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1 Intrinsic Stress Build-Up During
Volmer-Weber Crystal Growth

We present a model for build-up of intrinsic stress dur-
ing the deposition of thin metal films. The model as-
sumes a three-phase stress generation mechanism which
corresponds to three characteristic phases of microstruc-
ture evolution. The simulation results based on the model
are successfully compared with experimental results for
Poly-SiGe PECVD films. The impact of critical parame-
ter variation on mechanical properties of thin film is dis-
cussed.

1.1 Introduction

Residual mechanical stress introduced during deposition
of thin films and coatings has a significant impact on
the reliability of electronic devices and structural compo-
nents. The mechanical stress in thin metal films consists
of a thermal component and an intrinsic component due
to the evolution of the metal microstructure during film
growth.

The goal of this work is the integration of the respective
models for the specific phases of microstructural evolu-
tion into a comprehensive model which describes the in-
trinsic stress behavior during the entire deposition pro-
cess. This model can be used to assess and optimize the
mechanical stability of multilayer structures.

1.2 Theoretical Considerations

The model introduced here is based on the work pre-
sented in [1, 2, 3]. For the sake of generality we de-
fine our model in the sense of strain which is developed
during the deposition of a metal film due to microstruc-
tural evolution. We combine three microstrain genera-
tion mechanisms, each arising in the characteristic phase
of thin film growth (Fig. 1).

In the initial phase we assume the so-called Volmer-
Weber growth which includes a build-up of a strong com-
pressive stress component due to the Laplace pressure of
isolated material islands [1]. It is followed by a tensile
stress mechanism which operates during the island co-
alescence phase and thereafter [1]. The third phase in-
troduces again a compressive component, but this time
due to adatom insertion into the top of the grain bound-
aries (Fig. 2). The basic feature of our approach is an in-
troduction of the strain-gradient functionω(z, r) which
depends on the grain size distribution functionL(z) and
material deposition rater. L(z) can be obtained by using

several different algorithms which simulate the morphol-
ogy evolution of the thin film microstructure according to
the Van der Drift mechanism [4]. An example concern-
ing the Van der Drift growth for a representative group of
9 grains is given in Fig. 3 and Fig. 4. The evolution of the
microstrainεI(z, r) in the direction of the film growth is
given by (1). The microstrain consists of the contribu-
tion from the first phaseεt,1(zi, r), wherezi is the film
thickness after a coalescence, and an integral term re-
lating to microstrain development in the second and the
third phase (2),

εI(z, r) = εt,1(zi, r) +

∫ z

zi

ω(w, r) dw, (1)

ω(z, r) = ωt,2(z, r) + ωc,3(z, r). (2)

The strain-gradient functionω(z, r) consists of a tensile
(ωt,2(z, r)) and a compressive (ωc,3(z, r)) component.
The third phase compressive contributionωc,3(z, r) (3)
depends on the jumping frequencyΓc of adatoms into a
grain boundary (Fig. 2) and adatom concentrationsCa,
C0, at the top of the grain boundary and elsewhere on
the grain surface, respectively [1].ε∗ is the local strain
at the top of the grain andβ = ΩM/kT [1].

ωc,3(z, r) = −2 Ω Γc

L(z) r

(
Ca − C0 e−βε∗

)
(3)

The straightforward way to apply a microstrain model
on larger multilayer structures is given by using linear
elastic theory. In this case the microstrain acts as residual
stress,

σ(x, y, z) = D(ε(x, y, z) − εI(z, r)I). (4)

The overall mechanical problem is defined by the equi-
librium condition∇σ = 0. The obtained system of par-
tial differential equations is solved by means of the finite
element method.

1.3 Simulation Results and Discussion

Since our model is defined for general Volmer-Weber
crystal growth, it can be applied for a multitude of dif-
ferent metals and deposition processes. For example, a
well established fact is that AlN, copper, and SiGe thin
films deposited on a Si/SiO2 layer exhibit Volmer-Weber
growth with three distinctive stress generation phases
([1, 5, 3]). We have applied our model for Poly-SiGe
PECVD thin film deposition [6]. For an experimen-
tal thin film deflection a microstrain curve has been ex-
tracted in our previous work [7]. The comparison be-
tween this experimental microstrain and the microstrain
obtained by the presented three-phase model is given in
Fig. 5. Three phases of the microstructure are clearly
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Figure 2: Third phase. Adatoms are inserted between
the grain boundaries.

Figure 3: Grains after coalescence.

Figure 4: Grains after Van der Drift growth.
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Figure 5: Comparison between experimentally deter-
mined microstrain with simulation.
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Figure 6: The effect of deposition rate variation.

recognizable in the microstrain curve. The resulting pro-
file lays completely in the area of compressive strain, be-
cause the compressive contribution dominates over ten-
sile one. In the first part of the microstrain curve (Fig. 5),
a high compressive component from the first phase can
be seen. The curve further sinks (but it remains posi-
tive) indicating an impact of the tensile component which
bears a negative sign. Continued growth of V-shaped

grains introduces a final compressive component of the
third phase. Numerous experimental observations have
shown that the variation of process conditions of SiGe
PECVD after reaching the third phase [5] does not dis-
rupt the growth of individual grains. Changing the de-
position rate or germanium concentration can increase
or reduce the number of adatoms arriving at the top of
the grain boundary, the mobility of the adatoms can be
influenced by changing process temperature and germa-
nium concentration, but grains continue their growth [5].
However, measurements clearly show that the resulting
strain in the film changes. The effect of the deposition
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rate variation on microstrain is given in Fig. 6. From this
picture we can conclude that increasing the deposition
rate enhances the compressive component from the third
phase of the growth process. Increasing of the deposition
rate to 5 %, 10 %, and 20 %, causes an increase of the
third phase compressive component to 65 %, 131 %, and
263 %, for 2µm film thickness, respectively. This effect
can be practically used for design of the so-called com-
pensation layers at the final stage of thin film deposition
for MEMS applications [5].

1.4 Conclusion

In this work we have presented a three phase model for
evolution of microstrains in deposited thin metal films.
Since our model considers a general dynamics of forma-
tion and evolution of grains, it can be applied to a wide
spectrum of technological processes and materials. The
model is designed as a combination of previously stud-
ied and published models for separate phases of the mi-
crostructure evolution.
Intrinsic residual microstrains are used to raise the me-
chanical problem to a larger scale and to model the be-
havior of complex multilayer films. We have calibrated
our model using measurements of SiGe PECVD thin
film (cantilever) deflection. The theoretically obtained
microstrain curve reproduces very well experimental re-
sults. Finally, we have investigated the impact of a pro-
cess parameter variation on the microstrains. Since the
model explicitly includes both process and material pa-
rameters, it can readily be used to improve the mechani-
cal behavior of thin films.
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2 High-Field Electron Mobility
Model for Strained Si Devices

The application of mechanical stress to enhance the car-
rier mobility in Si has been well established in the last
few years. This work probes into the electron conduction
in biaxially and uniaxially stressed Si in the non-linear
transport regime. The electron behavior has been ana-
lyzed for different field directions and stress/strain con-
ditions using full-band Monte Carlo (MC) simulations.
An analytical model describing the velocity components
parallel and perpendicular to the electric field has been
developed. The model includes the effect of strain in-
duced valley splitting and can be applied for arbitrary
directions of the electric field. The extension to different
field directions has been performed using a Fourier series
interpolation and a spherical harmonics interpolation for
transport in two and three dimensions, respectively. The
model can be implemented in a drift-diffusion based de-
vice simulator.

2.1 Introduction

Uniaxially stressed Si, offering larger electron and hole
mobilities [8] [9] compared to conventional Si is becom-
ing increasingly accepted by the semiconductor manu-
facturing industry. Stress causes a deviation of the Si
lattice constant from its equilibrium value, thereby mod-
ifying the electronic band structure. Mechanical stress
in Si can be generated either globally, by growing an
epitaxial layer on a relaxed SiGe substrate [10][11][12],
by mechanical deformation [13][14], or induced during
the processing steps [9][15]. Biaxially strained Si layers
grown on relaxed SiGe substrates have shown large en-
hancements of electron mobility. This method however
suffers from several integration issues. There has thus
been a growing interest in uniaxially strained Si, which
delivers superior mobilities for both electrons and holes.

Strain induced enhancement of the low-field electron
mobility can be attributed to two concurring effects.
Firstly, inter-valley phonon scattering is reduced due to a
decreased number of final available states. Secondly, due
to the energy lowering of the∆2 valleys, the electrons
prefer to occupy this valley and therefore experience a
lower in-plane conductivity effective mass. While biax-
ial tensile strain delivers an energy splitting of around
60 meV per 10% Ge content, uniaxial stress results in
around 90 meV of splitting per 1 GPa stress. A model
for the low-field electron mobility in strained Si has been
proposed in [16]. It describes the mobility tensor in
strained Si layers as a function of the strain. The model
includes the effect of strain-induced splitting of the con-

Table 1: Coupling constants for intervalley scattering in
Silicon in [108 eV/cm]

Type of scattering g1 g2 g3 f1 f2 f3

Values 0.4716 0.7574 10.42 0.348 2.32 2.32

duction band valleys in Si, inter-valley scattering, doping
dependence and temperature dependence.

We present here a systematic study of the electron high-
field transport in Si under biaxial and uniaxial stress con-
ditions using full-band Monte Carlo (MC) simulations.
A strain dependent empirical model describing the ve-
locity vector as a function of the magnitude and direction
of the electric field is presented.

The goal of this work is an analytical description of
the velocity characteristics at high electric field. To get
a complete mobility model for device simulation, this
high-field behavior has to be combined with mobility
models incorporating the effects dominant at low driv-
ing field, such as impurity scattering and surface rough-
ness scattering. This approach, sometimes referred to
as the onion model, starts with a proper expression for
the lattice mobility, and adds then the effects of impurity
scattering, surface reduction, and finally velocity satura-
tion. Using this notion, the presented high-field model
can be combined with any low-field model incorporat-
ing the aforementioned scattering effects. Note that ef-
fects such as surface reduction and velocity saturation
are dominant in different device regions. Surface rough-
ness scattering is most effective for carriers confined in
a channel, where the driving field is low. On the other
hand, high driving fields occur in the pinch-off region,
where carriers are no longer quantized in sub-bands, but
behave bulk like. Indeed, the transition region of mod-
erate driving fields, where a significant fraction of carri-
ers is still quantized and already moderate carrier heat-
ing takes place, the error of this onion type model may
be somewhat higher than in the low-field and high-field
limits.

2.2 High-Field Electron Transport in
Strained Silicon

The velocity-field characteristics needed for the develop-
ment of the analytical model have been obtained by full
band Monte Carlo simulations. In this section some pe-
culiarities of the velocity-field characteristics in strained
Si are discussed.

The band structure for strained Si was calculated using
the empirical pseudopotential method [17]. MC simu-
lations have been performed and the results calibrated
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Figure 7: Comparison of electron velocity versus field
characteristics in unstrained and strained (∗)
Si on Si0.7Ge0.3 for [100]/[111] field direc-
tions.

with the existing theoretical and experimental data. It
has been previously reported that the enhancement of
the bulk low-field electron mobility saturates at around
1.7 [16]. In order to maintain the desired mobility en-
hancement, the g-type coupling constants had to be de-
creased by 6% and the f-type coupling constant increased
by 16%, as compared to the original values proposed by
Jacoboni [18]. In addition, it was required to adjust the
acoustic deformation potential from its original value of
8.9 eV [19] to 8.5 eV. The effect of impact ionization has
been neglected for the field regime investigated.

Fig. 7 presents the velocity-field characteristics for un-
strained and strained Silicon for different field directions
as obtained from MC simulations. Also displayed are
the results from Bufler [20], Canali [21], Smith [22], Fis-
cher [23], and Ismail [24]. The simulation results agree
well with measured data from Smith for the [111] field
direction and with Canali for the [100] field direction for
the unstrained case and with [19], [20], and [24] for the
strained case.

Fig. 8 depicts the velocity-field characteristics as ob-
tained from MC simulations for biaxially strained Si
grown on a relaxed SiGe substrate for different Ge con-
tent and field along the in-plane ([100]) and out-of-plane
([001]) direction, respectively. The total velocity in-
creases with strain for a field along the [100] direction
and it decreases for a field along the [001] direction.
For the in-plane electric field([100]) the electron veloc-
ity shows a region of small negative differential mobility.
The velocity-field characteristics for field along [001] di-
rection exhibit an untypical form for high strain levels.
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Figure 9: Asymmetric electron populations of the dou-
ble valley close to the equilibrium state (top)
and at high-field (bottom). Solid circles in-
dicate electrons with positive group velocity.
Open circles refer to electrons with negative
group velocity. LVLE: left valley left edge;
LVRE: left valley right edge; RVLE: right val-
ley left edge; RVRE: right valley right edge

This phenomenon can be explained by the repopulation
of valleys induced by the field.

For field along [001] direction the∆2-valleys are low-
ered in energy with increasing strain and have the lon-
gitudinal mass in the field direction. These valleys are
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located at a scaled distance of 0.85 and 1.15 from the
center of the first Brillouin zone and are separated by
an energy barrier of 129 meV at the X-point (Fig. 9).
The average velocity in the left and right valley and also
the average of these velocities are shown in Fig. 10. For
low-fields, electrons in both valleys are slightly displaced
with respect to the valley minima. This results in the ini-
tial velocity increase for both valleys shown in Fig. 10.
However, as the field increases, electrons in both valleys
gain energy, and electrons from one valley can surpass
the energy barrier and drift to the valley in the next Bril-
louin zone. As sketched in Fig. 9, there are more elec-
trons populating the right side of the double valley than
the left side, giving rise to a slight increase in average
velocity. If only the left valley is considered, there are
more electrons populating the left edge of the single val-
ley resulting in a negative valley velocity, as shown in
Fig. 10.

2.3 Analytical High Field Velocity Model

In general, high field mobility is modeled differently
for the drift-diffusion and the hydrodynamic transport
model. In the former case mobility is modeled as a
function of the driving force, whereas in the latter case
a dependence on the carrier temperature is usually as-
sumed. To describe nonlocal transport effects occurring
in aggressively scaled devices a mobility model for the
hydrodynamic framework would be desirable. Such a
model could include a three-valley band structure and
deal with arbitrary strain conditions. It would capture
the essential physics of multi-valley transport under a
spatially rapidly varying electric field profile. However,

one problem is complexity. A nonlinear system of nine
unknowns, namely the valley populations, valley veloc-
ities and valley temperatures, has to be solved numeri-
cally. The peculiar shape of thev(E) curves for field
along [001] direction would pose an additional problem,
requiring some empirical fitting. The strain and field de-
pendences of the energy relaxation times for each valley
would require careful modeling in order to obtain realis-
tic carrier temperatures and, consequently, realistic val-
ley population. In the past, multi-valley transport mod-
els have also been devised for compound semiconductors
[25]. As a matter of fact, it seems that such multi-valley
transport models with separate carrier gases for each val-
ley have never found application in commercial or aca-
demic device simulators.

To find a trade-off between physical rigor and an ac-
ceptable level of model complexity we abstained from
the multi-valley approach and pursued a more empirical
approach, where analytical expressions for the velocity-
field characteristics are directly fitted to bulk Monte
Carlo data.Our model is restricted to such strain condi-
tions where only one pair of X-valleys is shifted and four
valleys remain degenerate. These conditions include bi-
axial stress and uniaxial stress applied along the{100}
axes of Si. Another condition resulting in a separation of
the∆2 and∆4 valleys is uniaxial stress in the{110} di-
rection. Depending on the stress applied, the strain ten-
sor can be calculated using Hook’s law and the strain-
induced valley splitting can be obtained from linear de-
fomrmation potential theory [26].

∆ε(i) = Ξd (ε11 + ε22 + ε33) + Ξu εii , i = 1, 2, 3 (5)

The values of the deformation potentialsΞd andΞu have
been identified as 1.1 eV and 9.29 eV, respectively. The
value ofΞu has been extracted from the numerical band
structure data. Equation (5) shows that the valley split-
ting depends only on the diagonal elements of the strain
tensor. The proposed mobility model is thus applicable,
if two diagonal elements are equal,ǫ11 = ǫ22 6= ǫ33.

To develop a clear understanding of the model, we have
to consider three different coordinate systems.

1. The principal coordinate system has to be oriented
such that the unit vectors~e1, ~e2, and~e3 correspond
to the [100], [010], and [001] crystallographic di-
rections, respectively. In this system the∆4-valleys
are aligned along the [100] and [010] directions,
whereas the∆2- valleys are aligned along the [001]
direction.

2. The unit vectors~ex, ~ey, and~ez constitute the device
coordinate system. In this system the device geom-
etry is defined. For performing device simulations
it is essential to transform all transport parameters
into this coordinate system.
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3. A polar coordinate system is employed, comprising
a unit vector along the field direction,~eE = ~E/|E|,
and two orthogonal vectors~eθ and~eϕ. The polar
axis is aligned with the [001] direction. In terms of
the polar angleθ and the in-plane (azimuth) angle
ϕ, the unit vectors are defined as follows.

~eE =




sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)



 ,

~eθ =
∂~eE

∂θ
, ~eϕ =

1

sin(θ)

∂~eE

∂ϕ
(6)

2.3.1 Parallel Velocity Model

A widely used model describing the electron high field
behavior in unstrained Si has been adopted [27].

vE =
2µ0E

1 +

[
1 +

(
2µ0E

vs

)β
]1/β

(7)

Hereµ0 denotes the low field mobility andvs the satu-
ration velocity. The parameterβ describes the transition
from low to high fields. Although (7) can describe the
high field behavior in unstrained Si, it can neither ac-
count for the small negative differential mobility nor the
velocity plateau seen in strained Si (Fig. 8) .

Table 2: Parameter values for the parallel velocity com-
ponentvE in unstrained Si

Parameter Units E [100] E [110] E [11
√

2]
E [001] E [101]

vs1 [107 cm/s] 1.026 1.058 1.042
β1 [1] 1.085 1.2475 1.273

We thus use an expression previously suggested in [28],
which can handle all types of velocity-field characteris-
tics resulting from the MC simulations performed.

vE =
2µEEE

1 +

[
1 +

(
2µEEE

vs(1 − ξ)

)β
]1/β

+ vsξ
(E/η)γ

1 + (E/η)γ

(8)
HereµEE denotes the low-field mobility in the field di-
rection, obtained by projection of the low-field mobil-
ity tensor asµEE = ~eT

E · µ0 · ~eE . The additional term
incorporated in (8) models the velocity kink shown in
Fig. 8. The relevance of the parameterξ is twofold: It ac-
counts for the velocity plateau occurring approximately
at vs(1 − ξ) and also signifies the small negative differ-
ential mobility occurring in strained Si for higher strain
levels. The parametersη andγ are fit parameters.

All parameters depend on the strain-induced valley split-
ting, ∆ε = ε(∆2) − ε(∆4). The following empirical
expressions were assumed.

vs = vs1 + vs2 · ∆ε (9)

β = β1 + β2 · ∆ε (10)

η = η1 + η2 · ∆ε (11)

γ = γ1 + γ2 · ∆ε (12)

ξ =
(∆ε/ξ1)

1 + (∆ε · ξ2/ξ1)2
(13)

For all parameters exceptξ, a linear dependence was
found to be sufficient. The parameterξ was modeled
by the rational expression in (13). The parametersvsi,
βi, ηi, γi, ξi wherei = 1, 2, are constants for a par-
ticular field direction. We have chosen the three high
symmetry directions [100], [110], and [001] and two ad-
ditional directions [101] and [11

√
2]. The parameters

in (9) to (13) have been obtained using the optimization
framework of MATLAB [29]. A multidimensional un-
constrained nonlinear minimization (Nelder-Mead) tech-
nique was adopted for obtaining the parameter set.The
optimized values of the parameters for these field direc-
tions are listed in Tables 1, 2 and 3. It should be noted
that the optimization technique is sensitive to the initial
conditions of the parameters and therefore a small varia-
tion in the initial conditions can result in a slightly varied
parameter set.

Fig. 11 shows thevE(E) characteristics for a 1GPa
stressed (along [001]) Si layer for field along [100] and
[001] directions, respectively. Application of uniaxial
compressive stress enhances the velocity along [100] di-
rection in the same way as biaxial tensile strain does.
Conversely, applying uniaxial tensile stress results in an
enhanced velocity along [001] direction.

2.3.2 Perpendicular Velocity Model

For the cases where the field is not oriented in a high
symmetry direction, it is observed that an electron veloc-
ity perpendicular to the field direction develops. Fig. 12
shows the perpendicular electron velocity,~vθ for field
along the [101] direction for increasing stress level, as
obtained from MC simulations. The component~vθ, al-
though small for low stress levels, has a significant mag-
nitude for intermediate field regimes. For symmetry rea-
sons, the velocity component in the~eϕ direction vanishes
for all five sample directions.

The perpendicular velocity component vanishes for
fields along the [100], [110] and [001] directions. For
the field directions [101] and [11

√
2], the normal veloc-

ity can be expressed in terms ofvE andv3.

v⊥ = vE −
√

2v3 (14)
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After fitting vE , the componentv3 is fitted using an ex-
pression similar to (8)

v3 =

√
2µ33E

1 +

[
1 +

(
2µ33E

vs(1 − ξ)

)β
]1/β

+
vs√
2
ξ

(E/η)γ

1 + (E/η)γ

(15)
To ensure the correct low-field behavior,v3 = µ33E3,
the magnitude of the electric fieldE in the first term
in (8) has to be replaced byE3 = E/

√
2 to obtain (15).

The correct high-field limit is introduced by replacing
vs in (8) by v3,s = vs/

√
2. For the unstrained case

the values of the parametersβ andvs are identical with
those listed in Table 1. The fitting of the parameters
in (15) is performed such that the error inv⊥ is mini-
mized. The values of the other parameter for the field
directions [101] and [11

√
2] are listed in Table 4.

2.3.3 Total Velocity for Fixed Field Direction

The total electron velocity vector is obtained by addition
of the two components.

~vt = vE~eE + vθ~eθ (16)

where~eE and~eθ are the unit vectors parallel and perpen-
dicular to the field direction. Fig. 13 shows a comparison
of the velocity components and total velocity for -3GPa
stress for field along the [11

√
2] direction, as obtained

from MC simulations and the analytical model. The re-
sults from the model are in good agreement with the MC
data.

2.3.4 Total Velocity for Arbitrary Field Direction

The velocity-field characteristics can be extended to
other field directions using a spherical harmonics inter-
polation.

Φ(θ, ϕ) =

∞∑

l=0

l∑

m=0

almPm
l [cos(θ)] cos(mϕ) (17)

Here,Φ is the function to be interpolated,alm denote
the expansion coefficients andPm

l are the associated
Legendre polynomials. From the symmetry properties
Φ(θ, ϕ + π/2) = Φ(θ, ϕ) andΦ(θ + π, ϕ) = Φ(θ, ϕ) it
follows thatl must be even andm = 4n. Truncating (17)
after the 4th order yields

Φ(θ, ϕ) = a00P
0
0 (χ) + a20P

0
2 (χ) + a40P

0
4 (χ) +

+a44P
4
4 (χ) cos(4ϕ) (18)
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Figure 11: Parallel electron velocity component versus
field for Si under uniaxial stress (1GPa)
along [001] and field along [100] and [001]
directions, respectively.
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Figure 12: Perpendicular velocity versus field for Si un-
der increasing uniaxial stress along [001] and
field along [101].

whereχ = cos(θ). Evaluating (18) for field directions
[100], [110], [001], [101] and [11

√
2] gives

Φ100 = a00 −
1

2
a20 +

3

8
a40 + 105a44 (19)

Φ110 = a00 −
1

2
a20 +

3

8
a40 − 105a44 (20)

Φ001 = a00 + a20 + a40 (21)

Φ011 = a00 +
1

4
a20 −

13

32
a40 +

105

4
a44 (22)

Φ11
√

2 = a00 +
1

4
a20 −

13

32
a40 −

105

4
a44 (23)
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Figure 13: Parallel (par) and perpendicular (prp) veloc-
ity components and total (tot) velocity ver-
sus field for Si under uniaxial stress (-3GPa)
along [001] and field along [11

√
2].

To determine the four coefficients from the overdeter-
mined system (19) to (23), we solve (19) to (21) exactly
and minimize

the error in (22) and (23).

a00 =
1

3
(Φ100 + Φ110 + Φ001) −

7

12
a40 (24)

a20 =
1

3
(2Φ001 − Φ100 − Φ110) −

5

12
a40 (25)

a40 =
8

35
(Φ100 + Φ110 + 2Φ001 − 2Φ011 − 2Φ11

√
2)(26)

a44 =
1

210
(Φ100 − Φ110) (27)

It was found that interpolation of the quantitiesΦ = v2
E

andΦ = v2
3 gives good agreement to MC data.

Fig. 14 show a comparison of the velocity components
and the total velocity as obtained from the interpolation
and MC simulations for field along the [111] direction
for uniaxial tensile stressed Si. It can be seen that tensile
stress causes the parallel and perpendicular velocities to
have opposite signs.

Simplification to Two-Dimensional Simulation Do-
mains

For a given value ofϕ, the quantityΦ in (18) can alter-
natively be interpolated using a polynomial.

Φ(θ) = b0 + b2 cos2(θ) + b4 cos4(θ) (28)
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Figure 14: Interpolated parallel (par) electron velocity
components and perpendicular (prp) velocity
and the total (tot) velocity versus field for Si
under uniaxial stress (3GPa) along [001] and
field along [111].

Considering the special case of transport in the<010>
plane (ϕ = 0), we can write the equation system

Φ100 = b0 (29)

Φ101 = b0 +
b2

2
+

b4

4
(30)

Φ001 = b0 + b2 + b4 (31)

which gives the coefficients

b2 = −3Φ100 + 4Φ101 − Φ001 (32)

b4 = 2Φ100 − 4Φ101 + 2Φ001 (33)

Similarly, for transport in a< 110> plane (ϕ = π
4 ), we

have

Φ110 = b0 (34)

Φ11
√

2 = b0 +
b2

2
+

b4

4
(35)

Φ001 = b0 + b2 + b4 (36)

giving

b2 = −3Φ110 + 4Φ11
√

2 − Φ001 (37)

b4 = 2Φ110 − 4Φ11
√

2 + 2Φ001 (38)

The quantities to be interpolated areΦ = v2
E andΦ =

v2
3 . Note that for a field in [100] and [110] direction, the

componentv3 vanishes. Therefore, for this quantity the
calculation of the coefficients simplifies becauseΦ100 =
Φ110 = 0. Using the relations (32) and (33) for theϕ =
0 plane and (37) and (38) for theϕ = π/4 plane, the
velocity components can be interpolated.
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2.4 Implementation Issues

The present model has been derived for a uniform elec-
tric field, ~E. To apply it in a drift diffusion based de-
vice simulator, the electric field in the model has to be
replaced by an appropriately defined driving force,~Fn.
Typical definitions of the driving force employed in prac-
tical devices simulators are the electric field component
along the current density vector or the gradient of the
quasi Fermi level.

For the two-dimensional cases described in Section IV.A,
only one angle has to be determined. With the constant,
two-dimensional vector~e3 denoting the [001] direction,
one obtains for the polar angle

cos2(θ) =
(~Fn · ~e3)

2

~Fn · ~Fn

. (39)

The involved vectors are two-dimensional and specified
in the device coordinate system.

In order to implement the model in conventional two-
dimensional drift-diffusion based device simulators, the
mobility is needed at the mid-point of the grid edge.
By assuming a suitably interpolated value of the normal
component of the driving force, the mobility tensor in the
polar coordinate system can be written as

µ̂ =

(
µEE 0

0 µθ

)
(40)

with the mobility components,

µEE =
vt( ~Fn) · ~̂F

|~F |
µθ =

vt( ~Fn⊥) · ~̂F

|~F |
. (41)

HereFn⊥ denotes the perpendicular driving force com-

ponent and~̂F is a unit vector. In analogy with the di-
agonal form of the low-field mobility tensor, we assume
that the mobility tensor remains diagonal for high-fields.
The mobility along the grid edge,ζ is then determined
by taking the projection of the mobility tensor.

µζζ = ζT

(
µEE 0

0 µθ

)
ζ (42)

2.5 Conclusion

A comprehensive study of the electron high-field trans-
port in strained Si for different field directions and stress
conditions has been performed using full-band MC sim-
ulations. A phenomenological approach to calculate the
mobility tensor at high electric fields has been proposed.
The structure of the proposed high-field model can be
summarized as follows:

1. For five given field directions the parallel compo-
nentsvE(E) of the velocity vectors are empirically
fitted. These five chosen directions form a spherical
triangle.

2. For two out of the five field directions a normal
velocity component develops. The normal compo-
nentsvθ(E) in the direction~eθ are also empirically
fitted. For all field directions chosen, the normal
component along the~eϕ direction will vanish.

3. The velocity vector for the actual field direction is
obtained from the velocity vectors for the sample
directions by means of interpolation.

4. In the crystallographic system the mobility tensor
is assumed to be diagonal. The three diagonal el-
ements are determined from the velocity and field
vectors.

5. The mobility tensor is transformed to the device co-
ordinate system by a unitary transformation.

This approach seems to be more suitable for device sim-
ulation purpose than a more physics based model due to
the inherent complexities discussed in Section III. The
presented model is applicable for all stress conditions
which cause the X-valleys to split into two-fold degen-
erate∆2-valleys and four-fold degenerate∆4-valleys. It
has been extended to arbitrary field directions using an
interpolation technique. The path of implementing the
model in drift-diffusion based device simulator is briefly
outlined.
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Table 3: Parameter values for the parallel velocity componentvE for ∆ǫ < 0

Parameter Units E [100] E [001] E[110] E [101] E [11
√

2]
vs2 [105 cms−1eV−1] -5.5691 33.731 1.4988 11.739 11.067
β2 [eV−1] -0.33235 -5.2879 0.22885 -0.30235 -0.39907
ξ1 [eV] 0.37994 -0.22859 0.45615 -0.84676 -0.76303
ξ2 [1] 1.6239 1.0333 1.5468 6.3401 4.7611
η1 [104 Vcm−1] 2.1254 6.3369 0.6651 4.2133 5.4664
η2 [105 Vcm−1eV−1] -1.13 -2.748 -0.86273 -2.0402 -1.5317
γ1 [1] 1.3707 2.6051 1.3869 2.4453 3.4612
γ2 [eV−1] -0.73185 -6.3392 0.61215 -13.938 -7.1773

Table 4: Parameter values for the parallel velocity componentvE for ∆ǫ > 0

Parameter Units E [100] E [001] E [110] E [101] E [11
√

2]
vs2 [105 cms−1eV−1] -20.608 10.822 -14.625 2.2239 3.5825
β2 [eV−1] 0.472 0.5135 0.21785 -0.41762 -0.27011
ξ1 [eV] 0.47701 -0.29814 1.0876 -1.3718 1.9381
ξ2 [1] 3.1569 2.1639 -8.5962 -4.2752 5.5323
η1 [104 Vcm−1] 7.6075 3.7613 5.8913 0.25071 1.1382
η2 [105 Vcm−1eV−1] 1.471 2.7214 1.3928 0.92226 -0.19962
γ1 [1] 3.815 1.163 4.7754 1.4471 0.7351
γ2 [eV−1] 2.9118 4.8595 5.2425 0.14618 5.2995

Table 5: Parameter values for the [001] velocity componentv3

Parameter Units E [101] E [101] E [11
√

2] E [11
√

2]
∆ǫ < 0 ∆ǫ > 0 ∆ǫ < 0 ∆ǫ > 0

vs2 [106 cms−1eV−1] 4.0975 2.8429 3.53 3.4858
β2 [eV−1] -1.7085 -0.22173 -1.7571 -0.26191
ξ1 [eV] -0.16917 -0.3354 -0.17293 -0.36817
ξ2 [1] 0.75896 -1.9529 0.76209 2.2891
η1 [104 Vcm−1] 3.9982 5.9335 4.223 6.5366
η2 [105 Vcm−1eV−1] -2.2147 1.9583 -2.1683 1.8587
γ1 [1] 1.8204 1.9209 2.0921 1.668
γ2 [eV−1] -4.6684 3.5664 -3.5816 5.4713
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3 Analysis of Hole Transport in Ar-
bitrarily Strained Germanium

Full-band Monte Carlo simulations are performed to
study the properties of hole transport in bulk Germanium
under general strain conditions. The band structures are
calculated with the empirical non-local pseudopotential
method. For Monte Carlo simulations acoustic and op-
tical phonon scattering as well as impact ionization are
taken into account. Results for biaxially strained Ge
grown on a[001] orientedSi1−xGex substrate and for
uniaxial compressive stress in[110] exhibit a high mo-
bility enhancement. These results are compared to ex-
perimental and theoretical results from literature.

3.1 Introduction

The history of semiconductor device technology started
with Germanium as the preferred material, while today
the mainstream semiconductor technology is centered
around Silicon. Over decades performance gains and
increasing integration density of CMOS devices where
successfully obtained by down-scaling, a process which
is getting more and more cost intensive as it is pushed
closer to some principal physical limits. So the demand
for alternatives to down-scaling rises, leading to new op-
portunities for Ge, particularly motivated by its higher
carrier mobility compared to Si. The hole mobility, be-
ing approximately four times higher than in Si, can be
further enhanced by stress engineering. This has been
shown in previous experimental and theoretical works
for biaxially strained Ge epitaxially grown on a[001] ori-
entedSixGe1−x substrate [30][31][32]. In this work we
analyze hole transport properties of arbitrarily stressed/s-
trained Ge by means of full-band Monte Carlo simula-
tion (FBMC).

3.2 Band Structure Calculation

Figure 15: Irreducible wedge for stress applied in[110]
and in[111] direction.

For FBMC simulations a numerical representation of the
band structure in the unit cell of the reciprocal lattice,

the so-calledBrillouin zone, is used to capture the de-
pendence of the carrier energy on the wave vector. Be-
cause of symmetry only a part of the Brillouin zone - the
irreducible wedge- has to be considered for band struc-
ture calculation. The volume of the irreducible wedge is
determined by the number of symmetry elementsP(Γ)
at the center of the Brillouin zone of the strained lattice
via Ωirred = ΩBZ/P(Γ). For the diamond type lattice of
relaxed GeP(Γ) is 48, for stress along〈100〉, 〈111〉, and
〈110〉, as shown in Fig. 15,P(Γ) is 16, 12, and 8, re-
spectively, while for stress along arbitrary direction the
lattice is invariant only to inversion, thusP(Γ) = 2.

The empirical non-local pseudopotential method
(EPM) [33] is generalized to arbitrary stress/strain
conditions to calculate the band structures of Ge. For
discretization of the band-structure an unstructured
tetrahedral mesh is used. Mesh refinement guarantees
high resolution around the band minima, while a
relatively low total number of mesh elements is
maintained [34].

Stress modifies the band structure of a semiconductor.
As a consequence the band gap changes, a splitting be-
tween light hole and heavy hole band is introduced and
also the splitoff band is altered. The band splitting re-
duces the density of states in the low energy regime
and suppresses interband scattering. This effect and the
change of the effective masses cause the observed mobil-
ity gain. Fig. 18(a) shows the energy splitting between
the splitoff band and the valence band edge and Fig. 3.2
the heavy/light hole band splitting energies of biaxially
strained Ge grown on a[001] orientedSi1−xGex sub-
strate as a result of EPM calculation [33]. For higher
compressive strain levels than shown the heavy/light hole
band splitting saturates [30]. Fig. 17(a) depicts the en-
ergy splitting between the splitoff band and the valence
band edge and Fig. 17(b) the heavy/light hole band split-
ting energies of compressive stressed Ge in [110] direc-
tion. The splitting energy rises almost linearly with com-
pressive stress in[110] direction for the shown range of
pressure.

3.3 The Vienna Monte Carlo Simulator

The VIENNA MONTE CARLO SIMULATOR (VMC) [35]
offers simulation algorithms for both bulk semiconduc-
tors and one-dimensional devices based on analytical and
full-band models. Additionally, a fast zero-field algo-
rithm is included [36]. VMC provides a mature set of
scattering models including phonon scattering, ionized
impurity scattering, alloy scattering, and impact ioniza-
tion. For full-band simulation phonon scattering models
with constant matrix elements are used[37]. In this for-
mulation the scattering rates are proportional to the den-
sity of states, which is calculated from the band structure.
The coupling constants for acoustic and optical phonon
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(b) Heavy hole/light hole energy splitting

Figure 16: Splitoff band shift and heavy hole and energy splitting of heavy hole/light hole bands in strained Ger-
manium grown on aSixGe1−x layer.
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Figure 19: Hole velocity versus field in [100] direction
for relaxed Ge compared to results from lit-
erature. [30][38]

scattering, as well as the optical phonon energy are given
in Table 6. These parameters are used for relaxed and for
strained Ge.

Impact ionization is modeled with a threshold expres-
sion [39]

1

τii
= θ(ǫ − ǫth) · P ·

(
ǫ − ǫth

ǫth

)3.5

(43)
whereθ is the unit step-function,ǫ is the electron en-
ergy, ǫth is a threshold energy, andP is a multiplica-

tion factor which determines the softness of the thresh-
old. The parameters are tuned to reproduce reported hole
velocity field characteristics [40][38][41] for relaxed Ge,
ǫth = 0.69eV and P = 2.0 · 1012s−1. For stressed/
strained Geǫth is adjusted in dependence on the bandgap
change.

Fig. 19 shows the hole velocity field characteristics and
Fig. 20 the energy as a function of the electric field in
[100] direction for relaxed Ge. These results are com-
pared to values from literature and show good agree-
ment.
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Figure 20: Hole energy versus field in [100] direction
for relaxed Ge compared to results from lit-
erature. [30][38]
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Figure 17: Splitoff band shift and heavy hole and energy splitting of heavy hole/light hole bands of stressed Ge
with compressive stress in [110] direction.
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Figure 18: Band gap and heavy hole and energy splitting of heavy hole / light hole bands in strained germanium
grown on aSixGe1−x layer

Table 6: Acoustic deformation potential∆ac, optical de-
formation potential∆op and optical phonon
energy~ωop for the heavy hole (HH), light
hole(LH) and split-off (SO) bands.

Band ∆ac ∆op ~ωop

HH 1.71 eV 9.6e8 eV/cm 37 meV
LH 2.56 eV 9.6e8 eV/cm 37 meV
SO 2.56 eV 9.6e8 eV/cm 37 meV
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Figure 21: In-plane low field mobility of holes in biax-
ially compressed Ge grown on aSixGe1−x

substrate.

3.4 Results

Compressively Biaxially Strained Germanium

In this section simulation results for bulk hole transport
in biaxially strained Ge epitaxially grown on aSixGe1−x

substrate with[001] orientation are shown. Since the lat-
tice constant of SiGe is smaller than that of Ge the re-
sulting strain is compressive. Several pMOSFET devices
with strained Ge channels based on that technique have
been demonstrated [31][32].

Fig. 21 depicts the in-plane low field mobility versus
mole fraction of Si in theSixGe1−x substrate. For a mole
fractionx = 0.4 the low field hole mobility is enhanced
by a factor of 3.38 to 6350cm2/Vs. This mole fraction
corresponds to biaxial compressive strain of 1.7% in the
Ge layer. Fig. 22 shows the velocity field characteristics
for field in [100] direction for different Si mole fractions.
The highest mobility gain can be observed in the low
field regime, while the curves converge in the high field
regime.

Uniaxially Strained Germanium

Uniaxial stress technique overcomes a few drawbacks of
biaxially strained Ge layers, related to problems of mis-
fit and threading dislocations as well as diffusion. In
Si technology CMOS devices with uniaxially stressed
channels are already fabricated in large volumes [42].
The stress is hereby introduced by capping layers. In this
section results for hole transport in uniaxially stressed
Ge with compressive stress in[110] are shown. Although
this is a technologically very interesting setup it has been
hardly investigated by means of Monte Carlo simulation
so far.
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Figure 22: Hole velocity versus electric field for biax-
ially compressed Ge grown on aSixGe1−x

substrate in [100] direction.

Fig. 23 presents the velocity field characteristics for uni-
axial stress and field in[110] direction. As for biaxially
strain the curves show the highest mobility gain in the
low field regime and converge at high electric fields.
Fig. 24 depicts the in-plane hole mobility at low elec-
tric field for uniaxial compressive stress. A strong
anisotropy with the most pronounced mobility enhance-
ment in stress direction can be observed. A stress level
of 1.5GPa enhances the low field mobility by a factor
of 2.55 to 4790cm2/Vs. Note that tensile stress instead
of compressive stress could also be used for hole mobil-
ity enhancement. The most pronounced enhancement is
then achieved perpendicular to the applied stress in[110]
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Figure 23: Hole velocity as a function of the electric
field in stressed Ge for field and stress in
[110] direction.
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Figure 24: Low field hole mobility in bulk Ge for uni-
axial [110] compressive stress.

direction, otherwise the result looks similar as in Fig. 24
for the shown stress levels.

3.5 Conclusion

A full-band Monte Carlo simulator which efficiently
handles arbritrary stress/ strain conditions is presented
and used to analyse two technologically important appli-
cations of stress engineered Ge. It is demonstrated that
uniaxial compressive stressed Ge in[110] direction as
well as biaxially stressed Ge show high hole mobility en-
hancement. Therefore, Germanium is indeed a promis-
ing material for future applications.
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4 Carrier Concentration Depen-
dence of the Mobility in Organic
Semiconductors

The charge transport in organic materials as a function
of carrier concentration is investigated. An analytical
model of the concentration dependent mobility based on
the variable hopping range theory is formulated. This
model is applied to analyze the discrepancy between the
experimental mobilities extracted from FETs and LEDs.
The result shows that an exponential density of states
(DOS) is a good approximation of the tail states for de-
scribing the charge transport in FETs. When applied to
the low carrier concentration regime, for example to the
LEDs regime, a Gaussian DOS should be assumed.

4.1 Introduction

Organic semiconductors have witnessed a considerable
development in recent years, mainly pushed by commer-
cial display applications based on LEDs [43, 44] whose
cost and performance are potentially better compared
with more conventional solutions. At the same time,
interest has also grown for organic thin film transistors
(TFTs) [45]. However, the main obstacles to further
application of organic transistors are the poor mobility
which can be several order of magnitudes smaller than
that of conventional semiconductors. Another problem
is the lack of knowledge of the microscopic charge trans-
port mechanisms [46]. However, understanding the car-
rier transport properties in these organic materials is of
crucial importance to design and synthesize better mate-
rials and to improve device performance.
In organic semiconductors, intramolecular interactions
are mainly covalent, but intermolecular interactions are
due to much weaker van der Waals and London forces.
As a result, the transport bands in organic crystals are
much narrower than those of their inorganic counter-
parts, and the band structure is easily disrupted by disor-
der in such systems. This disorder causes the formation
of localized states in the energy gap. In order to enable a
current through the device, charge carriers trapped at the
localized states need to escape from these sites. Such a
conduction process is entirely determined by the tunnel-
ing transitions of carriers between the localized states,
provided that the electronic wave functions of the local-
ized states have sufficient overlap. This theory was orig-
inally given by Conwell [47] and Mott [48]. A more sys-
tematic theory called variable range hopping (VRH) was
introduced by Mott in 1968 [49]. The transport proper-
ties of organic semiconductors can be well described by
VRH theory [50, 51, 52]. The central transport quan-
tity is the mobility µ of the charge carriers and most

of the work related to the mobility is on the tempera-
ture and electric field dependence. Recently it has been
realized that the carrier concentration also plays an im-
portant role for the mobility. Experiments show that for
a hole-only diode and a FET fabricated from the same
conjugated polymer, the mobility could differ up to three
orders of the magnitude [53]. This difference can only
be explained by taking into account the dependence of
mobility on the carrier concentration. Rubel [52] ana-
lyzed this problem with the concept of a transport energy
ǫt, but there is no direct proof for the existence of such
transport energy in organic systems. In this paper, we
will focus on extending the percolation model based on
VRH theory by Vissenberg [54] to explain the discrep-
ancy of measured mobilities in OLEDs and OFETs. An
analytical mobility model with a Gaussian DOS function
has been obtained. It can explain the relation between the
mobility and carrier concentration. Results are in good
agreement with experimental data.

4.2 Theory

To calculate the mobility of an organic semiconductor,
one can use percolation theory, regarding such system as
a random resistor network (network of Miller and Abra-
hams) [46, 55]. The current flows through the bonds con-
necting sites in the network. The conductance between
the statesm andm′ can be described as

Z−1

mm′ = Z−1
0 exp (−2α | Rm − Rm′ |) ·

· exp

„

−| ǫm − ǫF | + | ǫm′ − ǫF | + | ǫm′ − ǫm |
2kBT

«

.

whereZ−1
0 is a prefactor,α−1 is the Bohr radius of the

localized wave functions,Rm andǫm denote the position
and energy of sitem. In theory the value ofZmm′ is
determined by the threshold or critical conductanceZc,
at which the first infinite cluster will form, given by the
relation

σ = σ0Z
−1
c . (44)

Hereσ0 is a prefactor. To describe the field-effect mo-
bility in organic transistors, Vissenberg assumed an ex-
ponential density of localized states [54].

g (ǫ) =
Nt

kBT0
exp

(
ǫ

kbT0

)
(ǫ ≤ 0) (45)

Nt is the number of states per unit volume andT0 speci-
fies the width of the exponential distribution. Connecting
(1) and (2), conductivity can be described as [54]

σ (δ, T ) = σ0

„

πδNt (T0/T )3

(2α)3 BcΓ (1 − T0/T ) Γ (1 + T0/T )

«T0/T

. (46)

Hereδ is the fraction of occupied states, andBc is the
critical number of bonds per site. Then an expression for
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the mobility as a function of the carrier concentrationn
can be obtained.

µ (n, T ) =
σ0

e

(
(T0/T )4 sin (πT/T0)

(2α)
3
Bc

)T0/T

nT0/T−1.

(47)
Heree is the elementary charge. However, this expres-
sion can not account for the carrier concentration inde-
pendent mobility when the carrier concentration is very
low (LED regime). To overcome this problem, we de-
rive a new mobility model assuming a Gaussian DOS
[46] and VRH theory. In this model, the DOS function is
given as

g (ǫ) =
Nt√

πkBTσ
exp

[
−
(

ǫ

kBTσ

)2
]

. (48)

It is slightly different from [46], whereǫ is the energy
measured relative to the center of the DOS andTσ indi-
cates the width of the DOS. The value of the Fermi en-
ergyǫF can be determined by the equation for the carrier
concentrationn.

n =

∫ ∞

−∞

g(ǫ)dǫ

1 + exp ((ǫ − ǫF ) /kBT )
. (49)

At low n, the exponential function is large compared
to one (the nondegenerate case) [56], and we obtain the
Fermi energy as

ǫF = −kBT 2
σ

4T
+ kBT ln δ. (50)

According to percolation theory [57], at the onset of per-
colation, the critical numberBc can be written as

Bc =
Nb

Ns
. (51)

Bc = 2.8 for a three-dimensional amorphous system,Nb

andNs are respectively the density of bonds and density
of sites in a percolation system, which can be calculated
as [58, 54]

Nb =

∫
dRijdǫidǫjg (ǫi) g (ǫj) θ (sc − sij)

and

Ns =

∫
dǫg (ǫ) θ (sckBT− | ǫ − ǫF |) .

HereRij denotes the distance vector between sitesi and
j, sc is the exponent of the conductance given by the re-
lationσ = σ0e

−sc [59] andθ is step function.
Substituting (5) and (7) into (8), we obtain a new perco-
lation criterion for an organic system as

Bc ≈ 2Nt

(√
2 + 1

)√
π

(2αT/Tσ)
3 ·

·
(

ǫF + kBTsc

kBTσ

)2

exp

(
−
[
ǫF + kBTsc

kBTσ

]2)
.

This equation has to be solved forsc and an expression
for mobility can be obtained.

µ =
σ0

eNt
exp (η) (52)

where

η = −Tσ

T

√√√√−W

[
− Bc (2αT/Tσ)

3

2πNt

(
1 +

√
2
)
]
− T 2

σ

4T 2

W is the Lambert function [60]. Equation (9) is obtained
assuming

• that the site positions are random,

• the energy barrier for the critical hop is large,

• and the charge carrier concentration is very low.

Results and Discussions

So far, much attention has been devoted to explain
the temperature dependence of the mobility [61, 62].
As shown in Fig. 1, the model (9) gives a non-
Arrhenius-type temperature dependence of the formµ ∝
exp

(
− (Cσ/kBT )

2
)

, which has also been supported

by numerical simulations [63] and analytical calculations
[64]. The model (9) shows good agreement for a value
C ≈ 0.71. This value is close toC ≈ 0.69 given in [65]
and0.64 in [64]. In Fig. 2, the mobility is plotted as a
function of (Tσ/T )1/3. When plotted in this way, there
exists the regime with a linear behavior betweenµ and
T−1/3. This indicates that variable-range hopping effect
has to be taken into account [66, 67].

To obtain (7), a Boltzmann distribution function has been
used. The degenerate limit of organic semiconductors
has been studied in [68, 69]. In Fig. 3 (a) we show
the Fermi energy for Boltzmann and Fermi-Dirac dis-
tribution assuming some typical values of the parameter
Tσ/T as 1.5, 3.5 and 6.0 [61], Fig. 3 (b) is a comparison
especially for the higher carrier occupation regime. The
analytical result (7) agrees well with the numerically cal-
culated result for decreasing carrier occupation and in-
creasingTσ/T . Therefore, for the LED regime with low
charge carrier concentration, (7) is a good approximation
of the solution of (6).

The mobility as a function of the carrier concentration
is presented in Fig. 4, whereTσ/T is in the range
1.5 − 9.0, corresponding to some typical values for
organic semiconductors. The mobility stays constant
until a certain threshold value of the carrier occupation.
Above this threshold, the mobility can increase about
four orders of magnitude atTσ/T= 9. These effects
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have been observed in the experimental work [53, 70].

However, (9) is valid only in the LED regime with very
low carrier concentration. As it is difficult to get an
analytical expression for the mobility at higher carrier
concentration, we use (4) as the mobility model for the
higher carrier concentration. The combined model can
explain the experimental data in [70, 53], as shown in
Fig. 5.

4.3 Conclusion

An analytical mobility model has been obtained on the
basis of variable range hopping theory. This model can
explain the relation between mobility and carrier con-
centration, especially the mobility’s independence of the
carrier concentration in the LED regime. We can con-
clude that a Gaussian density of states function is a better
description for the low carrier concentration regime than
an exponential one. The model also gives non-Arrhenius
temperature characteristics.
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5 Optimal Design for Carbon
Nanotube Transistors

A numerical study of carbon nanotube field effect tran-
sistors is presented. To investigate transport phenom-
ena in such devices the non-equilibrium Green’s function
formalism was employed. Phenomena like tunneling and
electron-phonon interactions are rigorously taken into
account. The effect of geometrical parameters on the de-
vice performance was studied. Our results clearly show
that device characteristics can be optimized by appropri-
ately selecting geometrical parameters.

5.1 Introduction

A carbon nanotube (CNT) can be viewed as a rolled-up
sheet of graphite with a diameter of a few nano-meters.
Depending on the chiral angle the CNT can be either
metallic or semiconducting. Semiconducting CNTs can
be used as channels for field-effect transistors (FETs).
CNTFETs have been studied in recent years as potential
alternatives to CMOS devices because of their capability
of ballistic transport.

Depending on the work function difference between the
metal contact and the CNT, carriers at the metal-CNT in-
terface encounter different barrier heights. Devices with
positive [71] and zero [72] barrier heights were fabri-
cated. The barrier height is defined as the potential bar-
rier which is seen by carriers at the Fermi level in the
metal. Therefore, in a device with zero barrier height,
carriers with energies above the Fermi level of the metal
reach the channel by thermionic emission and carriers
with energies below the Fermi level have to tunnel to
reach the channel. Devices with positive barrier heights
have lower on-current and also suffer from ambipolar be-
havior [73, 74], while devices with zero barrier height
theoretically [75] and experimentally [76] show better
performance. In this work we focus on devices with zero
barrier height for electrons. The barrier height for holes
is given by the band gap of the CNT. Since the disper-
sion relations for electrons and holes are the same, our
discussions are valid for holes as well.

Using the non-equilibrium Green’s function (NEGF) for-
malism quantum phenomena like tunneling, and scatter-
ing processes can be rigorously modeled. Here we ex-
tended our previous work [77] by including the effect of
electron-phonon interaction in the calculations, consider-
ing large signal dynamic response, and investigating the
influence of geometrical parameters. In the next section
our methodology is described. Then the effect of differ-
ent geometrical parameters on the device characteristics
is analyzed, and methods for performance optimization
are suggested.

5.2 Approach

In this section the models used to study the static and
dynamic response of CNTFETs are explained.

5.2.1 Static Response

Based on the NEGF formalism we investigated the ef-
fect of device geometry on the performance of car-
bon nanotube field-effect transistors. We have solved
the coupled system of transport and Poisson equations
numerically. Due to quantum confinement along the
tube circumference, carrier have bound wave functions
around the CNT and can propagate along the tube axis.
Under the assumption that the potential profile does not
vary around the circumference of the CNT, sub-bands
will be decoupled. In this work we assume bias condi-
tions for which the first sub-band contributes mostly to
the total current. In the mode-space approach [78] the
transport equation for each sub-band can be written as:

GR,A
r,r′ (E) = [EI − Hr,r′(E) − ΣR,A

r,r′ (E)]−1 (53)

G<,>
r,r′ (E) = GR

r,r′(E)Σ<,>
r,r′ (E)GA

r,r′ (E) (54)

In (53) an effective mass Hamiltonian was assumed.
All our calculations assume a CNT with a band gap of
Eg = 0.6 eV corresponding to a CNT with a diameter
of dCNT = 1.6 nm, andm∗ = 0.05m0 for both elec-
trons and holes. A recursive Green’s function method
is used for solving (53) and (54) [79]. The total self-
energy in (53) consists of the self-energies due to the
source contact, drain contact, and electron-phonon in-
teraction,ΣR = ΣR

S + ΣR
D + ΣR

el−ph. The self-energy
due to electron-phonon interaction consists of the con-
tribution of elastic and inelastic scattering mechanisms,
Σ<,>

e−ph = Σ<,>
el +Σ<,>

inel . Assuming a single sub-band the
electron-phononself-energies are simplified to (55)-(58).

Σ<,>
el,(r,r)(E) = DelG

<,>
r,r (E) (55)

Σ<
inel,(r,r)(E) =

∑

ν

Dν
inel

[(nB(~ων) + 1)G<
r,r(E + ~ων)

+nB(~ων)G<
r,r(E − ~ων)]

(56)

Σ>
inel,(r,r)(E) =

∑

ν

Dν
inel

[(nB(~ων) + 1)G>
r,r(E − ~ων)

+nB(~ων)G>
r,r(E + ~ων)]

(57)

ℑm[ΣR(E)] =
1

2i
[Σ> − Σ<] (58)
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Figure 25: The device structure. The device is250 nm
extended into the third dimension.ǫr = 15.

where nB is given by the Bose-Einstein distribution
function. In general electron-phonon interaction param-
eters (Del,inel) depends on the diameter and the chiral-
ity of the CNT. The calculation of these parameters is
presented in [80]. The imaginary and real parts of the
self-energy broadens and shifts the density of states, re-
spectively. We neglected the real part of the self-energy.

The transport equations (53) to (58) are iterated
to achieve convergence of the electron-phonon self-
energies, resulting in a self-consistent Born approxima-
tion. Then the coupled system of transport and Poisson
equation is solved iteratively. The carrier concentration
and the current density at some pointr of the device can
be calculated as (59) and (60).

nr = −4i

∫
G<

r,r(E)
dE

2π
(59)

jr =
4q

~

∫
Tr[Σ<

r,rG
>
r,r(E) − Σ>

r,rG
<
r,r(E)]

dE

2π
(60)

In CNTs elastic scattering is caused by acoustic phonons
and inelastic scattering occurs due to zone boundary
(ZB), optical (OP), and radial breathing (RBM) phonon
modes. In CNTs with diameters in the rangedCNT =
1 − 2 nm, the energies of the these phonon modes
are~ωZB ≈ 160 and 180 meV, ~ωOP ≈ 200 meV, and
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Figure 26: Comparison of the simulation results and ex-
perimental data [76] for the output charac-
teristics. The results for the bias pointVG =
−1.3 V are compared with the ballistic limit.

~ωRBM ≈ 30 meV respectively [81, 82]. Due to small
occupation number of high energy phonons, such as OP
and ZB phonon modes, they do not degrade the perfor-
mance considerably, whereas the RBM phonon mode
can have a detrimental effect. However, due to weak
electron-phonon coupling the RBM mode has a negli-
gible effect at room temperature. The electron-phonon
coupling is also weak for acoustic phonon (AP) modes.
Therefore, short CNTFETs can operate close to the bal-
listic limit. Figure 26 shows excellent agreement be-
tween simulation results and experimental data [76]. The
result for the bias pointVG = −1.3 V is compared with
the ballistic limit, which confirms the validity of nearly
ballistic transport in short CNTFETs.

5.2.2 Dynamic Response

To investigate the dynamic response of the device we
consider the device delay time defined as:

τ =
CGVDD

Ion
(61)

Here, CG = CGS + CGD + CGG with CGG
−1 =

CIns
−1 + CQ

−1. The quantum capacitance is given by
CQ = 8q2/hνF ≈ 400aF/µm, including the twofold
band and spin degeneracy [83, 84]. The insulator capac-
itance, occurring between the tube and a plane, is given
by [85]:

CIns =
2πκǫ0

cosh−1(TIns/RCNT + 1)
(62)

For the geometry parameters given in Figure 25
CIns≈ 400aF/µm. For a device with50 nm channel
lengthCGG ≈ 10aF. To calculate the gate-source and
gate-drain parasitic capacitances we assumed the capac-
itance of two parallel plates,CGS,GD = κǫ0A/LS,D,
(see Figure 25). Even with a small total area ofA =
250 nm × 40 nm and a large spacer width ofLGS,GD =
10 nm the parasitic capacitancesCGS + CGD ≈ 260 aF
are much bigger thanCGG. As a result,CG ≈ CGS +
CGD = κǫ0A(1/LS + 1/LD).

5.3 Simulation Results

In this section the effects of the gate-source spacer, gate-
drain spacer, insulator thickness, and the insulator dielec-
tric constant on the device characteristics are studied.

Due to ambipolar behavior, in the off-regime the drain
current of CNTFETs starts to increase [73, 76, 86].
To reduce this effect we have proposed to increase the
gate-drain spacer [77]. When increasingLD, the off-
current decreases, while the on-current remains nearly



5 Optimal Design for Carbon Nanotube Transistors 22

10
0

10
1

10
2

10
3

10
4

10
5

I
on

/I
off

10

12

14

16

18

20

22
D

el
ay

 T
im

e 
[p

S
]

L
D
 =   2 nm

L
D
 =   4 nm

L
D
 =   8 nm

L
D
 = 12 nm

L
D
 = 20 nm

L
S
 =   2 nm

Figure 27: The effect ofLD on the device delay time
versusIon/Ioff ratio.LS = 2 nm andVDD =
0.8 V.

0 0.2 0.4 0.6 0.8 1
Drain Voltage [V]

0

10

20

30

40

D
ra

in
 C

ur
re

nt
 [µ

A
]

L
D
 = 4   nm

L
D
 = 30 nm

L
S
 = 4   nm

V
G
 = 0.3 V

V
G
 = 0.5 V

V
G
 = 0.7 V

Figure 28: Output characteristics at different gate biases
for devices withLD = 4 nm and LD =
20 nm. LS = 4 nm.

unchanged, such that theIon/Ioff ratio increases. By
increasingLD the gate-drain parasitic capacitance de-
creases, which results in reducing the device delay
time. Figure 27 shows the effect ofLD on the device
delay time versusIon/Ioff . As shown, a significant per-
formance improvement is achieved. The disadvantage of
this method is that at low drain biases electrons have to
tunnel through a thicker barrier to reach the drain con-
tact, resulting in a smaller drain current (Figure 28).

When increasingLS, the gate-source parasitic capaci-
tance is reduced, and so is the on-current. The band edge
profile near the source contact plays an important role
in controlling the total current. IncreasingLS reduces
the gate control of the band-edge profile near the source
contact. Both the tunneling current and thermionic emis-
sion current contribute to the total current. Electrons
with energies lower than the barrier height have to tun-
nel through the source-sided metal-CNT interface bar-
rier to reach the channel while electrons with energies
higher than the barrier height are injected by thermionic
emission. Since the tunneling probability decreases ex-
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Figure 29: The effect ofLS on the device delay time
versusIon/Ioff ratio. VDD = 0.8 V. The
optimalLS for both device types are shown.

ponentially with the barrier width, the tunneling current
decreases with increasingLS. However, the thermionic
emission current is independent of the barrier width. The
contribution of the tunneling current decreases with de-
creasing barrier height, while that of thermionic emission
increases. Sinceτ is proportional to the parasitic capac-
itance and inversely proportional to the on-current (61),
there is an optimal value forLS, which minimizes τ .
As shown in Figure 29 the optimal value ofLS for the
given material and geometrical parameters results in op-
timized device characteristics. It can be easily shown
that the optimal valueLS0, where ∂τ

∂LS
|LS0

= 0, is

achieved when1
CG

∂CG

∂LS
|LS0

= 1
Ion

∂Ion
∂LS

|LS0
. Considering

the expression derived forCG in Section II.B, we have
1

CG

∂CG

∂LS
= [LS(1 + LS/LD)]−1. Figure 30 shows the

sensitivity of the on-current toLS. However, the men-
tioned sensitivity is not zero due to the contribution of
the tunneling current from states below the Fermi level.
Since at positive gate biases the conduction band-edge
is pushed below the source Fermi level, even in devices
with zero barrier height the tunneling current can con-
tribute to the total current. For thinner insulators the
width of the source-sided barrier decreases, resulting in
a higher tunneling current contribution to the total cur-
rent and a higher sensitivity of the on-current toLS. The
optimal spacer width isLS≈ 6 nm at TIns = 2 nm and
LD = 20 nm. Note that the optimal value forLS de-
pends onLD. For small values ofLD the gate-drain par-
asitic capacitance dominates the gate-source parasitic ca-
pacitance, therefore any further decrease ofLS does not
improve the delay time.

Electron-phonon interaction reduces the on-current,
both, directly and indirectly [87, 88]. The direct ef-
fect is due to backscattering of carriers, but scattering
also redistributes the carrier concentration profile along
the device. This redistribution affects the band-edge
profile so that it reduces the total current. To reduce
the indirect effect one should increase the gate-CNT
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coupling. If thin and High-κ insulators are used then
CIns ≫ CQ andCGG ≈ CQ, implying that the poten-
tial on the tube becomes the same as the gate (perfect
coupling). This regime is called quantum capacitance
limit in which the device is potential-controlled rather
than charge-controlled [89]. Figure 31 compares the ra-
tio of the current in the presence of scattering to the bal-
listic limit for different insulators. For the given material
and geometrical parameters aκ > 20 maximizes the per-
formance of the device. But, with using high-κ materials
not only the on-current but also the parasitic capacitances
increase. Therefore, there is aκ which optimizes the de-
lay time. It can be shown that the optimized value is
achieved when 1

CG

∂CG

∂κ |κ0
= 1

Ion
∂Ion
∂κ |κ0

. Considering
the expression derived forCG in Section II.B, we have
1

CG

∂CG

∂κ = 1
κ . Figure 32 shows the sensitivity of the on-

current and parasitic capacitances toκ. Since the curves
do not intersect at high values ofκ, lower values mini-
mizesτ . Therefore, there is a trade-off between device
delay time and the on-current. For a specific application
this parameter can be optimized.

5.4 Conclusion

We showed that the device characteristics can be opti-
mized by appropriately selecting the geometrical param-
eters. With increasing the gate-drain spacer, the off-
current and the gate-drain parasitic capacitance reduce at
the cost of a drain current reduction at low bias voltages.
With increasing the gate-source spacer, the drain current
and gate-source parasitic capacitance decrease. Since the
device delay time is proportional to the parasitic capaci-
tances and inversely proportional to the on-current, there
is a value for the gate-source spacer which minimizes the
device delay time. The optimal point is where the sensi-
tivity of these quantities are equal. By using high-κ insu-
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Figure 31: The ratio of the drain current in the presence
of scattering to the ballistic limit for different
κ. The proportions due to direct and indi-
rect effect of scattering on the on-current are
shown. For high-κ the indirect part reduces.
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Figure 32: The sensitivity of the parasitic capacitance
and the on-current toκ. Since the curves do
not intersect at high values ofκ lower values
of κ minimizesτ .

lators the gate-CNT coupling increases which results in
higher on-current, but the parasitic capacitances increase
and as a result the device delay time increases.
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[25] W. Hänsch. The Drift Diffusion Equation and its
Application in MOSFET Modeling. Springer Ver-
lag, Wien, New York, 1991.

[26] I. Balslev. Influence of Uniaxial Stress on the In-
direct Absorption Edge in Silicon and Germanium.
Physical Review, 143:636–647, 1966.

[27] Technische Universität Wien, Austria.MINIMOS-
NT 2.1 User’s Guide, 2004.

[28] S. Dhar, G. Karlowatz, E. Ungersboeck, and
H. Kosina. Numerical and Analytical Modeling of
the High-Field Electron Mobility in Strained Si. In
Proc. SISPAD, pp 223–226, 2005.

[29] The MathWorks, Inc. MATLAB- Language of
Technical Computing, User’s Guide, Release 14.0,
2004. http://www.mathworks.com/.

[30] M.V. Fischetti and S.E. Laux. Band structure,
deformation potentials, and carrier mobility in
strained Si, Ge, and SiGe alloys.J. Appl. Phys.,
80(4):2234, 1996.

[31] M.L. Lee, C.W. Leitz, Z. Cheng, A.J. Pitera,
T. Langdo, M.T. Currie, G. Taraschi, E.A. Fitzger-
ald, and D.A. Antoniadis. Appl. Phys. Lett.,
79(20):3344, 2001.

[32] A. Ritenour, S. Yu, M.L. Lee, N. Lu, W. Bai, A. Pit-
era, E.A. Fitzgerald, D.L. Kwong, and D.A. Anto-
niadis. IEDM Tech. Dig., (433):2003, 2003.

[33] M. Rieger and P. Vogl. Electronic-band parameters
in strained Si(1-x)Gex alloys on Si(1-y)Gey sub-
strates.Phys. Rev. B, 48(19):14276, 1993.

[34] G. Karlowatz, W. Wessner, and H. Kosina.Math-
mod, 1:316, 2006.

[35] Institute for Microelectronics TU Wien,
http://www.iue.tuwien.ac.at/software/vmc.VMC
2.0 User’s Guide, 2006.

[36] S. Smirnov, H. Kosina, M. Nedjalkov, and S. Sel-
berherr.Lecture Notes in Computer Science, p 185.
Springer, 2003.

[37] C. Jacoboni and L. Reggiani. The Monte Carlo
method for the solution of charge transport in semi-
conductors with applications to covalent materials.
Rev. Mod. Phys, 55(3):645, 1983.

[38] T. Yamada and D.K. Ferry. Monte Carlo Simulation
of Hole Transport in Strained Si(1-x)Gex.Solid
State Electron., 38(4):881, 1995.

[39] E. Cartier, M.V. Fischetti, E.A. Eklund, and F.R.
McFeely. Impact Ionization in Silicon.Appl. Phys.
Lett., 62(25):3339, 1993.

[40] S.M. Sze.Physics of Semiconductor Devices, p 47.
Wiley, New York, 1981.

[41] B. Ghosh, X.F. Fan, and L.F. Register. Monte
Carlo Study of Strained Germanium Nanoscale
Bulk pMOSFETs. IEEE Transactions on Electr.
Devices, 53(3):533, 2006.

[42] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Char-
vat, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus,
B. McIntyre, K. Mistry, J. Sandford, M. Silberstein,
S. Sivakumar, P. Smith, K. Zawadzki, S. Thomp-
son, and M. Bohr.IEDM Tech. Dig., p 978, 2003.

[43] A. B. Walker, A. Kambili, and S. J. Martin.J. Phys:
Condens. Matter, 14: 9825–9876, 2002.

[44] N. C. Greenham, S. C. Moratti, D. D. C. Bradley,
R. H. Friend, and A. B. Holmers.Nature, 365:628–
630, 1993.

[45] C. J. Drury, C. M. J. Mustaers, C. M. Hart, M. Mat-
ters, and D. M. de. Leeuw.Appl. Phys. Lett, 73:108,
1998.

[46] H. Bassler. Charge Transport in Disordered Or-
ganic Photoconductors.Phys.Stat.Sol.(b), 175:15–
56, 1993.

[47] E. Mconwell.Phys.Rev, 103(1):51–61, 1956.

[48] N. F. Mott. J.Phys., 34:1356, 1956.

[49] N.F. Mott. J.Non-Cryst.Solids, 1:1, 1968.

[50] B. Maennig, M. Pfeiffer, A. Nollau, and K. Leo.
Phys.Rev.B, 64:1952081–1952089, 2001.

[51] C. Godet.J.Non-Cryst.Solids, 299:333–338, 2002.

[52] O. Rubel, S. D. Baranovskii, and P. Thomas.
Phys.Rev.B, 69:0142061–0412065, 2004.

[53] Phys.Rev.lett, 91:216601–216604, 2003.

[54] M. C. J. M. Vissenberg and M. Matters. Theory
of the field-effect mobility in amorphous organic
transistors.Phys.Rev.B, 51:12964–12967, 1998.

[55] A. Miller and E. Abrahams. Impurity conduction at
low concentrations.Phys.Rev, 120:744–755, 1960.

[56] I. P. Zvyagin and A. V. Plyukhin.
Mos.Univ.Phys.Bull, 45:84–88, 1990.

[57] V. A. Mbegaokar, B. I. Halperin, and J. S.
Langer. Hopping conductivity in disordered sys-
tems.Phys.Rev.B, 4:2612, 1971.

[58] P. N. Butcher. Linear and Nonlinear Electron
Transport in Solids. New york, USA: Plenum.

[59] M. Sahimi. Applications of Percolation Theory.
London, Uk: Taylor Francis, 1994.



References 26

[60] R. M. Corless, G. H. Gonner, and D. E. G. Hare.
Adv.Com.Math, 5:329–359, 1996.

[61] P. M. Borsenberger, E. H. Magin, M. V. der Auw-
eraer, and F. C. de Schryver.Phys.Status Solidi B,
175:15, 1993.

[62] C. Godet.Phil.Mag.Lett, 83:691–698, 2003.

[63] G. Schonherr, H. Bassler, and M. Silver.Phi-
los.Mag.B, 44:369, 1981.

[64] B. Movaghar, M. Grunewald, H. Bassler, and
D. Wurtz. Phys.Rev.B, 33:5545–5554, 1986.

[65] H. Bassler. Hopping and related phenomena: Ad-
vances in disordered semiconductors.Sigapore:
World Scientific, 1990.

[66] S. Boutiche. http://hal.ccsd.cnrs.fr/docs/00/03/00/
/41/PDF/, 2001.

[67] K. Horiuchi, S. Uchinobu, and A. Hashii.
Appl.Phys.Lett, 85:1987–1989, 2004.

[68] G. Paasch, P. H. Nguyen, and S. L. Drechsler.
Syn.Metals, 97:255–265, 1998.

[69] Y. Preezant, Y. Roichman, and N. Tessler.
J.Phys.:Condens.Matter, 14:9913–9924, 2002.

[70] C. Tanase, P. W. M. Blom, D. M. de Leeuw, and
D. Leeuw.Phys.stat.sol.(a), 201:1236–1245, 2004.

[71] J. Appenzeller, M. Radosavljevic, J. Knoch,
and P. Avouris. Tunneling Versus Thermionic
Emission in One-Dimensional Semiconductors.
Phys.Rev.Lett., 92:048301, 2004.

[72] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and
H. Dai. Ballistic Carbon Nanotube Field-Effect
Transistors.Letters to Nature, 424(6949):654–657,
2003.

[73] M. Pourfath, E. Ungersboeck, A. Gehring,
B. Cheong, W. Park, H. Kosina, and S. Selber-
herr. Improving the Ambipolar Behavior of Schot-
tky Barrier Carbon Nanotube Field Effect Transis-
tors. InESSDERC, pp 429–432, 2004.

[74] M. Pourfath, A. Gehring, E. Ungersboeck,
H. Kosina, S. Selberherr, B.-H.Cheong, and
W. Park. Separated Carrier Injection Con-
trol in Carbon Nanotube Field-Effect Transistors.
J.Appl.Phys., 97:1,061,031–1,061,033, 2005.

[75] J. Guo, S. Datta, and M. Lundstrom. A Numerical
Study of Scaling Issues for Schottky Barrier Car-
bon Nanotube Transistors.IEEE Trans. Electron
Devices, 51(2):172–177, 2004.

[76] A. Javey, J. Guo, D. Farmer, Q. Wang, E. Ye-
nilmez, R. Gordon, M. Lundstrom, and H. Dai.
Self-Aligned Ballistic Molecular Transistors and
Electrically Parallel Nanotube Arrays.Nano Lett.,
4(7):1319–1322, 2004.

[77] M. Pourfath, H. Kosina, B. Cheong, W. Park, and
S. Selberherr. Improving DC and AC Characteris-
tics of Ohmic Contact Carbon Nanotube Field Ef-
fect Transistors. InESSDERC, pp 541–544, 2005.

[78] R. Venugopal, Z. Ren, S. Datta, M. Lundstrom,
and D. Jovanovic. Simulating Quantum Transport
in Nanoscale Transistors: Real Versus Mode-Space
Approaches.J.Appl.Phys., 92(7):3730–3739,2002.

[79] A. Svizhenko, M. Anantram, T. Govindan,
B. Biegel, and R. Venugopal. Two-Dimensional
Quantum Mechanical Modeling of Nanotransis-
tors. J.Appl.Phys., 91(4):2343–2354, 2002.

[80] G. Mahan. Electron-Optical Phonon Interaction in
Carbon Nanotubes.Phys.Rev.B, 68:125409, 2003.

[81] J. Park, S. Rosenblatt, Y. Yaish, V. Sazonova,
H. Ustunel, S. Braig, T. Arias, P. Brouwer, and
P. McEuen. Electron-Phonon Scattering in Metal-
lic Single-Walled Carbon Nanotubes.Nano Lett.,
4(3):517–520, 2004.

[82] R. Saito, G. Dresselhaus, and M. Dresselhaus.
Physical Properties of Carbon Nanotubes. Impe-
rial College Press, 1998.

[83] P. Burke. AC Performance of Nanoelectronics: To-
wards a Ballistic THz Nanotube Transistors.Solid-
State Electronics, 48(10-11):1981–1986, 2004.

[84] D. John, L. Castro, and D. Pulfrey. Quan-
tum Capacitance in Nanoscale Device Modeling.
J.Appl.Phys., 96(9):5180–5184, 2004.

[85] P. Burke. An RF Circuit Model for Carbon Nan-
otubes.IEEE Trans.Nanotechnology, 2(1):55–58.

[86] M. Radosavljevic, S. Heinze, J. Tersoff, and
P. Avouris. Drain Voltage Scaling in Car-
bon Nanotube Transistors. Appl.Phys.Lett.,
83(12):2435–2437, 2003.

[87] J. Guo and M. Lundstrom. Role of Phonon Scat-
tering in Carbon Nanotube Field-Effect Transistors.
Appl.Phys.Lett., 86:193103, 2005.

[88] Guo J. A Quantum-Mechanical Treatment of
Phonon Scattering in Carbon Nanotube Transistors.
J.Appl.Phys., 98:063519, 2005.

[89] J. Guo, S. Datta, and M. Lundstrom. Assesment
of Silicon MOS and Carbon Nanotube FET Perfor-
mance Limits using a General Theory of Ballistic
Transistors.IEDM Tech.Dig., pp 711–714, 2002.


