory allocation)

• Assembly (Jacobian matrix and RHS)

• Solution

Our performance test example has to be very simple
because we have to eliminate implication which result
from problems with complicated geometries. Our test
sample is a simple via line with a length of 10µm
and a square cross-section of 1µm2. For the test
case we apply a potential difference of 1V. For both
examples we use meshes which have been generated
with vgmodeler [36] with 8.700, 14.000 and 97.000
tetrahedra. The comparison of the run time on an Intel
Pentium 4 with 2.80GHz shows the following results
(Figure 28, Figure 29, Figure 30):

Preparation Assembly Solution

GSSE
SAP

0

50 ms

100 ms

Figure 28: Structure with 8.700 tetrahedra and
2.300 vertices.

Preparation Assembly Solution

GSSE
SAP

0

500 ms

1000 ms

Figure 29: Structure with 64.000 tetrahedra and
14.000 vertices.

Preparation Assembly Solution

GSSE
SAP

0

5 s

10 s

Figure 30: Structure with 520.000 tetrahedra and
97.000 vertices.

The benchmarks (Figure 28, Figure 29, Figure 30)
show that the GSSE does not have a high time
consumption for the preparation of the quantities.
However in assembly time as well as in solution time
the highly optimized code is faster but within the same
order of magnitude. The solution time shows that the
TRILINOS solver package is well designed for large
matrices.
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4.6 Conclusion

A generic environment for scientific computing
has been presented. It can handle a large variety
of differential equations which can be specified
with different discretization schemes such as finite
elements, finite volumes and finite differences. We
have shown that a high semantic level does not
necessarily imply an abstraction penalty so that the
performance is comparable to highly optimized
programs.

Even though we have shown the applicability of our en-
vironment on very simple structures it is possible to ex-
tend the features very conveniently. First the simulation
domain can be taken from any meshing output. The
partial differential equations can be extended to more
complex models using a C++ embedded language.

Using this environment it is possible for scientists to
formulate PDE problems with a full topological and
geometrical support for the development of applica-
tions with minimal in-depth knowledge of internal data
structures.
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5 Current Transport in Nanoelectronic Semiconductor Devices

An overview of models used for the simulation of
current transport in nanoelectronic devices within the
framework of TCAD applications is presented. Modern
enhancements of semiclassical transport models based
on microscopic theories as well as quantum mechan-
ical methods used to describe coherent and dissipa-
tive quantum transport are specifically addressed. This
comprises the incorporation of quantum correction and
tunneling models up to dedicated quantum-mechanical
simulators, and mixed approaches which are capable to
account for both, quantum interference and scattering.
Specific TCAD requirements are discussed from an en-
gineer’s perspective and an outlook on future research
directions is given.

5.1 Introduction

The breathtaking increase in computational power and
speed of integrated circuits in the past decades has been
supported by the aggressive size reduction of semicon-
ductor devices. This trend is expected to continue in
the coming decade as predicted and institutionalized
by the International Technology Roadmap for Semi-
conductors [46]. Today, when the 90 nm technology
node with physical transistor gate lengths in the range
of 40 nm is in mass production, the challenge is to in-
troduce the 65 nm technology node already in a year.
A new technology node is introduced every 3 years,
with a long-term projection of the 22 nm node to be
in mass production by the year 2016. A possibility to
build metal-on-insulator field effect transistors (MOS-
FETs) with even shorter gate lengths has been success-
fully established after the 6 nm gate length transistor
has been demonstrated in research labs [47, 48].

From a theoretical viewpoint even a few nm gate
length device has been predicted to be functional [49,
50]. Nevertheless, emerging outstanding technologi-
cal challenges related to different aspects of MOSFET
fabrication and reliability in mass production, as well
as the rapidly increasing power dissipation may slow
down the so far exponential scaling of Complimentary
MOSFETs (CMOS). Besides, with the ongoing search

for new technological solutions vital for CMOS down-
scaling, developing conceptually new devices and ar-
chitectures is becoming increasingly important. New
nanolelectronic structures, such as carbon nanotubes,
nanowires, and molecules, are considered to be the
most prominent candidates for the post-CMOS era.
Since conventional MOSFETs are already operating in
the sub-100 nm range, new nanoelectronic devices are
expected to complement and substitute some of the cur-
rent CMOS functions after being integrated into CMOS
technology.

Technology CAD (TCAD) tools are designed to assist
in development and engineering at all stages ranging
from process simulation to device and circuit optimiza-
tion. The main purpose of TCAD is the technology-
development related cost reduction which currently
amounts to 35% and is expected to rise to 40%, ac-
cording to ITRS [46]. Due to the aggressive downscal-
ing of CMOS device feature sizes and newly emerg-
ing nanoelectronic devices, various shortcomings of
presently applied TCAD tools appear. These tools are
frequently based on semiclassical macroscopic trans-
port models. From an engineering point of view, clas-
sical models like the drift-diffusion model, have en-
joyed an amazing success due to their relative simplic-
ity, numerical robustness, and the ability to perform
two- and three-dimensional simulations on large un-
structured grids [51]. Hot-carrier effects have moti-
vated the development of higher-order transport models
such as the hydrodynamic, energy-transport and six-
moments models [44]. However, inaccuracies origi-
nate from the non-local nature of carrier propagation
in ultra-scaled devices [52].

Non-local effects may be of classical or quantum-
mechanical nature, depending on the underlying
physics relevant to the transport process. Classical non-
localities appear when the mean-free path is compa-
rable to the device feature size. Quantum mechanical
non-local effects start to determine the transport prop-
erties when the device size is of the order of the De-
Broglie electron wave length. Size quantization of
carrier motion in inversion layers
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of MOSFETs and in ultra-scaled multi-gate devices as
well as the tunneling current, including the gate leakage
current, are the most important examples of quantum
effects in MOSFETs.

Figure 31 shows the hierarchy and mutual interrelation
of models currently used for the description of current
transport. Semiclassical transport models are based
on the Boltzmann equation which includes scattering
integrals describing realistic microscopic processes.
These semiclassical models, augmented with quantum
corrections, are still of great importance due to their
relative computational simplicity, numerical stability,
and an ability to provide reasonable quantitative
results within seconds even for devices with gate
length as short as 50 nm. A brief overview of the
currently developed semiclassical transport models
will be presented in Section 2.

Quantum ballistic transport models describe a coherent
propagation of carriers. They are based on the solution
of the SCHRÖDINGER equation for the wave function,
supplemented with the corresponding boundary condi-
tions. This approach is efficient and provides accurate
results when carrier scattering is irrelevant and can be
neglected. The method will be illustrated in Section 3
with an example of transport in carbon nanotubes [53].

Finally, dissipative quantum transport theory
represents the most complete description of transport,
which combines the coherent carrier motion
between the scattering events with coherence (or
phase) breaking due to carrier scattering. Different
formalisms are currently used, based on the Dyson
equation for the non-equilibrium Green’s functions,
the Liouville/Von-Neumann equation for the density
matrix, or the Wigner transport equation. Section 4
deals with quantum transport characterized by both
scattering and quantization. A conclusion will
summarize the main findings and give directions for
future research.

5.2 Semiclassical Transport

After the ground-breaking work of Scharfetter and
Gummel [54], who first proposed a robust discretiza-
tion scheme for the drift-diffusion equation, computer
programs like MINIMOS [55] and PISCES [56]
played a pioneering role in numerical simulation
of current transport properties of semiconductor
devices. Since then, numerous transport models of
increasing complexity have been introduced. The
semiclassical transport description is based on the
Boltzmann equation for the distribution of carriers
f (r,k, t) in the phase space. The Boltzmann equation
includes carriers’ scattering with phonons, impurities,

interfaces, and other scattering sources through the
corresponding collision integrals.

Although the solution of the Boltzmann equation
can be found numerically by means of Monte Carlo
(MC) methods, TCAD models based on moments of
the distribution function are highly desirable. Being
computationally significantly less expensive than the
MC method, these higher-order moments’ methods
provide a reasonable quantitative answer for devices
as short as 50 nm within seconds. The fairly new
six moments model [44], based on non-Maxwellian
distribution takes naturally into account the hot-carrier
effects such as avalanche generation, hot carrier
induced gate currents, or hot-carrier diffusion,
which typically take place in Silicon-On-Insulator
(SOI) floating body MOSFETs. For the purpose of
calibration the full-band MC method is often accepted,
since it can precisely account for the various scattering
processes [57].

Another important development of transport models is
related to the MC methods for solving the Boltzmann
equation. After the pioneering work of Kurosawa in
1966 [58], who was the first to apply the MC method
to simulate carrier transport in semiconductors, the
significantly improved MC method was successfully
applied to transport description in a variety of
semiconductors [59]. For electrons in silicon, the
most thoroughly investigated case, it is believed that
a satisfactory understanding of the band structure
and of the basic scattering mechanisms has been
achieved giving rise to a “standard model” [60].
Nowadays, an accurate MC evaluation of carrier
transport properties in inversion layers is of primary
importance for predicting performance of modern
CMOS bulk devices. Due to the strong confinement
of carriers in the inversion layer of bulk MOSFETs
or due to the geometric confinement in multi-gate
FETs the carrier motion is quantized in one or two
confinement directions giving rise to the formation
of subbands. One possibility to address the effect of
quantum confinement on the electron concentration
is to use an effective potential. This can be achieved
by a convolution of the electrostatic potential with a
GAUSSian function, which leads to a smoothing of the
original potential [61], [62], [63]. Another option is to
use the self-consistent Poisson-SCHRÖDINGER-based
quantum corrected potential [64], [65], which sup-
presses the carrier concentration close to the interface,
mimicking the real quantum-mechanical behavior.
These approaches combine advantages of full-band
structure and flexibility of scattering processes of
three-dimensional classical MC simulations with
the generality of material composition and transport
peculiarities due to quantum confinement and may
also address the strain effects.



5 Current Transport in Nanoelectronic Semiconductor Devices 23

Device Simulation

Process Simulation

Circuit Simulation

Device
Characteristics

Electrical

Device Geometry
Doping ProfileMeasurements

Mask Information
Process Recipe

Quantum Corrections

Quantum Transport

Boltzmann Equation

Schrödinger Equation

Poisson Equation

Density Matrix
Green’s Functions
Wigner Function

Monte Carlo
Spherical Harmonics
Six Moments
Energy−Transport
Drift−Diffusion

Transfer−Matrix
QTBM

PSfrag replacements

− 1
CG

∂CG
∂LS

− 1
Ion

∂Ion
∂LS

1
CG

∂CG
∂κ

1
Ion

∂Ion
∂κ

Figure 31: Schematic classification of approaches used in semiconductor current transport modeling.
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Figure 32: Comparison of subband MC simula-
tions with the experimental [66] uni-
versal mobility of surface layer in sili-
con. The deviation of the experimental
mobility from simulations at low ef-
fective fields is due to Coulomb scat-
tering not included in the MC simula-
tions.

The MC approach may incorporate the quantized
carrier motion in the direction orthogonal to the
current exactly. The quantum-mechanical motion
of carriers in the confined direction is addressed
by the self-consistent solution of the corresponding
SCHRÖDINGER and Poisson equation, leading to
the formation of subbands. The carrier motion
within each subband may still be considered
semiclassical and therefore can be well described by
the corresponding Boltzmann equation written for
the subband distribution function fn(r,k, t). Because

of possible carrier transitions between different
subbands due to scattering, the collision integrals on
the right-hand-side of the Boltzmann equation should
include the terms responsible for the intersubband
scattering processes. The transport in the inversion
layer of a MOSFET is finally described by a set of
Boltzmann equations for every subband, coupled to
each other via the intersubband scattering integrals.
The set of the subband Boltzmann equations for
fn(r,k, t) is conveniently solved by a MC method.
This approach therefore combines the advantages
of a quantum description in confinement direction
with a semiclassical description in transport direction
and represents a transition between semiclassical
and quantum-mechanical pictures. An example of
the simulation of the low-field surface mobility in
inversion layers of silicon, when the transport in the
current direction may be treated semiclassically is
shown in Figure 32, together with the experimental
“universal mobility” curve [66]. In order to reproduce
the universal mobility curve, up to 40 unprimed and 20
primed subbands formed at a (100) silicon interface
were taken into account, with realistic electron-phonon
and surface roughness scattering included [67].

5.3 Quantum-Ballistic Transport

With the aggressive downscaling of MOSFET
dimensions continuing, the classical description of
carrier motion in transport direction is gradually
loosing its validity. When the characteristic scale
of the potential variation along the channel is
comparable to the De-Broglie wave length of a
carrier, a TCAD transport model must include the
quantum effects in transport direction. If scattering
processes can be ignored and particle propagation in
the device is coherent, the carrier motion is determined
by the solution of the SCHRÖDINGER equation,
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Figure 33: Subthreshold characteristics for a
double-gate MOSFET with silicon
thickness of 2 nm, gate length of
2.5 nm and the oxide thickness of
2.5 nm [49]. The dotted line cor-
responds to the ideal 60 mV/decade
subthreshold slope. The dashed line
shows the leakage current.

supplemented with open boundary conditions. In
order to determine the current density J, it is enough
to know the transmission coefficient TC(E) as well as
the supply function N(Ex) from the electrodes [68]:

J =
4πmeffq

h3

Z Emax

Emin

TC(Ex)N(Ex)dEx. (34)

A similar approach can also be used to determine
the gate leakage current [69]. The solution of
the SCHRÖDINGER equation with open boundary
conditions can be achieved by means of the quantum
transmitting boundary method [70, 71]. An established
alternative framework for these calculations is the
non-equilibrium Green’s Function method [72] in its
reduced coherent version. It is conveniently used for
one-dimensional studies of resonant tunneling diodes
or carbon nanotubes. Simulators accounting for a
full two-dimensional solution of the open-boundary
SCHRÖDINGER equation have been reported and
applied to the simulation of 10 nm double-gate
MOSFETs [73, 74].

It may appear that in the quantum-ballistic case the de-
termination of the full wave function as a solution of
the SCHRÖDINGER equation is not necessary and the
knowledge of the transmission coefficient is enough for
the current calculations. In the contact block reduction
method [75] the transmission function is fully deter-
mined by the reduced contact part of the full Green’s

function. However, the carrier concentration alters the
electrostatic potential in the device via the POISSON

equation. The carrier concentration is proportional to
the square of the wave function, implying that the ac-
curate determination of the transmission coefficient and
therefore the current requires a self-consistent solution
of the SCHRÖDINGER and POISSON equation simulta-
neously. For quasi-one dimensional transport this can
be achieved straightforwardly [49]. An example of the
output characteristics simulated for an ultra-thin body
double-gate MOSFET with a gate length L as short
as 2.5 nm is shown in Figure 33. Surprisingly, even
such a small device possesses an Ion/Ioff ratio sufficient
for logic applications and displays a reasonable short-
channel effect and acceptable DIBL, a conclusion re-
cently reached from more detailed atomistic calcula-
tions [50]. It should be noted that the sensitivity to
small MOSFET dimension variations, control of dop-
ing as well as the whole manufacturing process devel-
opment represent significant challenges for multi-gate
MOSFETs with gate length below 10 nm.

Self-consistent solution of the two- or three-
dimensional SCHRÖDINGER equation together with
the POISSON equation represents a significant compu-
tational challenge [73]. Two- and three-dimensional
quantum ballistic simulations can be performed by
means of an approximate separation of the quantum
motion in the confinement direction y from the motion
along the current direction x by means of the following
ansatz for the wave function Ψn(y,x):

Ψ(x,y) = ∑
n

ξn(x)ψn(y,x). (35)

This method allows the independent solution of
the SCHRÖDINGER equation for the subband wave
function ψn(y,x) at position x. Transport in the
current direction is characterized by a system of
one-dimensional SCHRÖDINGER equations with
open boundary conditions for the wave functions
ξn(x). Each SCHRÖDINGER equation describes the
transport inside the particular subband. Transport in
each subband is independent from the one in other
subbands, if the subband wave functions ψn(y) do not
depend on the position x in transport direction.

The SCHRÖDINGER equations describing the transport
in each subband are decoupled from each other,
when the potential U(x,y) in the device is the sum
of two contributions, each depending either on y
or x coordinate alone. In a general case when the
subband wave functions depend on the position x
in transport direction, the transport in the subbands
n and m is coupled, with the coupling described
by the Hamiltonian δHnm(x). However, when
the intersubband coupling Hamiltonian δHnm(x)
is small and may be neglected, transport in the
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Figure 34: Output characteristics of CNT-FET
with ohmic contacts [81] compared to
experimental data [?].

subbands can still be considered as independent
from each other. This approximation simplifies
the calculations and reduces the computational
effort significantly [76, 77, 78, 79]. The coupling
Hamiltonian is expected to be small if the dependence
of the subband wave function on x is weak. An
example where the subband decomposition turns out to
be an excellent approximation is the quantum transport
in ultra-scaled SOI MOSFETs [79]. In the opposite
limit of abrupt junctions between contact reservoirs
and the channel, the intersubband coupling is expected
to be the strongest. However, even in this case the
current value calculated self-consistently was found to
be only 10% lower as compared to the calculations
with neglected intersubband coupling [80]. More
study is needed to clarify the situations.

The coherent quantum transport description is justified
if the size of the channel region is shorter that
the phase-coherence length. In carbon nanotubes,
where elastic scattering can be ignored and inelastic
scattering has little effect on current [82], transport
can be considered to be coherent and is therefore well
described within the quantum-ballistic approach [53].
Similar methods can be applied to describe the
output characteristics of FinFETs in the ballistic
approximation [83]. In silicon MOSFETs, however,
the mean-free path in the area close to the potential
maximum at 300 K is only a few nm [84], and the
full quantum description which includes dissipative
processes must be adopted to simulate MOSFETs with
gate length of around 10 nm. A consistent introduction
of realistic scattering into simulators based on
the coherent description alone creates outstanding

computational difficulties ranging from a necessity
to invert huge matrices in NEGF formalism [72] to
calculations of nonlocal scattering rates in Pauli master
equation approaches [85]. Besides the difficulties of
introducing scattering into the simulators based on
the coherent description, these simulators are often
limited to specific geometries, grids and short length
scales, which makes their integration into modern
engineering TCAD tools problematic. Nevertheless,
these simulation approaches are necessary for the
estimation of upper bounds of current transport at the
quantum limit.

5.4 Dissipative Quantum Transport

The methods described so far are either based on the
assumption of semiclassical or pure quantum ballistic
transport. Nevertheless, in modern microelectronic
devices quantum effects are usually dominant in
a small active region connected to large, heavily
doped contact areas where the carrier dynamics is
essentially classical. Therefore, modern TCAD
simulators should be able to incorporate both classical
and quantum-mechanical modeling approaches on
equal footing. To a certain extent, various quantum
corrections can account for the quantum effects, as
already discussed.

The non-equilibrium Green’s functions method
addresses the problem in the most consistent and
complete way. Due to its completeness, the method
is computationally complex and is usually applied to
one-dimensional problems [72] and for a restricted
set of scattering mechanisms [86] only. The carbon
nanotube (CNT) FET which is widely considered to be
a potential alternative to the conventional MOSFETs,
represents a good example where the nonequilibrium
Green’s function method provides accurate results and
is successfully used. Simulated output characteristics
of a CNT-FET with ohmic contacts [81] are compared
in Figure 34 to experimental data [?], showing good
agreement.

An alternative approach which handles both
quantum-mechanical and dissipative scattering effects
is based on the Wigner function formalism. Realistic
scattering processes can be easily embedded into
the Wigner equation via Boltzmann-like scattering
integrals. The Wigner function is given by the
density matrix in mixed representation [87, 88]. The
kinetic equation for the Wigner function is similar
to the Boltzmann equation, with the classical force
term replaced by a non-local potential operator.
The Wigner function formalism treats scattering
and quantum mechanical effects on equal footing
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Figure 35: Comparison of Wigner and classical
Monte Carlo results for electron con-
centration in double-gate MOSFETs,
for different channel lengths [79].

through the corresponding scattering integrals. It
is attractive to use the well established scattering
models used in classical MC simulations and solve
the quantum WIGNER transport equations by means
of the MC technique. Such programs were recently
realized in [89, 90, 79]. However, since the kernel
of the quantum scattering operator is not positively
defined, the numerical weight of a particle trajectory
increases rapidly, and the numerical stability of a
trajectory-based MC algorithm becomes a critical
issue.

A multiple trajectories method was recently
suggested [90] in order to overcome the difficulty. In
this algorithm the problem of a growing statistical
weight of a single trajectory is addressed by creating
an increasing number of trajectories with constant
weights, which may assume positive and negative
values. Being formally equivalent to the former
method, the algorithm allows the annihilation of tra-
jectories with similar statistical properties, introducing
a possibility to control the number of trajectories.
This approach has the advantage that a seamless
transition between classical and quantum-mechanical
regions in a device is possible [90]. Following [91],
one can introduce a spectral decomposition of the
potential profile V (x) into a slowly varying, classical
component and a rapidly varying, quantum mechanical
component. This decomposition is conveniently
carried out by applying a low-pass filter with a cut-off
wave number qc � π/∆x, where ∆x is a grid step size.
This separation of the total potential into a classical
and a quantum mechanical contribution significantly
improves the Wigner Monte Carlo convergence. The

method can be applied to the simulation of resonant
tunneling diodes [90], and it was recently used for
the simulation of double-gate MOSFETs [79]. An
example of the carrier concentration simulated with
the Wigner function method is shown in Figure 35. in
comparison with the classical result.

5.5 Conclusions

Well established classical TCAD tools are gradually
loosing their ability to predict accurately the character-
istics of nanoscale devices, prompting for enhancement
to meet the engineering demands. Classical models us-
ing higher moments are able to include the hot-carrier
effects and can reproduce results of the full-band MC,
while relevant quantum corrections may be incorpo-
rated into different MC schemes.

Full quantum description is required for nanoscale
devices. Contrary to the carbon nanotubes, where
the transport properties can be well predicted
within the coherent picture, a dissipative quantum
description may be required for transport calculations
in ultra-scaled MOSFETs with the gate lengths
ranging around 10 nm. One option is the Wigner
function approach which naturally combines the
advantages of quantum description with the accurate
scattering models relevant for devices in the nanoscale
range. All quantum-mechanical models must be
adapted for engineering applications for which timely
results are more valuable than accurate analyses [92].
Device simulators must allow a coupling with process
simulators, since a detailed, physics-based transport
model may be misleading if geometry and doping are
not described correctly. Support of unstructured grids
is necessary in oder to optimize the simulation time.
Furthermore, the simulators should be general-purpose
and not limited to specific geometries or simulation
models. It is still not clear which of the outlined
quantum transport approaches will finally be integrated
into TCAD environments. Its further success will
depend on the ability to model quantum effects
efficiently with reasonable accuracy.



References 27

References

[1] J. Welser, J. L. Hoyt, and J. F. Gibbons. NMOS
and PMOS Transistors Fabricated in Strained Sil-
icon/Relaxed Silicon-Germanium Structures. In
Proc.IEDM Tech.Dig, pp 1000–1002, 1992.

[2] K. Rim, J. L. Hoyt, and J. F. Gibbons.
Transconductance Enhancement in Deep Submi-
cron Strained Si N-MOSFETs. In Proc.IEDM
Tech.Dig, pp 707–710, 1998.

[3] J. L. Hoyt et al. Strained Silicon MOSFET Tech-
nology. In Proc.IEDM Tech.Dig, pp 23–26, 2002.

[4] A. Lochtefeld and D. Antoniadis. Investigating
the Relationship Between Electron Mobility and
Velocity in Deeply Scaled NMOS via Mechanical
Stress. IEEE Electron Device Lett., 22(12):591–
593, 2001.

[5] S. Maikap, C. Y. Yu, S. R. Jan, M. H. Lee, and
C. W. Liu. Mechanically Strained Si NMOS-
FETs. IEEE Electron Device Lett., 25(1):40–42,
2004.

[6] A. Shimizu et al. Local Mechanical-Stress Con-
trol (LMC) : A New Technique for CMOS Perfor-
mance Enhancement. In Proc.IEDM Tech.Dig, pp
433–437, 2001.

[7] S. Ito et al. Mechanical Stress Effect of Etch-
Stop Nitride and its Impact on Deep Submicron
Transistor Design. In Proc.IEDM Tech.Dig, pp
247–251, 2000.

[8] K. Uchida, R. Zednik, C. H. Lu, H. Jagannathan,
J. McVittie, P. C. McIntyre, and Y. Nishi. Exper-
imental Study of Biaxial and Uniaxial Strain Ef-
fects on Carrier Mobility in Bulk and Ultrathin-
Body SOI MOSFETs. In Proc.IEDM Tech.Dig,
pp 229–232, 2004.

[9] M. M. Rieger and P. Vogl. Electronic-
Band Parameters in Strained Si1−xGex Alloys
on Si1−yGey Substrates. Physical Review B,
48(19):14276–14287, 1993.

[10] S. Dhar, H. Kosina, V. Palankovski, E. Ungers-
boeck, and S. Selberherr. Electron Mobil-
ity Model for Strained-Si Devices. IEEE
Trans.Electron Devices, 52(4):527–533, 2005.

[11] Institut für Mikroelektronik, Tech-
nische Universität Wien, Austria.
MINIMOS-NT 2.1 User’s Guide, 2005.
http://www.iue.tuwien.ac.at/software.

[12] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and
M. Matters. Field-effect transistors made from
solution-processed organic semiconductors. Syn-
thetic Metals, 88(1):37–55, 1997.

[13] M. C. Vissenberg and M. Matters. Theory of the
field-effect mobility in amorphous organic tran-
sistors. Phys.Rev., 57(20):12964–12967, 1998.

[14] G. E. Pike and C. H. Seager. Percolation and
conductivity: A computer study.I. Phys.Rev.,
10(4):1421–1434, 1974.

[15] E. J. Meijer, C. Tanase, P. W. Blom, E. van Vee-
nendaal, B. H. Huisman, D. M. de Leeuw, and
T. M. Klapwijk. Switch-on voltage in disordered
organic field-effect transistors. Appl.Phys.Let,
80(20):3838–3840, 2002.

[16] E. Calvetti, L. Colalongo, and Zs. M. Kovacs-
Vajna. Organic thin transistors: a DC/dynamic
analytical model. Synthetic Metals, 49:567–577,
2005.

[17] J. Appenzeller, M. Radosavljevic, J. Knoch, and
Ph. Avouris. Tunneling Versus Thermionic Emis-
sion in One-Dimensional Semiconductors. Phys-
ical Review Letters, 92:048301, 2004.

[18] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and
H. Dai. Ballistic Carbon Nanotube Field-Effect
Transistors. Letters to Nature, 424(6949):654–
657, 2003.

[19] M. Pourfath, E. Ungersboeck, A. Gehring,
B. Cheong, W. Park, H. Kosina, and S. Selberherr.
Improving the Ambipolar Behavior of Schottky
Barrier Carbon Nanotube Field Effect Transis-
tors. In Proc. ESSDERC, pp 429–432, 2004.

[20] M. Pourfath, A. Gehring, E. Ungersboeck,
H. Kosina, S. Selberherr, B.-H. Cheong, and
W. Park. Separated Carrier Injection Con-
trol in Carbon Nanotube Field-Effect Transistors.
J.Appl.Phys., 97:1061031–1061033, 2005.

[21] J. Guo, S. Datta, and M. S. Lundstrom. A Nu-
merical Study of Scaling Issues for Schottky-
Barrier Carbon Nanotube Transistors. IEEE
Trans.Electron Devices, 51(2):172–177, 2004.

[22] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Ye-
nilmez, R.G. Gordon, M. Lundstrom, and H.J.
Dai. Self-Aligned Ballistic Molecular Transistors
and Electrically Parallel Nanotube Arrays. Nano
Letters, 4(7):1319–1322, 2004.

[23] M. Pourfath, H. Kosina, B. H. Cheong, W. Park,
and S. Selberherr. Improving DC and AC Char-
acteristics of Ohmic Contact Carbon Nanotube
Field Effect Transistors. In Proc. ESSDERC, pp
541–544, 2005.

[24] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom,
and D. Jovanovic. Simulation of Quantum Trans-
port in Nanoscale Transistors: Real versus Mode-
Space Approach. J.Appl.Phys., 92(7):3730–3739,
2002.



References 28

[25] A. Svizhenko, M. P. Anantram, T. R. Govindan,
B. Biegel, and R. Venugopal. Two-Dimensional
Quantum Mechanical Modeling of Nanotransis-
tors. J.Appl.Phys., 91:2343–2354, 2002.

[26] G. D. Mahan. Electron-Optical Phonon Interac-
tion in Carbon Nanotubes. Physical Review B,
68:125409, 2003.

[27] J.-S. Park, H. Shin, D. Connelly, D. Yergeau,
Z. Yu, and R. W. Dutton. Ananlysis of 2-D Quan-
tum Effects in the Poly-Gate and their Impact on
the Short-Channel Effects in Double-Gate MOS-
FETs via the Density-Gradient Method. Solid-
State Electron., 48(7):1163–1168, 2004.

[28] R. Saito, G. D. Dresselhaus, and M. S. Dressel-
haus. Physical Properties of Carbon Nanotubes.
Imperial College Press, 1998.

[29] P. J. Burke. AC Performance of Nanoelectron-
ics: Towards a Ballistic THz Nanotube Transis-
tors. Solid-State Electron., 48(10-11):1981–1986,
2004.

[30] D. L. John, L. C. Castro, P. J. S. Pereira, and D. L.
Pulfrey. A Schrödinger-Poisson Solver for Mod-
eling Carbon Nanotube FETs. In Proc. Nanotech
2004, 2004.

[31] P. J. Burke. An RF Circuit Model for Car-
bon Nanotubes. IEEE Trans.Nanotechnology,
2(1):55–58, 2003.

[32] M. Radosavljevic, S. Heinze, J. Tersoff, and Ph.
Avouris. Drain Voltage Scaling in Carbon Nan-
otube Transistors. Appl.Phys.Lett., 83(12):2435–
2437, 2003.

[33] J. Guo and M. Lundstrom. Role of Phonon Scat-
tering in Carbon Nanotube Field-Effect Transis-
tors. Appl.Phys.Lett., 86:193103, 2005.

[34] J. Guo. A Quantum-Mechanical Treatment of
Phonon Scattering in Carbon Nanotube Transis-
tors. J.Appl.Phys., 98:063519, 2005.

[35] J. Guo and M. S. Lundstrom. A Computational
Study of Thin-Body, Double-Gate, Schottky Bar-
rier MOSFETs. IEEE Trans.Electron Devices,
49(11):1897–1902, 2002.

[36] R. Heinzl and T. Grasser. Generalized Compre-
hensive Approach for Robust Three-Dimensional
Mesh Generation for TCAD. In Proc. SISPAD,
pp 211–214, Tokyo, 2005.

[37] P. Schwaha, R. Heinzl, M. Spevak, and
T. Grasser. Coupling Three-Dimensinoal Mesh
Adaptation with an A Posteriori Error Estimator.
In Proc. SISPAD, pp 235–238, Tokyo, 2005.

[38] R. Sabelka and S. Selberherr. SAP — A Pro-
gram Package for Three-Dimensional Intercon-
nect Simulation. In Proc. Intl. Interconnect
Techn. Conf., pp 250–252, Burlingame, Califor-
nia, 1998.
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