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1 Negative Bias Temperature

Instability Modeling for High-

Voltage Oxides at Different

Stress Temperatures

The temperature bias instability of high-voltage oxides is
analyzed. For the investigation of negative bias tempera-
ture instability (NBTI) we present an enhanced reaction-
diffusion model including trap-controlled transport, the
amphoteric nature of the Pb centers at the Si/SiO2 in-
terface, Fermi-level dependent interface charges, and
fully self-consistent coupling to the semiconductor de-
vice equations. Comparison to measurement data for a
stress/relaxation cycle and a wide range of temperatures
shows excellent agreement.

1.1 Introduction

Negative bias temperature instability (NBTI) has come
to the forefront of scientific interest. It occurs in p-type
MOS devices stressed with negative gate bias at elevated
temperatures. In particular for thicker oxides, as used
in high-voltage devices, evidence has been found that
the degradation is dependent on two major effects, the
generation of interface traps Nit at the Si/SiO2 interface
and the transport of a mobile, hydrogen related species
into the dielectric. The generation of interface traps leads
to a shift of important transistor parameters such as the
threshold voltage Vth, the drain current Id, the transcon-
ductance gm, and the off current Ioff . Due to the need
for accurate prediction of device and circuit lifetimes,
modeling and simulation of the degradation physics has
gained importance. There are two important factors for
accurate modeling: (a) the physics of the degradation
mechanisms have to be modeled as precisely as possible
(b) the experimental and measurement setup must lead to
an exact description of the device state. Here, especially
the applied measurement technique needs special atten-
tion, as the method used for evaluating NBTI degrada-
tion can have a considerable impact on life-time extrap-
olation results [1, 2].

1.2 The Reaction-Diffusion Model

The original reaction-diffusion (RD) model was pro-
posed by Jeppson and Svensson thirty years ago [3].
Since then the model has been continuously refined. It
describes the degradation process as a reaction at the
Si/SiO2 interface generating an interface state, Nit, as
well as releasing a mobile hydrogen related species, NX .

This generation process is described as

∂Nit(t)

∂t
= kf(N0 − Nit(t))︸ ︷︷ ︸

generation

− krNit(t)NX(0, t)1/a

︸ ︷︷ ︸
annealing

.

(1)
where kf is the interface-trap generation and kr the an-
nealing rate. The symbol N0 denotes the initial num-
ber of electrically inactive Si-H bonds and NX(0, t) is
the surface concentration of the diffusing species. The
value of a gives the order of the reaction. Originally,
neutral hydrogen, H0, was proposed which is obtained
with a = 1. For molecular hydrogen, H2, a = 2 where
the molecule is assumed to be formed in the vicinity of
the interface

SiH + h+
⇋ Si+ + 1

2
H2 . (2)

The equilibrium of the forward and backward reaction
is controlled by the hydrogen density at the interface
NX(0, t). Thus, the transport mechanism of the hydro-
gen species away from the interface characterizes the
degradation mechanism, controlling for example the Vth

shift. The original reaction-diffusion model describes the
transport as a purely diffusive mechanism which is ex-
pressed by the regular diffusion equation

∂NX(x, t)

∂t
= D∇2NX(x, t) . (3)

Here D is the diffusivity of the hydrogen species in the
dielectric. As boundary condition for the Si/SiO2 inter-
face the influx of the newly created species has to be con-
sidered as ∂Nit/∂t/a.

1.3 Dispersive Hydrogen Transport

Instead of using the standard diffusion equation [3, 4]
we assume trap-controlled, dispersive, transport of the
hydrogen species [1]. The species NX consists of con-
ducting, Nc, and trapped, Nt, particles. The trapped par-
ticles are distributed in energy where the density at a trap
energy-level Et is given as ρ(x, Et, t). The trapped par-
ticles do not contribute to the transport. Thus, (3) trans-
forms to

∂Nc(x, t)

∂t
+

∂Nt(x, t)

∂t
= D∇2Nc(x, t) . (4)

At each trap energy-level a rate equation describes the
dynamics between trapping and de-trapping as

∂ρ(Et)

∂t
= c(Et)Nc

(
g(Et) − ρ(Et)

)
−r(Et)ρ(Et) .

(5)
Here, c(Et) and r(Et) are the energy-dependent capture
and release rates, and g(Et) is the trap density-of-states
(DOS), where commonly an exponential distribution is
assumed.
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1.4 TCAD Simulation

The reaction-diffusion model has been implemented in
a two- and three-dimensional numerical device simu-
lator [5] and the model equations are coupled fully
self-consistently to the semiconductor device equations.
The benefits are manifold, since now the local oxide
field, hole concentration, charged carriers, and fast in-
terface states (Fermi-level dependent charges) can be
included in both the device equations and the NBTI
model. Due to the availability of the solution of the
semiconductor equations, the trap generation rate can
be expressed as a function of the surface hole concen-
tration ps and the oxide electric field Eox as kf =
kf,0 ps/pref exp(Eox/Eref) [6] instead of using esti-
mates for p and a constant Eox. The symbols kf,0, pref ,
and Eref denote the reference values for the generation
rate, the hole concentration and the electric field.

The amphoteric nature of the Pb centers at the Si/SiO2

interface, which form the interface-traps Nit, is consid-
ered. The DOS of the Pb centers in the Si bandgap forms
two distinct peaks of Gaussian shape [7]. Pb centers in
the upper peak are assumed acceptor-like. They are elec-
trically neutral when the Fermi-level is below the trap,
and negatively charged otherwise. The traps in the lower
peak are donor-like, neutral when the Fermi-level is en-
ergetically above and positively charged otherwise. The
consideration of the exact DOS is important when the
Fermi-level is not close to the valence band, as in mea-
surement cycles.

For the comparison of measurements to simulation re-
sults the complete dynamics of degradation and anneal-
ing during the measurement intervals have to be taken
into account. In our simulations we mimic the whole
measurement procedure as closely as possible to reflect
the real world conditions and to reduce the error due to
the measurement delays.

1.5 Experiment and Results

The device under test was a 48 nm high-voltage oxide
stressed for 1000 seconds at Vg = −25 V at four differ-
ent temperatures (100, 125, 150, and 175 ◦C). A 1000
seconds relaxation phase with Vg = 0 V followed the
stress phase. To determine the threshold voltage shift
∆Vth, the stress was interrupted for two seconds at each
measurement point to perform a gate voltage sweep from
0 V to −2 V. During this period a remarkable amount
of relaxation can be observed. Thus, it is crucial to in-
clude the recovery process in the model. The important
advantage is that the threshold voltage can now be ex-
tracted from the simulation results in the same way as in
the measurements. In contrast to the standard reaction-

diffusion model (Figure 1), the extended model (Fig-
ure 2) shows excellent agreement with measurement data
for a wide range of temperatures, which can be achieved
using a single set of model parameters. During the faster
process within the first few seconds the annealing is at-
tributed to re-passivation of dangling Si/SiO2 interface
bonds with hydrogen from shallow traps close to the in-
terface. After the consumption of all quickly available
hydrogen, additional hydrogen can only be provided by
de-trapping from deep traps in the oxide bulk, which is
a slower process. As the transition is seamless, there is
no change in the time exponent during annealing. To
properly capture the relaxation phase, the DOS used in
the dispersive transport equation is modeled by an ex-
ponential tail for shallow traps for fast trapping and de-
trapping, while the slow process is governed by deep
traps given by an additional Gaussian peak well below
the hydrogen conduction band.

1.6 Conclusion

We have presented an enhanced NBTI reaction-diffusion
model with dispersive transport and fully self-consistent
coupling to the semiconductor device equations. The
amphoteric nature of the Pb centers and its Fermi-level
dependent charge state is modeled. The implementation
of the model in a multi-dimensional numerical device
simulator allows us to directly use many commonly ap-
proximated quantities such as the oxide electric field or
the interface hole concentration in a self-consistent man-
ner. The model has been calibrated to measurement data
of a high-voltage MOSFET structure at a wide range
of temperatures for both, a stress and a relaxation cy-
cle. Here the full measurement setup has been taken into
account and very good agreement has been shown. To
extend the model from thick SiO2 dielectrics to thin, ni-
trided oxides of state-of-the-art logic MOSFETs it might
be necessary to include additional effects such as hole
trapping.
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Figure 1: Comparison of the measurements to simulation results using the standard reaction-diffusion model. The
model fails to reproduce measurement data, especially in the relaxation phase.
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Figure 2: Comparison of the measurements to simulation results using the extended model. The slope of n = 0.31
during the stress phase is very well matched with the trap-controlled transport model and the agreement
in the relaxation phase is excellent.
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2 A Generic Topology Library

We present a generic topology library that is based on
topological space and combinatorial properties. A no-
tation is introduced whereby data structures can be de-
scribed by their topological cell dimensions and internal
combinatorial properties. A common interface for differ-
ent types of data structures is presented. Various issues
of iteration of these data structures can be explained from
the topological properties. Using this multi-dimensional
topology library we introduce new possibilities for func-
tional programming in the field of scientific computing.

2.1 Introduction

In this work we investigate internal topological and com-
binatorial properties of data structures and the effect on
their interfaces. Generic interfaces to data structures
have proven to be highly successful means of generic
programming. With the great achievement of access-
ing all data structures in a minimal but concise way,
generic programming has emerged. A detailed analysis
of generic programming is given in [8], where this topic
is introduced from a theoretical point of view, namely
category theory. A lot of insight is gained through this
approach and a solid base has been achieved with this
theory. Our work deals with the basic nature of topolog-
ical spaces related only to data structures and is based on
GrAL [9]. This is not as general as the category theory
approach, but the basic features and issues are exposed.

Usually programmers have to know the specific prop-

erties of data structures to achieve the best performance
of an algorithm. A simple example is the iteration and
data access within a std::vector, which is constant,
whereas the insertion or deletion uses linear time. This
is relevant for the actual run-time behavior of all imple-
mented algorithm applied to it. Closely related to this is-
sue is the fact that the C++ STL algorithms use the most
basic iteration mechanism for the access to data struc-
tures, the forward iterator mechanism. The optimal
way of iteration of containers can often not be achieved,
because linear iteration is simply not optimal [8], such
as traversing a std::map or higher-dimensional topo-
logical structures, e.g., boost::graph from the Boost
Graph library [10]. We introduce (Section 2.4.1) a uni-
fied data structure definition, where only the dimension
and the combinatorial properties of topological spaces
are specified. This can also be accomplished automat-
ically at compile-time, based on requirements of algo-
rithms.

Modern application design requires the utilization of
data structures in several dimensions. Especially the field

of scientific computing uses different topological ele-
ments to discretize partial differential equations (PDE).
Various approaches are available such as the STL con-
tainers, the BGL, and for grids the GrAL [9]. However, a
standardized interface to these data structures is miss-
ing. We introduce a basic interface (Section 2.4.2) for
different dimensions of data structures based on topolog-
ical and combinatorial properties.

A major issue of generic programming is the treatment
of data structure iteration and data access [11], but
the upcoming C++0x standard does not yet include this
insight [12]. Therefore we use the property map concept
[11], which is presented in Section 2.5 to utilize an extra
data space. Briefly, the combination of iteration and ac-
cess leads to a miscategorized algorithm specialization.

Our search for a general data structure library for the
needs of scientific computing has shown that the topo-
logical structures of different STL containers and BGL
mechanisms can be abstracted and generalized to a
multi-dimensional generic topology library (GTL). We
do not only separate the data access and iteration [11],
but also provide a formal description of the underlying
topological space with emphasis on the combinatorial
properties:

topological space + data type = data structure

With a formalization of the topological properties and the
iteration mechanism this approach renders a new possi-
bility of the functional programming paradigm (Section
2.7) which is emerging in C++ [13, 14]. Up to now,
functional expressions lack the support of a unique inter-
face for all different kinds of data structure iteration. As
we present in a generic discretization library for the dis-
cretization of various partial differential equations (GDL
[15]), the full power of functional programming is re-
vealed with consistent topological data structure. Note,
the GTL is not restricted to applications for scientific
computing, simple iterations can be specified elegantly
as well.

2.2 Motivation

Our motivation for developing generic libraries is de-
rived from the need in high performance applications in
the field of scientific computing, especially in Technol-
ogy Computer Aided Design (TCAD). Briefly, TCAD
deals with the assembly of large equation systems by
utilizing discretized partial differential equations from
different fields of physics. All types of PDEs (elliptic,
parabolic, hyperbolic) have to be considered for the var-
ious types of problems from the fields of semiconductor
simulation [16]. Different grid types and dimensions of
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topological elements, linear and nonlinear solvers with
their associated numerical issues have to be considered
during application development and demand great care
to ensure high software quality while also addressing
performance issues.

Our institute has a long history in developing such ap-
plications [17, 18, 19, 5, 20].In early years only one-
and two-dimensional data structures were used, due to
the limitations of computer resources. The imperative
programming paradigm was sufficient for this type of
task [18]. With the improvement of computer hard-
ware and the advent of the object-oriented programming
paradigm, the shift to more complex data structures was
possible. More complexity is added when modeling re-
quires a change of the underlying topological data struc-
ture, usually from regular to irregular grids. Additional
complexity is introduced by changes in the solver mech-
anisms or through the use of different types of data, e.g.,
vectorial or tensorial data [21]. The most drastic changes
usually result from a change in the discretization scheme,
or the mathematical problem formulation itself that is de-
rived from PDEs [16, 22].

The main motivation for the GTL was the circumstance
that a detailed analysis of the tools developed at our
institute has shown the following distribution between
the amount of source code for data structures and algo-
rithms:

Name Year DS Algorithm Reference
MINIMOS 1980 60% 40% [16]
S*AP 1989 60% 40% [19]
MINIMOS-NT 1996 70% 30% [5]
ELSA 1999 70% 30% [23]
WSS 2000 90% 10% [20]

Most of these applications use data structures such as
list and array as well as triangles, quadrilaterals,
tetrahedra, cuboids, each with their own different ac-
cess and storage mechanisms, and iteration operations.
Although these tools use the C++ STL to some extent,
the overall application design is not based on generic li-
braries. For this reason, the number of source lines is
growing quickly due to the complex requirements of two
and three-dimensional problems. The currently used ap-
plications exceed the limit of maintainability greatly.

This was the start for our own analysis related to
data structures and different programming paradigms in
TCAD. Our analysis then revealed that, up to now, none
of the investigated libraries (BGL, GrAL) can be used
directly. For lower-dimensional applications (0D, 1D)
the libraries suffer from higher-dimensional information,
such as incidence or adjacence. Applications, based on
libraries, which use different types of grids (triangles,
tetrahedra, cubes) were always outperformed by manu-
ally tuned applications. However, for the field of scien-

tific computing, it is essential to abstract from the itera-
tion mechanism, dimensionality, and type of the under-
lying cell complex.

2.3 Formal Specification

This section introduces the basic notation of topological
spaces and cell complexes in our approach. In Figure 3
we present an overview of the terms used.

Figure 3: Basic mathematical formalism.

Of particular interest are the combinatorial properties of
a CW-complex to characterize different data structures
of arbitrary dimensions. Hence, we introduce the formal
specification of a CW-complex [24] first. A complete
introduction of all terms is available in [9, 24].

Definition: CW-Complex C, [24]

A pair (T , E), with T a Hausdorff space and a decom-
position E into cells is called a CW-Complex, iff the fol-
lowing axioms are satisfied:

- mapping function: for each n-cell c ∈ E a continuous
function Φe : Dn → T exists, which transforms Dn

homeomorphically onto a cell c and Sn−1 in the union
of maximal (n − 1) dimensional cells. Dn represents
an n-dimensional ball and Sn−1 represents the n − 1
cell complex.

- finite hull: the closed hull(c) of each cell c ∈ E con-
nects only with a finite number of other cells.

- weak topology: A ⊂ T is open, iff each A ∩ hull(c)
is open.

An n-cell describes the cell with the highest dimension:

- zero-dimensional (0D) cell complex: vertex

- one-dimensional (1D) cell complex: edge

- two-dimensional (2D) cell complex: triangle
For this work, the most important property of a CW-
complex can be explained by the usage of differ-
ent n-cells and the consistent way of attaching sub-
dimensional cells to the n-cells. This fact is covered by
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the mapping function. From now, we use an abbrevia-
tion to specify the CW-complex with its dimensionality,
e.g., a 1-cell complex describes a one-dimensional CW-
complex. An illustration of this type of cell complex is
given in Figure 4.

Figure 4: Representation of a 1-cell complex with cells
(edges, C) and vertices (V).

In the regime of data structures the requirements of a
CW-complex, the finite hull and weak topology, are al-
ways satisfied due to the finite structure. The underly-
ing topology of a CW-complex used in computer data
structures is always generated from the power set P (X).
For this reason, the topological space cannot be used di-
rectly to characterize the different data structural prop-
erties. An example is the topological space of a random
access container specified by the following code line:

s t d : : v e c t o r <in t > c o n t a i n e r ( 3 ) ;

The topological space T is described by the power set
which models the arbitrary access of this container.

T = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

For this reason we introduce the concept of a topological
neighborhood [24].

Definition: Neighborhood
A subset A ⊆ X of a topological space T is a neighbor-
hood of an element p ∈ X , iff it contains an element O
of T that contains p.

A ⊆ X neighborhood of p ⇐⇒ ∃O ∈ T : p ∈ O,O ⊆ A

A base of neighborhoods at p ∈ X is a set of neighbor-
hoods of p such that every neighborhood of p contains
one of the base neighborhoods. We introduce the no-
tion of bn which describes the number of elements of the
base of neighborhoods. Different data structures can be
uniquely characterized by this number. To illustrate this
term we present the following list data structure:

s t d : : l i s t <in t > c o n t a i n e r ( 4 ) ;

T is also described by the power set but the base of
neighborhood can be used to characterize the list. The

following sub-set of the topology represents the base of
neighborhood of the list:

Ti = {{0, 1}, {1, 2}, {2, 3}, {3, 4}}

Next, we introduce the combinatorial properties of a cell
complex. These properties are responsible for the inter-
nal layout of data structures, as well as for the iteration
mechanisms of these data structures.

With the assumption of cell complexes and the base of
neighborhoods we introduce the following term:

Definition: Adjacence and Incidence

Given two sets a, b ∈ T , we define a binary adjacence
relation Radj(a, b) with the following properties:

Radj(a, b) : ⇐⇒ a ∩ b 6= ∅

As a special case of adjacence we define the incidence
relation Rin(a, b):

Rin(a, b) : ⇐⇒ a ∩ b = a ∨ b

The incidence relation gives the possibility of an itera-
tion of a topological spaces, using only the definition of
a base of neighborhoods which separates the combinato-
rial properties of our underlying topological spaces.

To define higher-dimensional cell complexes, a mecha-
nism is introduced which handles the internal structures
of cells. The topological space of, e.g., a triangular grid
is described by the vertex on cell information. The num-
ber of elements of a sub-set does not give any informa-
tion about the internal structure of this element. The sub-
set Tj = {1, 2, 3, 4} can describe a tetrahedron in three
dimensions or a quadrilateral in two dimensions. In or-
der to be able to distinguish these different element, we
introduce the concept of a poset:

Definition: Poset, [25]

A poset (S,<) is a finite set S, together with a partial
order relation.

In the case of a cell complex, the partial order relation
is described by incidence. A Hasse diagram can be used
to visualize the poset of a cell. Any two elements are
connected by a line, if they are comparable.

With the Hausdorff property of the CW-complex we can
uniquely characterize cells or faces by their set of ver-
tices. We define {a, b, c} as the element which exactly
contains the vertices a, b, c.

Another important property is the locality of the cell
complex. Two different properties can be distinguished,
which represent the arbitrary and the iterative access of
data structures.
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Figure 5: A Hasse-diagram for a triangle cell (top) and
a quadrilateral cell (bottom).

Definition: Global Cell Complex

A cell complex C which is homeomorphic to the follow-
ing combinatorial structure of cells [9], where id repre-
sents the dimensional ticks:

{[i1, i1 + 1] × .. × [id, id + 1] | 0 ≤ ij ≤ mj}

is called a cell complex with global properties. Here the
topological incidence relation is apparent from the fact
that global information is explicitly available. This prop-
erty is important because of the fact, that a global cell
complex describes the random access container types.

Definition: Local Cell Complex

Conversely, a cell complex which cannot be described
globally is called a local cell complex.

In scientific computing, neighborhood information of a
local cell complex has to be stored explicitly. Due to
the non-trivial construction of instances of cell complex
types, we refer to literature [26]. Related to data struc-
tures, a local cell complex models different types of lists,
trees, or maps.

2.4 Generic Topology Library

In this section we introduce the basic idea of the under-
lying cell complex for data structures. The classification
of each data structure is using the dimension of the cells.
Figure 6 shows a 0-cell complex. In this special case,
cells and vertices are identical. No neighborhood infor-
mation is given, only the cells are depicted. This topo-
logical structure covers most of the STL data structures.
The differences between each of the data structures such
as std::vector and std::list can be found in the
base of neighborhoods and the incidence relation or, in
other words, in their combinatorial properties.

The internal mechanism and utilization of the internal
structure of the data structure is not possible due to the

0-cell complex, which means that no higher incidence or
adjacence (see Section 2.3) is available directly. No data
can be stored on edges or cells easily.

Generic algorithms cannot always use the internal struc-
ture of, e.g., std::map or boost::graph without
modification. Copying a map or graph could be much
more efficient, if the algorithms were aware of differ-
ent internal topologies of data structure, such as the tree
structure of a map.

Figure 6: Iteration over cells within a 0-cell complex.

As already mentioned, applications designed in the field
of scientific computing need higher-dimensional data
structures as well as higher-dimensional iteration oper-
ations. Consider, for example, a 1-cell complex (Figure
7) and a 2-cell complex (Figure 8).

Figure 7: Iteration over edges for a 1-cell complex.

Figure 8: Iteration over cells and incident vertices of a
cell for a 2-cell complex.

In the case of the 1-cell complex, the basic concept of in-

cidence is mostly covered. There are only edges and ver-
tices, and most of the operations on these two elements
can be implemented with basic methods. For higher-
dimensional cell complexes, e.g., a 2-cell complex, the
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incidence relation becomes more complex. There are
various permutations of incidence relations which all
lead to a different iteration. All vertices connected to a
triangle, or all edges which are part of the triangle can be
traversed. Also adjacent iteration can be derived easily.

2.4.1 Topological Properties of Data Structures

We can now show, based on the formal definitions in Sec-
tion 2.3, that we can derive a consistent categorization of
different data structures and therewith a homogeneous
interface which does not restrict the dimensionality or it-
eration mechanism of the data structures. In the follow-
ing table we characterize common data structures with
their combinatorial properties. The used terms are:

- dim: dimension of the cell complex

- locality: refers to the local or global combinatorial
properties of the underlying space

- bn: represents the number of the elements of the base
of neighborhoods of the cell

SLL stands for single-linked-list whereas DLL means
double-linked-list. A global defined cell complex does
not require a base of neighborhood due to the fact, that
the neighborhood is implicitly available.

data structure dim locality bn
array/vector 0 global
SLL/stream 0 local 2
DLL/binary tree 0 local 3
arbitrary tree 0 local 4
graph 1 global
regular grid 2 global
irregular rid 2 local 4
regular grid 3 global
irregular grid 3 local 5

The next code snippet presents our topological data
structure definition. The first number stands for the ac-
tual dimension, the tags global and local stand for the
combinatorial property, and the final number specifies
the number of elements of the base of neighborhoods.

topology<0,global > topo;// array

topology<0,local,2> topo;// SLL/stream

topology<2,global > topo;// regular grid

topology<2,local,4> topo;// irregular grid

For a 0-cell complex the STL iterator traits can be used
to classify the data structure easily:

topology<0,random_acess> topo;// global

topology<0,forward> topo;// local,2

topology<0,bidirectional> topo;// local,3

Based on this formulation, an automatic mechanism is
possible to derive optimal data structures based on the
requirements of algorithms.

To show the implementation with the GTL and equiva-
lence of the data structure compared to the STL vector a
simple code snippet is presented:

Equivalence of data structures

t y p e d e f t opo logy <0, r andom access > t o p o t ;
t y p e d e f long d a t a t ;

t y p e d e f c e l l t <t o p o t , d a t a t > c o n t a i n e r t ;
c o n t a i n e r t c o n t a i n e r ;

/ / i s e q u i v a l e n t t o

s t d : : v e c t o r <d a t a t > c o n t a i n e r ;

Here, the separation of the topological structure specifi-
cation can be clearly observed.

2.4.2 Finite Cell Complexes

This section deals with the analysis of the data structures
from the STL and BGL and generalize these expressions
to arbitrary-dimensional data structures. We show that
all different data structures model a common interface
and each dimension can use specializations to obtain the
best performance.

The 0-Cell Complex A typical representative of a 0-
cell complex is the topological structure of a simple ar-
ray. The C++ STL containers such as vector and
list are representatives and are schematically depicted
in Figure 9. The points represent the cells on which data
values are stored.

Figure 9: Representation of a 0-cell complex with a
topological structure equivalent to a standard
container.

Iteration and data access is used simultaneously in the
basic iterator concept of the STL. The next code snippet
presents these facts, where the forward iteration ++it is
used to traverse the cells. The *it is used to access the
value attached to the cell at position it.

C++ STL approach

s t d : : v e c t o r <in t > c o n t a i n e r ;
s t d : : v e c t o r <in t > : : i t e r a t o r i t ;

i t = c o n t a i n e r . b e g i n ( ) ;
++ i t ; / / t o p o l o g i c a l t r a v e r s a l

i n t v a l u e = * i t ; / / da ta a c c e s s
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On the one hand side, the iterator concept is one of the
key elements of the C++ STL. It separates the actual
data structure access from algorithms. Thereby the im-
plementation complexity is significantly reduced. On
the other hand side, it combines iteration and data ac-
cess. The improvements of separating the iteration and
data access are outlined with a cursor and property map
concept [11]. A possible application of this approach is
demonstrated in the next code snippet:

Separated iteration and data access

v e c t o r <bool> c o n t a i n e r ;
v e c t o r <bool > : : i t e r a t o r i t ;
p r o p e r t y m a p pm( c o n t a i n e r ) ;

i t = c o n t a i n e r . b e g i n ( ) ;
++ i t ; / / i t e r a t i o n

bool v a l u e = pm(* i t ) ; / / da ta a c c e s s

The std::vector<bool>::iterator can be
modeled by a random access iterator [11], whereas the
data access returns a temporary object which can be used
efficiently [27] with modern compilers. Additionally,
this mechanism offers the possibility of storing more
than one value corresponding to the iterator position.
This feature is especially useful in the area of scientific
computing, where different data sets have to be managed,
e.g., multiple scalar or vector values on a vertex, face, or
cell.

Based on the formal classification of Section 2.3 we ana-
lyze the combination of iteration and data access in more
detail. The following list overviews the basic iterator
traits [28]:

- input/output

- forward

- bidirectional

- random access

As we have seen, there is a unique and distinguishable
definition possible for all of these data structural prop-
erties. On the one hand side, the backward and forward
compatibility of the new iterator categories are a major
problem [29]. On the other hand side, problems are en-
countered, if we integrate the iterator categories into our
topological specification. In the following the replace-
ment for the input and output traits is listed:

- incrementable

- single pass

- forward
The combinatorial property of the underlying space of
these three categories is the same: a 0-cell complex with
a local topological structure, defined by the following
code snippet:

topology<0, local, 2> tp;

The old iterator properties have only used two different
categories which specify the data behavior, namely the
input and output property.

The difference between these three categories can be de-
scribed by:

- incrementable: this is a topological property only

- single pass: this is a data property only

- forward: this combines the incrementable and single
pass properties

Only the incrementable property can be described by a
topological property, whereas the other two categories
are data dependent.

The 1-Cell Complex This type of cell complex is usu-
ally called a graph. Figure 4 presents a typical example.
A cell of this type of cell complex is called an edge. In-
cidence and adjacence information is available between
edges and vertices.

We give examples on simple algorithms based on graphs
using the BGL. The BGL implements comprehensive
and high performance graph treatment capabilities in-
cluding the associated adjacence and incidence relation.
Iteration and data access are separated by the already
mentioned cursor and property map concept [10]. The
next code snippet presents an iteration using mechanisms
of the BGL. In this algorithm all edges are traversed.

BGL iteration

t y p e d e f a d j a c e n c y l i s t <vecS , vecS> Graph ;
Graph gr ( n u m b e r o f p o i n t s ) ;

/ / edge i n i t i a l i z a t i o n

e d g e i t e r a t o r e i t , e i t e n d ;

f o r ( t i e ( e i t , e i t e n d ) = edges ( gr ) ;
e i t != e i t e n d ; ++ e i t )

{
t e s t s o u r c e 1 += s o u r c e (* e i t , g r ) ;
t e s t s o u r c e 2 += t a r g e t (* e i t , g r ) ;

}

With the GTL the same functionality can be accom-
plished as demonstrated in the following code snippet.
The global keyword is used to highlight the global
structure of the graph, which means, that the internal data
layout is prepared for a dense graph storage.
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GTL iteration

t y p e d e f t opo logy <1, g l o b a l > t o p o t ;
t o p o t topo ( n u m b e r o f v e r t i c e s ) ;

/ / c e l l i n i t i a l i z a t i o n

c e l l o n v e r t e x i t c o v i t , c o v i t e n d ;

f o r ( t i e ( c o v i t , c o v i t e n d ) = c e l l s ( t opo ) ;
c o v i t != c o v i t e n d ; ++ c o v i t )

{
t e s t s o u r c e 1 += s o u r c e (* c o v i t , t opo ) ;
t e s t s o u r c e 2 += t a r g e t (* c o v i t , t opo ) ;

}

The ND Cell Complex We extend the 0-cell and 1-cell
complex types to arbitrary-dimensional cell complexes.
In this work we restrict the topological spaces to the most
important to scientific computing: the local (Figure 10)
and the global cell complex (Figure 11). Based on our
cell complex types the following cell types are available:

- 0-cell: vertex

- 1-cell: edge

- 2-cell: triangles, quadrilaterals

- 3-cell: tetrahedra, cubes

Figure 10: Local cell complex (left) and a cell represen-
tation (right). Vertices are marked with black
circles.

Figure 11: Global cell complex (left) and a cell repre-
sentation (right).

The following code snippet presents the implementation
of an arbitrary topology with the structure of a local 2-
cell complex. The stored data is based on scalar values
using a double for representation.

Iteration with our approach

t y p e d e f t opo logy <2, l o c a l , 4> t o p o t ;
t o p o l o g y t r a i t s <t o p o t > : : i t e r a t o r i t ;

t y p e d e f da t a<s c a l a r , double> d a t a t ;
d a t a t d a t a ;
d a t a t r a i t s <d a t a t > : : v a l u e v a l u e ;

i t = topo . v e r t e x b e g i n ( ) ;

++ i t ; / / i t e r a t i o n

v a l u e = d a t a (* i t ) ; / / a c c e s s

The next example presents an iteration mechanism start-
ing with an arbitrary cell iterator evaluated on a cell com-
plex, which is an instance of a topological cell com-
plex. Then a vertex on cell iterator is initialized with
a cell of the complex. The iteration is started with the
for loop. During this loop an edge on vertex iterator
is created and initialized with the evaluated vertex. This
edge iterator starts the next iteration. The correspond-
ing graphical representation is given in Figure 12. The
necessary valid() mechanism models a circulator con-
cept [30]. The objects marked depict the currently eval-

Figure 12: Incidence relation and iteration mechanism.

uated objects. In the first iteration state the vertex v1

is used and the iteration is performed over the incident
edge, then the iteration continues with the remaining ver-
tices.
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A more complex iteration

c e l l i t e r a t o r c e i t = topo . c e l l b e g i n ( ) ;

v e r t e x o n c e l l i t e r a t o r v o c i t (* c e i t ) ;
f o r ( ; v o c i t . v a l i d ( ) ; ++ v o c i t )
{

e d g e o n v e r t e x i t e r a t o r e o v i t (* v o c i t ) ;

f o r ( ; e o v i t . v a l i d ( ) ; ++ e o v i t )
{

/ / o p e r a t i o n s on edges

}
}

As can be seen, the iteration mechanism can be used in-
dependently of the used dimension or type of cell com-
plex. The iteration is initialized with a cell iterator only.
Three different objects have to be assured by the cell
complex: vertices, edges, and cells. All cell complex
types which support these three objects can be used for
this iteration.

2.5 Data Access

We use the property map concept by a functional ac-
cess mechanism called data accessor. The data acces-
sor implementation also takes care of accessing data sets
with different data locality, e.g., data on vertices, edges,
facets, or cells. This locality is specified by the given
key key d. During initialization the data accessor da
is bound to a specific cell complex with that key. The
operator() is evaluated with a vertex of the cell com-
plex as argument. The next code snippet presents this
assignment briefly.

Data assignment

s t r i n g key d = ” u s e r d a t a ” ;
d a t a t da = s c a l a r d a t a ( topo , key d ) ;

da ( v e r t e x ) = 1 . 0 ;

In the following code snippet, a simple example of the
generic use of this accessor at run-time is given, where a
scalar value is assigned to each vertex in a domain. The
data accessor creates an assignment which is passed to
the std::for each algorithm.

Data assignment

d a t da = s c a l a r d a t a ( topo , key d ) ;

f o r e a c h
(

topo . v e r t e x b e g i n ( ) ,
t opo . v e r t e x e n d ( ) ,
da = 1 . 0

) ;

Another example is given, where the data accessor is
combined with the topological structure to completely
specify a container. The data accessor can be used inde-
pendently.

Equivalence of data structures

t y p e d e f t opo logy <0, r andom access > t o p o t ;
t y p e d e f long d a t a t ;
c o n t a i n e r t <t o p o t , d a t a t > c o n t a i n e r ;

/ / i s e q u i v a l e n t t o

s t d : : v e c t o r <d a t a t > c o n t a i n e r ;

2.6 GTL Architecture

The GTL is based on a layered concept, which means
that the iteration mechanism and data access mecha-
nisms are orthogonal (Figure 13). The lowest layer rep-
resents the concepts for cell, vertex, and the poset infor-
mation. The other part of the lowest layer implements the
data storage. It can be observed that data can be handled
independently of the topological information and itera-
tion. The second layer provides the incidence relation
and the data accessor mechanisms.

Figure 13: Conceptual view of the GTL.

The highest level in the GTL is based on meta and func-
tional programming for a convenient usage of the differ-
ent iteration mechanisms. To illustrate these mechanisms
different examples are presented. The first snippet shows
a simple functional iteration:
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Functional iteration

t y p e d e f t opo logy <2, r andom access > t o p o t ;
t y p e d e f long d a t a t ;
c o n t a i n e r t <t o p o t , d a t a t > c o n t a i n e r ;

g t l : : i t e r a t e <v e r t e x o n c e l l >

[
s t d : : c o u t << 1 << s t d : : e n d l

] ( c o n t a i n e r ) ;

With the GDL, different algorithms can be used as well
as presented in the next example. Here different topolog-
ical containers can be traversed and the data is accumu-
lated and printed.

GTL iteration with GDL mechanisms

t y p e d e f t opo logy <2, r andom access > t o p o t ;
t y p e d e f long d a t a t ;

c o n t a i n e r t <t o p o t , d a t a t > c o n t a i n e r ;
c o n t a i n e r t : : d a t a a c c e s s o r da ;

g t l : : i t e r a t e <c e l l >

[
s t d : : c o u t <<

g d l : : sum<v e r t e x o n c e l l > ( 0 . 0 ) [ da ( 1 ) ]
<< s t d : : e n d l

] ( c o n t a i n e r ) ;

2.7 Outlook

The field of scientific computing requires an efficient no-
tation of equation systems, has to construct equations,
and has to abstract from the iteration mechanisms of dif-
ferent underlying objects. Various algorithms in the field
of scientific computing only depend on the combinatorial
properties of the underlying space. Using only combina-
torial information results in more stable algorithms.

By providing a concise interface to different kinds of data
structures, a new type of equation specification is made
possible. In this way algorithms and equations can be
specified independently from dimension or topological
cell complex types.

To show the requirement for the equation specification
we use a simple equation system resulting from a self-
adjoint PDE type. Figure 14 presents a local patch of a
1-cell complex on which the equation is evaluated.

The data Aij represents the area of the dual
graph (Voronoi graph). Using a finite volume dis-
cretization scheme [16] a generic Poisson equation
div(ε grad(Ψ)) = ̺ can be formulated in two spatial

Figure 14: Cell complex with corresponding data.

dimensions as:

∑

j

Dij Aij = ̺ (6)

Dij =
Ψj − Ψi

dij

εi + εj

2
(7)

Dij stands for the projection of the dielectric flux onto
the cell/edge ci that connects the vertices vi and vj . The
direct transformation of each equation element can be
observed clearly when considering the following source
code:

Generic Poisson equation

v a l u e =
(

g d l : : sum<v e r t e x e d g e >

[
g d l : : d i f f <e d g e v e r t e x >

[
P s i ( 1 )

] * A( 1 ) / d ( 1 ) *
g d l : : sum<e d g e v e r t e x >[ e p s i l o n ( 1 ) ] / 2

] − rho ( 1 )
) ( v e r t e x ) ;

The term Psi represents the distributed data set, A the
Voronoi area, d the distance of two points, rho the right
hand side, and epsilon some material property. It is
important to stress that all data sets have to be evaluated
in their right data locality, that is Psi, epsilon, and
rho on vertices and A, d on the incident edges. The
example uses the unnamed function object 1 only. The
data accessor implementation handles the correct access
mechanism. The GDL implements mechanisms to derive
the correct data locality of each unnamed object. An in-
depth discussion is given in [15] The complex resulting
from this mapping is completed by specifying the current
vertex object vertex at run-time.
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2.8 Conclusion

We have shown that the specific properties of different
data structures can be specified by means of topological
and combinatorial properties. An automatic derivation
of optimal data structures based on the requirements of
algorithms is possible.

Based on the topological properties the iterator traits
can be derived automatically from combinatorial prop-
erties of the corresponding data structure. A concise it-
eration mechanism for different dimension is presented
which includes the STL containers as well as higher-
dimensional cell complex types. Different issues of
the currently used iterator mechanism can be easily ex-
plained.

The full power of functional programming is revealed,
when it performs different types of topological traversal
with our approach.
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3 Heatring - Smart Investigation

of Temperature Impact on Inte-

grated Circuit Devices

Abstract

To investigate the electrical on-chip-transistor behavior
at different temperatures usually the transistor area on
the wafer is heated by external heat sources to operate
at a specific temperature. To avoid using external heat
sources a heatring structure was developed which
directly controls the temperature of the investigated
transistor area on the wafer, guaranteeing very fast
warming up and cooling off duration times. Testing the
heatring functionality was performed by electro-thermal
simulations, the results of which were verified by
measurements.

3.1 Motivation

For testing the reliability and temperature dependence of
semiconductor devices it is necessary to operate these de-
vices at different temperature. One possibility is to use
an external heat source such as a thermo-chuck. A smart
option is to use a heatring structure. This heatring struc-
ture is placed in the wafer around the test region. Elec-
trical power loss in the heatring structure directly heats
the small well defined test area. The very big advantage
is that the heating process of this small device area has a
duration of only a few milliseconds. The thermal stress
stays locally limited. The thermal energy produced by
the electric current is well tunable. For electrically ana-
lyzing a device within the heatring, the temperature pro-
file inside the heatring area should stay constant. There-
fore, in this work we investigate the temperature distribu-
tion in the heatring area by a given applied voltage and
operating time by electro-thermal simulations. For the
evaluation of these simulations the simulated tempera-
ture results are compared to measured values.

This heatring structure is patent pending.

3.2 Investigated Structure

The structure is implemented in a WLR-monitor (Wafer
Level Reliability) or SLM (Scribe Line Monitor). A
SLM module is used to validate the manufacturing pro-
cess. It can consist of simple structures like resistors, ca-
pacitors, NMOS and PMOS transistors or even just sim-
ple rectangles to validate the lithography process step.
A SLM is placed in the scribe line (the scribe line is

the “virtual” line where the wafer will be sawed). The
SLM contains two heatrings where two different PMOS
transistors with different gate width are placed inside
(Fig. <15>). The simulation of both heatrings is not nec-
essary, since for both heatrings at the designated temper-
ature the results would be the same. Here, only the tem-
perature distribution over the heatring structure is sim-
ulated. The analysis of the electrical properties of the
transistors is not the scope of this work and can be per-
formed by a device simulator (Minimos-NT [5] or Dessis
[31], for instance).

Fig. <16> shows the experimental heatring structure
on the SLM. NDIFF is a high doped n-type area which
represents the real heatring. SN is a middle doped n-type
area. The test device is placed in the n-well DN, shielded
from the former n-doped structures by the p-doped pro-
tection ring RP. These structures are embedded in the sil-
icon wafer. Only the metallic supply pad M1 lies above
the wafer. However, for the electro-thermal simulation it
is sufficient to consider only the conducting heatring and
its insulating environment with the corresponding ther-
mal properties.

3.3 Thermal Simulation and Measured Re-

sults of the Heatring SLM

The temperature distribution which occurs directly on
the wafer is measured by diodes (Fig. <17>) placed
within the heatring. Fig. <18> illustrates the simulated
temperature distribution within the heatring structure at
70V . In this figure the top layer which consists of
SiO2 is removed for visualization purposes. However,
in the simulation this oxide layer must not be neglected
to take into account the materials around the heatring.
The top of the oxide layer is exposed to room tempera-
ture (300K), corresponding to thermal Dirichlet bound-
aries. All remaining outer faces are adiabatic (zero Neu-
mann boundary conditions). For the electrical problem
at the outer faces of the simulation area zero Neumann
boundary conditions are applied. The electrical Dirich-
let boundary conditions are represented by the control
voltage applied at the metal pads which are connected
by vias to the middle of the left side of the heatring and
to the middle of the right side, respectively. The simu-
lation is performed by our in house interconnect simula-
tion software Smart Analysis Programs [32]. It is based
on the Finite Element Method [33] on tetrahedral grid el-
ements [34]. The rise of the temperature from the center
to the heat source is about the same as with the mea-
sured result shown in Fig. <17>. Fig. <19> shows the
results of the simulated and measured temperature in the
center of the heatring structure. Only at higher heatring
temperatures the curves are slightly different. At 90V the
simulated curve gets more than 160°C. Since the sim-
ulated structure is very small compared to a wafer, the
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Figure 15: Schematic of the heatring SLM structure
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temperature distribution is “cut” on the side areas (ho-
mogeneous Neumann boundary conditions). So the heat-
flow normal to the surface is stopped and thus the tem-
perature of the whole model region is higher than ex-
pected. On the real wafer the heat-flow is not limited
close to the heat source. Thus there is enough space for
a wider heat spread and the measured curve is almost
linear at higher heatring voltages. Enlarging the ther-
mal simulation area overcomes this constraint, however,
in this case longer simulation durations have to be ac-
counted for.

3.4 Theoretical Background

3.4.1 Electro-Thermal Simulation

For a coupled electro-thermal simulation the heat con-
duction system

cpρ
∂T

∂t
− ~∇ · (γT

~∇T ) = p (8)

has to be considered [35] [36], where the solution of (8)
gives the temperature T . The material properties are de-
fined by the thermal conductivity γT , by the specific heat
cp, and by the mass density ρ. The source density func-
tion p corresponds to the electrical power loss density
and is calculated by

p = γE(~∇ϕ)2. (9)
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Figure 18: Simulated heatring temperature distribution at UHeatring = 70V

Figure 19: Temperature in the heatring center

Finally, the power loss density p in (9) is derived from the
the electric potential ϕ, which is calculated by solving
the Euler equation

~∇ · (γE
~∇ϕ) = 0, (10)

where γE denotes the electrical conductivity. The partial
differential equations (8), (9) and (10) couple the electri-
cal and the thermal system.

The electrical conductivity and the thermal conduc-
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tivity of most materials depend on the temperature. Usu-
ally the following model is used to describe this depen-
dence:

γ(T ) = γ0

1

1 + α(T − T0) + β(T − T0)2
.

γ0 is the (electric/thermal) conductivity at reference tem-
perature T0 (300K). α and β denote a linear and a
quadratic temperature coefficient, respectively.

3.4.2 Boundary Conditions

The boundary of the simulation area G is divided into
two parts for the thermal system (GT1 and GT2) and also
into two parts for the electrical system (GE1 and GE2).
The Dirichlet boundary conditions for the thermal part of
the system model the heat sinks.

T = Tc on GT1

An adiabatic (ideal thermally insulating) boundary is de-
scribed by homogeneous Neumann boundary conditions

~n · ~∇T = 0 on GT2.

The applied electrical contact potentials ϕ represent
Dirichlet boundary conditions for the electric part

ϕ = ϕc on GE1.

Constant current sources are implemented by Neumann
boundary conditions

~n · ~∇ϕ = fc on GE2 with Jn = γ ~n · ~∇ϕ.

3.4.3 Initial Conditions

For transient thermal problems the condition T0 for the
temperature at initial time t = 0 has to be defined

∀~r ∈ V , t = 0 : T (~r, 0) = T0.

3.5 Conclusion

In this work a heating structure placed in a wafer around
a test region is proposed. This structure guarantees con-
stant temperature distribution in the investigated area and
a very fast heating process.
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4 Monte Carlo Study of Electron

Transport in Strained Silicon

Inversion Layers

The effect of degeneracy both on the phonon-limited
mobility and the effective mobility including surface-
roughness scattering in unstrained and biaxially tensile
strained Si inversion layers is analyzed. We introduce
a new method for the inclusion of the Pauli principle
in a Monte Carlo algorithm. We show that inciden-
tally degeneracy has a minor effect on the bulk effec-
tive mobility, despite non-degenerate statistics yields un-
physical subband populations and an underestimation
of the mean electron energy. The effective mobility
of strained inversion layers slightly increases at high
inversion layer concentrations when taking into account
degenerate statistics.

4.1 Introduction

During the last years the introduction of strain in the
channel of Si MOSFETs has become a widely used tech-
nique to improve transistor drive currents [37] [38] [39].
Strain can be induced by epitaxially growing thin Si lay-
ers on relaxed Si1−yGey substrates, or alternatively, by
processing additional cap layers over the transistors. The
latter method is especially suitable for mass production
because it requires only a slight modification of the pro-
cess flow [40].

Surprisingly, from a theoretical viewpoint the mobility
enhancement caused by strain is still an issue of discus-
sion. The reason for this is manifold: It was claimed that
using the well established models for scattering in the
two dimensional electron gas (2DEG) the mobility gain
of strained Si (SSi) at low effective fields should be com-
pensated by more pronounced surface roughness scatter-
ing at large effective fields [41]. Due to this fact, only
with the assumption of much smoother strained Si-SiO2

interfaces one should be able to get qualitative agreement
with experimental data. Even though it seemed to be
unphysical to change the smoothness of the strained Si-
SiO2 interface, the Monte Carlo (MC) community has
adopted this assumption [42] or simply not responded to
the troubling fact.

When trying to clarify this dissatisfactory status two
main difficulties arise: First, there exists a variety of
surface roughness scattering models, and it is not clear
which approximations to the general expression given by
Ando [43] are allowed. Second, there is a discordance
whether and how degeneracy effects should be included
in transport calculations of inversion layers.

In this paper, the ways to include the Pauli principle in
a MC algorithm are revised and critically compared to

each other. The usual method, where the Pauli block-
ing factor 1 − f(k) is approximated using the equilib-
rium distribution function fFD(k), can be shown to lead
to unphysical subband populations, kinetic energies, and
mobilities. The reason being that at high degeneracy the
error ε(k) = f(k) − fFD(k) is dominant. A new MC
algorithm accounting for the Pauli exclusion principle is
proposed which is less sensitive to the error ε(k).

The paper is organized as follows: Section II describes
the new approach to implement the Pauli exclusion prin-
ciple in the MC method. It is shown that in the low field
limit the proposed algorithm yields the same mobility
as the Kubo Greenwood formula, while other algorithms
do not. We use the new method to extract velocity pro-
files and illustrate the large effect of degeneracy on the
electron system. Finally, the simulated effective mobility
curves for unstrained and biaxially tensile strained Si on
relaxed Si1−yGey substrates are presented in Section III.

4.2 Inclusion of the Pauli Principle in

Monte Carlo Simulations

In transport calculations of the 2DEG forming in the
channel of MOSFETs the inclusion of the Pauli princi-
ple is expected to be important since the lowest subband
may lie well below the Fermi level in the regime of mod-
erate and high effective fields (high inversion layer con-
centrations). This leads to modified subband populations
and an elevated mean kinetic energy of electrons as com-
pared to the nondegenerate case. A change in the mobil-
ity is therefore to be expected.

The proposed algorithm is based on the following refor-
mulation of the degenerate scattering operator.

Q[f ]k=

∫
fk′(1 − fk)Sk′,k dk′−

∫
fk(1 − fk′)Sk,k′ dk′

=

∫
fk′Sk′,k − fkSk,k′ + fkfk′(Sk,k′ − Sk′,k)

︸ ︷︷ ︸
additional term

dk′.

The last term represents a nonlinear correction to the
non-degenerate scattering operator. To linearize the scat-
tering operator it is common to keep one factor of the
product fkfk′ constant and to treat the other as the un-
known.

Near thermodynamic equilibrium, f can be approxi-
mated by the Fermi-Dirac distribution function fFD.
The key point of the new method is that a symmetric
approximation with respect to k and k

′ is employed.

f(k)f(k′) ≈
1

2

(
f(k)fFD(k′) + fFD(k)f(k′)

)
(11)

Using this approximation the scattering operator can be
expressed in terms of a modified transition rate Ŝk,k′ and
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scattering rate λ̂k as

Q[f ]k =

∫
f(k′)Ŝk′,k dk′ − f(k)λ̂k.

with

bSk,k′ = Sk,k′

„

1 −
1

2
fF D(k′)

«

+ Sk′,k

1

2
fF D(k′)(12)

bλk =

Z

bSk,k′ dk
′ (13)

A simple error analysis shows the advantage of this for-
mulation. Consider a highly degenerate state k, char-
acterized by f(k) ≈ 1. A direct approximation of the
blocking factor (1 − f(k)) can give completely wrong
results, because the approximation of the blocking factor
is determined by the error, 1 − (fFD + ε) ≈ ε. In the
formulation (12), however, because of ε ≪ 1 the effect
of the error will be negligible, 1 − (fFD + ε)/2 ≈ 1/2.

The modified transition rate (12) is given by a linear
combination of the forward rate Sk,k′ and backward rate
Sk′,k. The latter can be expressed in terms of the for-
ward rate by means of the principle of detailed balance.
The modified scattering rates for phonon emission and
absorption become,

λ̂em = λem ·

(
1 −

1

2

fFD(ǫf )

N0 + 1

)

λ̂ab = λab ·

(
1 +

1

2

fFD(ǫf )

N0

)
,

where ǫf denotes the final energy and N0 the equilibrium
phonon distribution function,

N0 =
1

exp
(

~ω0

kBT

)
− 1

.

For elastic scattering mechanisms the modified scatter-

ing rates do not change from the classical ones, λ̂k = λk.
In the simulation of the 2DEG to a good approximation
one can assume scattering with surface roughness, impu-
rities, and acoustical phonons to be elastic.

To implemenent the Pauli principle in a conventional MC
program for non-degenerate statistics the only modifica-
tions necessary are the replacement of the classical scat-
tering rates by the modified ones.

4.2.1 Comparison of Algorithms

The new algorithm has been compared to two other
methods found in the literature [44, 45]. The first al-
gorithm to include the Pauli principle in the MC tech-
nique [44] is based on a self-consistent iterative algo-
rithm that uses a rejection technique to account for the
occupation probability of the final state at each scatter-
ing event. Since this auxiliary self-scattering mechanism

is proportional to the occupation of the final states, the
algorithm prevents a large number of classically allowed
transitions.

A different approach to include degeneracy in MC sim-
ulations was given in [45]. Inelastic scattering rates are
multiplied with a factor of (1−fFD(ǫf ))/(1−fFD(ǫi)),
where ǫi (ǫf ) denotes the initial (final) electron energy.
This additional factor stems from the use of Fermi-Dirac
statistics within the relaxation time approximation [46].

In the limit of vanishing field the mobility can also be
calculated using the relaxation time approximation. Thus
we compare our MC algorithm and a modified method
from [44] and [45] to the mobility calculated from the
Kubo-Greenwood expression [47]. From Figure 20 it can
be seen that the new method yields the closest agreement,
whereas a non-selfconsistent implementation of the al-
gorithm proposed in [44], where f(k) has been approx-
imated by the equilibrium distribution function fFD(k),
and the algorithm proposed by [45] overestimate the ef-
fective mobility.

4.3 Results

We extract the mean electron velocity as a function of
total electron energy in the small-field limit, by record-
ing the velocity component along the driving field as a
function of the total electron energy. For this purpose the
particles energy domain was divided into a set of inter-
vals ∆E . The mean velocity of an electron in a particular
interval E0 ≤ E ≤ E0 + ∆E can be obtained during a
MC simulation from a history of duration T

v(E0)=
1

T

∫ T

0

v[k(t)]×
(
θ[E(t)−E0]−θ[E(t)−E0−∆E ]

)
dt,

(14)
where θ(E) denotes the step function and k(t) represents
the electron wave vector during the flight. Note that the
overall mobility is proportional to the sum of the mean
velocities of all intervalls.

A very interesting behavior can be observed when com-
paring the mean velocities resulting from simulations
with classical and Fermi-Dirac statistics. The upper
plot of Figure 21 shows that when considering only
phonon scattering the mean velocities coincide for both
simulation modes in the non-degenerate regime (Ef −
E0 ≈ −0.13 eV). At high inversion layer concentra-
tions, where the 2DEG is highly degenerate (Ef −E0 ≈
0.8 eV), a shift of the mean velocity distribution toward
higher energies and a decrease of its peak can be ob-
served as compared to the mean velocity resulting from
simulations without the Pauli principle. The coincidence
of the mean velocities in the non-degenerate regime is
merely a test that the algorithm with the Pauli principle
included converges to the classical algorithm for the non-
degenerate 2DEG. At high inversion layer concentrations
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the different mean velocities can be interpreted as fol-
lows: In simulations neglecting the Pauli principle elec-
trons will have an equilibrium energy of kBT whereas
the mean energy resulting from simulations with the
Pauli principle can be more than twice as much. Since
phonon scattering is merely proportional to the density
of states, which is an increasing step-like function in the
2DEG, electrons being at higher energies – as it is the
case in simulations with the Pauli principle – experience
more scattering and thus the phonon-limited mobility is
strongly decreased (see Figure 22).

The lower plot of Figure 21 shows the mean velocities
when surface roughness scattering has been included in
simulations. In the low inversion layer density regime
(depicted in grey) surface roughness scattering does not
play an important role, and the mean velocities compare
well with the simulation results with only phonon scat-
tering included. Interestingly now even at high inversion
layer densities the mean velocities (depicted in black)
stemming from simulations with and without the Pauli
principle do not differ as much. The large peak in the
mean velocity at small energies that could be observed
in simulations including only phonon scattering but ne-
glecting the Pauli principle is here suppressed. This
stems from the influence of surface roughness scattering
which is more effective at small energies in contrast to
phonon scattering.

Finally from Figure 21 one can also observe that due to
degeneracy effects electrons at energies below the Fermi
level have smaller velocities which corresponds to the
general picture that these electrons have little contribu-
tion to transport.

The new algorithm is used to extract the effective mo-
bility in unstrained and biaxially tensile strained Si
inversion layers. For the simulations a one-dimensional
Schrödinger-Poisson solver [48] is used with modifica-
tions to account for the energy splitting between the
twofold and the fourfold conduction-band minima and
for the change of the band-gap [41]. From these results
the matrix elements for phonon and surface roughness
scattering and the form factors are calculated following
[49]. Screening of the surface roughness scattering was
included according to [49] while impurity scattering has
been ignored as we mainly focus on the high-density
(high effective field) region. The dielectric function was
treated as a tensor quantity and not as a scalar function
as the latter approximation is only valid for ideal 2D sys-
tems where the wave functions have a δ-like shape. Fur-
thermore the plasma dispersion function was not used
to calculate the polarization function, as the plasma dis-
persion function underestimates the polarization func-
tion in the degenerate case. A non-parabolic bandstruc-
ture (α = 0.5 eV−1) was used leading to a 20% reduc-
tion of the phonon-limited mobility at 300 K in agree-
ment with [41]. For all simulations presented here a uni-

form doping concentration of 2 × 1016 cm−3 has been
assumed.

The simulated mobility curve for unstrained Si in the up-
per plot of Figure 22 shows good agreement with the
universal mobility curve by Takagi [50]. Surprisingly,
the effective mobility resulting from simulations with de-
generate statistics are in close agreement to those using
classical statistics even though the phonon-limited mo-
bility experiences a noticeable reduction when using de-
generate statistics. As previously discussed, this close
agreement can only be understood from the cancella-
tion of two effects: Degeneracy leads to an increase of
the mean kinetic energy. This leads to an increase in
phonon scattering and a decrease in the mobility. At the
same time electrons with larger kinetic energies experi-
ence less effective surface-roughness scattering, thus the
surface roughness limited mobility is increased. In un-
strained Si by chance these two effects cancel each other
at all effective fields, and the difference between a sim-
ulation with non-degenerate and degenerate statistics is
very small.

Having calibrated our model against the unstrained uni-
versal mobility curve, a simulation of biaxially strained
Si on relaxed Si1−yGey substrates with y = 0.25
was performed. From Figure 22 it can be observed
that in SSi inversion layers, where the ratio between
phonon and surface roughness scattering is different –
due to suppressed intervalley transitions – simulations
with degeneracy effects yield higher mobilities µsr,deg >
µsr,nondeg.

Our simulation results for the inversion layer mobility in
biaxially strained Si on Si1−yGey for various Ge con-
tents suggest a saturation of the mobility enhancement at
y ≈ 25%. As can be seen from Figure 22 the anomalous
intersection of the strained and unstrained mobility curve
from [41] was not observed, however Figure 23 indicates
that the predicted mobility for SSi is still underestimated.

4.4 Conclusion
By means of MC simulations we are able to deduce the
effect of degeneracy both on the phonon-limited mobility
and the effective mobility including surface-roughness
scattering. It is shown that in the unstrained case the
inclusion of the Pauli principle leads to a noticeable re-
duction of the phonon-limited mobility, but has almost
no impact on the effective mobility. The effective mo-
bility of strained inversion layers increases slightly at
high inversion layer concentrations when taking into ac-
count degenerate statistics. Thus a correct treatment of
degenerate carrier statistics of the 2DEG of strained Si
inversion layers is important.

However, this study cannot explain the experimental mo-
bility enhancement for SSi, which is still underestimated
at large effective fields, where surface roughness scatter-
ing dominates. Thus a careful revision of surface rough-
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ness scattering might be needed to achieve the correct
mobility enhancements.
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5 Quantum Correction for DG

MOSFETs

The characteristics of modern semiconductor devices are
strongly influenced by quantum mechanical effects. Due
to this fact, purely classical device simulation is not suf-
ficient to accurately reproduce the device behavior. For
instance, the classical semiconductor equations have to
be adapted to account for the quantum mechanical de-
crease of the carrier concentration near the gate oxide.
Several available quantum correction models are derived
for devices with one single inversion layer and are there-
fore only of limited use for thin double gate (DG) MOS-
FETs where the two inversion layers interact. We present
a highly accurate quantum correction model which is
even valid for extremely scaled DG MOSFET devices.
Our quantum correction model is physically based on the
bound states that form in the Si film. The eigenenergies
and expansion coefficients of the wave functions are tab-
ulated for arbitrary parabolic approximations of the po-
tential in the quantum well. Highly efficient simulation
of DG MOSFET devices scaled in the decananometer
regime in TCAD applications is made possible by this
model.

5.1 Introduction

Continously downscaling of the device geometry in-
creases the influence of quantum mechanical effects on
the device characteristics. Besides tunneling, the effect
of quantum confinement highly affects the characteris-
tics of bulk, silicon-on-insulator (SOI), and double gate
(DG) MOSFET devices under inversion conditions.

Purely classical device simulation without adequate
quantum correction is no longer sufficient to provide
proper results since it predicts an exponential increase
of the carrier concentration towards the gate oxide inter-
face. However, due to quantum confinement, which af-
fects the local density of states, the carrier concentration
near the gate oxide decreases as shown in Figure 24.

Schrödinger Poisson (SP) solvers, which deliver a self
consistent solution of a quantum mechanically calculated
carrier concentration and the Poisson equation, provide
accurate results for the carrier concentration within 1d
slices perpendicular to the oxide interface. However,
since the evaluation of the quantum mechanical electron
density is computationally very demanding, the applica-
tion of SP solvers is impractical.

In order to obtain proper results at significantly reduced
CPU time, several quantum correction models for classi-
cal simulations have been proposed [51, 52, 53, 54, 55].
However, some of these corrections are based on em-
pirical fits with numerous parameters [52, 53]. In some
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Figure 24: Quantum mechanical electron concentration
within a DG MOSFET device. The concen-
tration strongly decreases towards the oxide
interfaces due to geometrical confinement.

other models, the dependence on the electrical field ad-
versely affects the convergence behavior [51]. Practi-
cally, the model proposed in [54] has to be recalibrated
for each device. A comprehensive comparison of these
models can be found in [56]. In addition, none of these
models is suitable for highly scaled DG MOSFETs in
the deca nanometer regime where two coupled inversion
regions occur. In this work, we present a new, physi-
cally based, and more specific approach for state-of-the-
art DG MOSFETs.

5.2 Approach

The classical carrier concentration is based on the as-
sumption of a free 3-dimensional electron gas and Boltz-
mann statistics and shows exponential increase towards
the semiconductor-oxide interface. However, the physi-
cally correct quantum mechanically derived carrier con-
centration strongly decreases towards the interface. The
classically derived concentration is adjusted to be equal
to the quantum mechanically calculated carrier concen-
tration [57] by introducing the quantum correction po-
tential ϕcorr as

ncl,corr = NC exp
(
−

Ec − qϕcorr − EF

kBT

)
,

nqm = NC1

∑

n

|Ψn(x)|2 exp
(
−

En − EF

kBT

)
.

Here, NC and NC1 denote the effective density of states
for classical and the quantum mechanical carrier concen-
tration, respectively. ϕcorr describes the quantum correc-
tion potential, Ec the conduction band edge energy, and
EF the Fermi energy.
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Figure 25: A cut of the conduction band edge en-
ergy perpendicular to the semiconductor-
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its parabolic approximation. Furthermore,
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This approach requires the knowledge of the energy lev-
els En and the wavefunctions Ψn(x) of the quantized
states. To avoid the computationally expensive solution
of the Schrödinger equation, we tabulate the solutions
for a parabolic shaped approximation of the conduction
band edge,

Ec(x) = Emax − a(d/2 − x)2 ,

as displayed in Figure 25. Input parameters are the film
thickness d and the curvature a which is derived from
an initial classical simulation. The wave functions are
expanded as

Ψn(x) =
∑

k

ξn,k

√
2

d
sin

(π

d
kx

)
.

Hence, the offset of the energy levels ǫn and the expan-
sion coefficients of the wavefunctions ξn,k can be found
by interpolation of tabulated values. This allows one to
estimate a correction potential ϕcorr such that the cor-
rected classical carrier concentration is consistent with
the SP solution

exp
(
−

qϕcorr

kBT

)
= exp

(
−

a(d/2 − x)2

kBT

)

×
∑

m

NC1,m

NC

∑

n

|Ψm,n(x)|2 exp
(
−

ǫm,n − EF

kBT

)
.

Here, m denotes the summation over the different valley
sorts (three for silicon) [58].
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Figure 26: The classical, the quantum mechanical, and
the corrected classical electron concentration
of a double gate MOSFET structure with
5 nm silicon film thickness. Gate voltages of
0.5 V, 0.7 V, and 1.5 V were applied. DGTab
quantum corrected curves show outstanding
agreement with quantum mechanically de-
rived curves for all applied gate voltages.
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Figure 27: The classical, the quantum mechanical, and
the corrected classical electron concentration
of a double gate MOSFET structure with
10 nm silicon film thickness at gate volt-
ages of 0.5 V, 0.7 V, and 1.5 V respectively.
DGTab quantum corrected curves show out-
standing agreement with quantum mechani-
cally derived curves for all applied gate volt-
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Figure 28: The total amount of the inversion charge
as a function of the gate voltage for DG
MOSFETs with film thicknesses of 5 nm and
10 nm respectively. The upper left curves are
plotted in logarithmic scale, the lower right
ones in linear scale. DGTab quantum cor-
rected curves show outstanding agreement
with quantum mechanically derived curves
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Figure 29: The resulting gate capacitance as a func-
tion of the gate voltage for DG MOSFETs
with film thicknesses of 5 nm and 10 nm, re-
spectively. DGTab quantum corrected curves
show outstanding agreement with quantum
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Figure 30: Output characteristics of a double gate
MOSFET device with a Si film thickness of
20 nm. The current is overestimated by a
purely classical simulation because of the ex-
ponentially increasing carrier concentration
near the oxide interfaces.

5.3 Results

We implemented this model in our general purpose de-
vice simulator MINIMOS-NT [5]. Our SP simulator VSP
was used to derive the reference QM curves. The ap-
plied iteration scheme of an initial classical simulation
followed by a single quantum correction step and a fi-
nal classical simulation with corrected bandedges deliv-
ers results in the same accuracy as a complete self con-
sistent simulation.

Figure 26 and Figure 27 show the electron concentration
at different bias points for DG MOSFETs with 5 nm and
10 nm film thickness. Outstanding agreement between
the QM and the corrected classical curves (DGTab) is
achieved.

Both the inversion charge and the gate capacitance
shown in Figure 28 and Figure 29 demonstrate excel-
lent agreement between DGTab and S/P curves for a
wide range of gate voltages and relevant film thicknesses.
Since the derived inversion charge is based on the accu-
rate carrier concentration, no further fitting parameters
had to be introduced.

Figure 30 displays the output characteristics of a double
gate MOSFET with a silicon film thickness of 20 nm.
Purely classical simulation overestimates the current in
the entire range because of the increased carrier concen-
tration near the oxide interfaces.
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5.4 Conclusion

We derived a quantum correction model specifically for
double gate MOSFETs based on the bound states that
form in the silicon film. The model accurately repro-
duces both the carrier concentration distribution and gate
capacitance characteristics as well as the total inversion
charge even for extremely scaled DG MOSFET devices.
Due to its computational efficiency, the model is well
suited for TCAD simulation environments.

5.5 Acknowledgement

This work has been partly supported by the European
Commission, project SINANO, IST 506844 and from the
Austrian Science Fund, special research project IR-ON
(F2509-N08).



References 26

References

[1] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert,
G. Groeseneken, and M. Goodwin. Temperature
Dependence of the Negative Bias Temperature In-
stability in the Framework of Dispersive Transport.
Appl.Phys.Lett., 86:143506, 2005.

[2] M. Ershov, S. Saxena, H. Karbasi, S. Winters,
S. Minehane, J. Babcock, R. Lindley, P. Clifton,
M. Redford, and A. Shibkov. Dynamic Recovery
of Negative Bias Temperature Instability in p-Type
Metal-Oxide-Semiconductor Field-Effect Transis-
tors. Appl.Phys.Lett., 83(8):1647–1649, 2003.

[3] K. O. Jeppson and C. M. Svensson. Negative
Bias Stress of MOS Devices at High Electric Fields
and Degradation of MNOS Devices. J.Appl.Phys.,
48(5):2004–2014, 1977.

[4] S. Ogawa and N. Shiono. Generalized Diffusion-
Reaction Model for the Low-Field Charge Build
Up Instability at the Si/SiO2 Interface. Phys.Rev.B,
51(7):4218–4230, 1995.

[5] Institut für Mikroelektronik, Techni-
sche Universität Wien, Austria.
MINIMOS-NT 2.1 User’s Guide, 2004.
www.iue.tuwien.ac.at/software/.

[6] M. A. Alam and S. Mahapatra. A Comprehensive
Model of PMOS NBTI Degradation. Microelec-

tron.Reliab., 45(71-81):71–81, 2005.

[7] A. Haggag, W. McMahon, K. Hess, K. Cheng,
J. Lee, and J. Lyding. High-Performance Chip
Reliability from Short-Time-Tests. In Proc.

Intl.Rel.Phys.Symp., pp 271–279, 2001.

[8] G. Dos Reis and J. Jarvi. What is Generic Pro-
gramming? In Library Centric Sofware Design,

OOPSLA, San Diego, CA, USA, 2005.

[9] G. Berti. Generic Software Components for Sci-

entific Computing. PhD thesis, Technische Univer-
sität Cottbus, 2000.

[10] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost

Graph Library: User Guide and Reference Man-

ual. Addison-Wesley, 2002.

[11] D. Abrahams, J. Siek, and T. Witt. New Itera-
tor Concepts. Technical Report N1477 03-0060,
ISO/IEC JTC 1, Information Technology, Subcom-
mittee SC 22, Programming Language C++, 2003.

[12] D. Gregor, J. Willcock, and A. Lumsdaine. Con-
cepts for the C++0x Standard Library: Iterators.
Technical Report N2039=06-0109, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22,
Programming Language C++, 2006.

[13] Boost. Boost Lambda Library.
http://www.boost.org.

[14] Boost. Boost Phoenix, 2004.
http://spirit.sourceforge.net/.

[15] M. Spevak, R. Heinzl, P. Schwaha, T. Grasser, and
S. Selberherr. A Generic Discretization Library. In
Library Centric Sofware Design, OOPSLA, Port-
land, OR, USA, 2006.

[16] S. Selberherr. Analysis and Simulation of Semicon-

ductor Devices. Springer, Wien–New York, 1984.

[17] S. Selberherr, A. Schütz, and H.W. Pötzl.
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[20] T. Binder, A. Hössinger, and S. Selberherr. Rigor-
ous Integration of Semiconductor Process and De-
vice Simulators. IEEE Trans.Comp.-Aided Design

of Int. Circ. and Systems, 22(9):1204–1214, 2003.

[21] W. Benger. Visualization of General Relativistic

Tensor Fields via a Fiber Bundle Data Model. PhD
thesis, Freie Universität Berlin, 2004.

[22] P. A. Markowich, C.A. Ringhofer, and
C. Schmeiser. Semiconductor Equations. Springer,
Wien-New York, 1990.

[23] A. Sheikholeslami, E. Al-Ani, R. Heinzl,
C. Heitzinger, F. Parhami, F. Badrieh, H. Puchner,
T. Grasser, and S. Selberherr. Level Set Method
Based General Topography Simulator and its Ap-
plications in Interconnect Processes. In Intl. Conf.

on Ultimate Integration of Silicon, pp 139–142,
Bologna, Italy, 2005.

[24] K. Jänich. Topologie. Springer, Heidelberg, 2001.

[25] A. J. Zomorodian. Topology for Computing. In
Cambridge Monographs on Applied and Computa-

tional Mathematics, 2005.

[26] J. R. Shewchuk. Delaunay Refinement Mesh Gen-

eration. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, 1997.



References 27

[27] J. Siek and A. Lumsdaine. Mayfly: A Pattern for
Lightweight Generic Interfaces. In Pattern Lan-

guages of Programs, 1999.

[28] M. H. Austern. Generic Programming and the

STL: Using and Extending the C++ Standard Tem-

plate Library. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1998.

[29] M. Zalewski and S. Schupp. Changing Iterators
with Confidence. A Case Study of Change Impact
Analysis Applied to Conceptual Specifications. In
Library Centric Sofware Design, OOPSLA, San
Diego, CA, USA, 2005.

[30] A. Fabri. CGAL- The Computational Ge-
ometry Algorithm Library, 2001. cite-
seer.ist.psu.edu/fabri01cgal.html.

[31] J. Litsios, B. Schmithüsen, U. Krumbein,
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