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1 Intrinsic Stress Build-Up During several different algorithms which simulate the morphol-
_ ogy evolution of the thin film microstructure according to
Volmer-Weber CryStal Growth the Van der Drift mechanism [4]. An example concern-

ing the Van der Drift growth for a representative group of

We present a model for build-up of intrinsic stress du?-9rainsis givenin Fig. 3 and Fig. 4. The evolution of the
ing the deposition of thin metal films. The model ag]_jlcrostramsf(zJ) |n.the d|re.ct|on of.the film growth is
sumes a three-phase stress generation mechanism w8i¥gn by (1). The microstrain consists of the contribu-
corresponds to three characteristic phases of microstri? from the first phase; ; (z;, ), wherez; is the film

ture evolution. The simulation results based on the modigickness after a coalescence, and an integral term re-
are successfully compared with experimental results {8fing to microstrain development in the second and the
Poly-SiGe PECVD films. The impact of critical paramdird phase (2),

ter variation on mechanical properties of thin film is dis- 2

cussed. el(z,r) =e1(zi,r) + / w(w,r) dw, (1)

i

. w(z,r) =wa(z,7) +wes(z, 7). (2
1.1 Introduction t
The strain-gradient function(z, r) consists of a tensile

. i ) ) (wi,2(z,7)) and a compressiveus 3(z,7)) component.
Residual mechanical stress introduced during depositiRe third phase compressive contributions(z, ) (3)
of thin films and coatings has a significant impact Qepends on the jumping frequericy of adatoms into a
the reliability of electronic devices and structural COMPQyrain boundary (Fig. 2) and adatom concentrati6is
nents. The mechanical stress in thin metal films consigtg at the top of the grain boundary and elsewhere on
of a thermal component and an intrinsic component dyg, grain surface, respectively [13* is the local strain

to the evolution of the metal microstructure during film; he top of the grain and = QM/kT [1].
growth.

2QT .
The goal of this work is the integration of the respective we,3(2,7) = TL(z) ; (Ca —Coe " ) (3)
models for the specific phases of microstructural evolu-

tion into a comprehensive model which describes the imhe straightforward way to apply a microstrain model
trinsic stress behavior during the entire deposition proa larger multilayer structures is given by using linear
cess. This model can be used to assess and optimizedliastic theory. In this case the microstrain acts as rekidua
mechanical stability of multilayer structures. stress,

o(z,y,2) = D(e(x,y, 2) — e’ (z,7)I). (4)

1.2 Theoretical Considerations The overall mechanical problem is defined by the equi-
librium conditionVo = 0. The obtained system of par-
The model introduced here is based on the work pitéal differential equations is solved by means of the finite
sented in [1, 2, 3]. For the sake of generality we delement method.
fine our model in the sense of strain which is developed
during the deposition of a metal film due to microstruc-
tural evolution. We combine three microstrain generg-3  gjmy|ation Results and Discussion
tion mechanisms, each arising in the characteristic phase
of thin film growth (Fig. 1).

Since our model is defined for general Volmer-Weber
In the initial phase we assume the so-called Volmearystal growth, it can be applied for a multitude of dif-
Weber growth which includes a build-up of a strong confierent metals and deposition processes. For example, a
pressive stress component due to the Laplace pressuneaf established fact is that AIN, copper, and SiGe thin
isolated material islands [1]. It is followed by a tensiléims deposited on a Si/SiQJayer exhibit Volmer-Weber
stress mechanism which operates during the island goewth with three distinctive stress generation phases
alescence phase and thereafter [1]. The third phase([d; 5, 3]). We have applied our model for Poly-SiGe
troduces again a compressive component, but this tiRECVD thin film deposition [6]. For an experimen-
due to adatom insertion into the top of the grain bounthl thin film deflection a microstrain curve has been ex-
aries (Fig. 2). The basic feature of our approach is an inacted in our previous work [7]. The comparison be-
troduction of the strain-gradient functian z, r) which tween this experimental microstrain and the microstrain
depends on the grain size distribution functibfz) and obtained by the presented three-phase model is given in
material deposition rate L(z) can be obtained by usingFig. 5. Three phases of the microstructure are clearly



1 Intrinsic Stress Build-Up During Volmer-Weber Crystald@ésth 2

0.02, . . . . :
L NG |
o mcompr
— simulation
X experimen
\ ) 0.015

Substrate

absolute strain
o
o
=

Figure 1: V-shape grain growth. 0.003

4 6
4 film thickness fim)

y Figure 5: Comparison between experimentally deter-
mined microstrain with simulation.

Substrate 0.02

— r =130 nm/min
= r=136.5 nm/mi
+ = r =143 nm/min

Figure 2: Third phase. Adatoms are inserted betwe %915 = r=156 nm/min
. . c
the grain boundaries. g
7]
£ oot -
] -
3 -
[
0.005- N T

e
-

-
C -

| | | | | | |
O0 025 05 075 1 1.25 15 175 2

film thickness im)

Figure 6: The effect of deposition rate variation.

recognizable in the microstrain curve. The resulting pro-
file lays completely in the area of compressive strain, be-
cause the compressive contribution dominates over ten-
sile one. In the first part of the microstrain curve (Fig. 5),
a high compressive component from the first phase can
be seen. The curve further sinks (but it remains posi-
tive) indicating an impact of the tensile componentwhich
bears a negative sign. Continued growth of V-shaped

Figure 3: Grains after coalescence.

grains introduces a final compressive component of the
third phase. Numerous experimental observations have
shown that the variation of process conditions of SiGe
PECVD after reaching the third phase [5] does not dis-
rupt the growth of individual grains. Changing the de-
position rate or germanium concentration can increase
or reduce the number of adatoms arriving at the top of
the grain boundary, the mobility of the adatoms can be
influenced by changing process temperature and germa-
nium concentration, but grains continue their growth [5].
However, measurements clearly show that the resulting
strain in the film changes. The effect of the deposition

Figure 4: Grains after Van der Drift growth.
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rate variation on microstrain is given in Fig. 6. From this
picture we can conclude that increasing the deposition
rate enhances the compressive component from the third
phase of the growth process. Increasing of the deposition
rate to 5 %, 10 %, and 20 %, causes an increase of the
third phase compressive componentto 65 %, 131 %, and
263 %, for 2um film thickness, respectively. This effect
can be practically used for design of the so-called com-
pensation layers at the final stage of thin film deposition
for MEMS applications [5].

1.4 Conclusion

In this work we have presented a three phase model for
evolution of microstrains in deposited thin metal films.
Since our model considers a general dynamics of forma-
tion and evolution of grains, it can be applied to a wide
spectrum of technological processes and materials. The
model is designed as a combination of previously stud-
ied and published models for separate phases of the mi-
crostructure evolution.

Intrinsic residual microstrains are used to raise the me-
chanical problem to a larger scale and to model the be-
havior of complex multilayer films. We have calibrated
our model using measurements of SiGe PECVD thin
film (cantilever) deflection. The theoretically obtained
microstrain curve reproduces very well experimental re-
sults. Finally, we have investigated the impact of a pro-
cess parameter variation on the microstrains. Since the
model explicitly includes both process and material pa-
rameters, it can readily be used to improve the mechani-
cal behavior of thin films.
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2 High-Field Electron Mobility able 1. Cougl s for interval cering
. . . able 1. Coupling constants 1or intervalley scattering in
Model for Strained Si Devices Silicon in [10° eV/cm]

— . Type of scattering g1 92 g3 i f2 3
The application of mechanical stress to enhance the GHues 0.47160.7574 10.42 0.348 2.32 2.32

rier mobility in Si has been well established in the last
few years. This work probes into the electron conduction

in biaxially and uniaxially stressed Si in the non-lineajyction band valleys in Si, inter-valley scattering, dapin

transport regime. The electron behavior has been agapendence and temperature dependence.
lyzed for different field directions and stress/strain con-

ditions using full-band Monte Carlo (MC) simulationswe present here a systematic study of the electron high-
An analytical model describing the velocity componenfigld transport in Si under biaxial and uniaxial stress con-
parallel and perpendicular to the electric field has begitions using full-band Monte Carlo (MC) simulations.
developed. The model includes the effect of strain ii strain dependent empirical model describing the ve-
duced valley splitting and can be applied for arbitraigcity vector as a function of the magnitude and direction
directions of the electric field. The extension to differenif the electric field is presented.
field directions has been performed using a Fourier series
interpolation and a spherical harmonics interpolation fédhe goal of this work is an analytical description of
transport in two and three dimensions, respectively. THwe velocity characteristics at high electric field. To get
model can be implemented in a drift-diffusion based da-complete mobility model for device simulation, this
vice simulator. high-field behavior has to be combined with mobility
models incorporating the effects dominant at low driv-
ing field, such as impurity scattering and surface rough-
ness scattering. This approach, sometimes referred to
2.1 Introduction as the onion model, starts with a proper expression for
the lattice mobility, and adds then the effects of impurity

L , . scattering, surface reduction, and finally velocity satura
Uniaxially stressed Si, offering larger electron and hojg), Using this notion, the presented high-field model

mopilities [S] [9] comparedto conventiqnal Siis beconsan pe combined with any low-field model incorporat-
Ing mpregsmgly accepted by the semlco_no!uctor maqu the aforementioned scattering effects. Note that ef-

N i , Where the driving field is low. On the other
epitaxial layer on a relaxed SiGe substrate [10][11][1%land, high driving fields occur in the pinch-off region,

by mechanical deformation [13][14], or induced during e (e carriers are no longer quantized in sub-bands, but
the processing steps [9][15]. Biaxially strained Si layefg,,aye hulk like. Indeed, the transition region of mod-
grown on relaxed SiGe substrates have shown large gpsie griving fields, where a significant fraction of carri-
hancements of electron mobility. This method howevgfs ig sill quantized and already moderate carrier heat-
suffers from several integration issues. There has trlHa takes place, the error of this onion type model may

begn a growing intere.s.tlin uniaxially strained Si, whicfe gomewhat higher than in the low-field and high-field
delivers superior mobilities for both electrons and ho'%its.

Strain induced enhancement of the low-field electron
mobility can be attributed to two concurring effect . . .
Firstly, inter-valley phonon scattering is reduced duet?a2 ngh_FleId, . Electron  Transport in
decreased number of final available states. Secondly, due Strained Silicon

to the energy lowering of thé, valleys, the electrons

prefer to occupy this valley and therefore experiencer@e velocity-field characteristics needed for the develop-
lower in-plane conductivity effective mass. While biaxment of the analytical model have been obtained by full
ial tensile strain delivers an energy splitting of arounghnd Monte Carlo simulations. In this section some pe-
60 meV per 10% Ge content, uniaxial stress results diliarities of the velocity-field characteristics in strad
around 90 meV of splitting per 1 GPa stress. A modsl are discussed.

for the low-field electron mobility in strained Si has been

proposed in [16]. It describes the mobility tensor ifthe band structure for strained Si was calculated using
strained Si layers as a function of the strain. The modhke empirical pseudopotential method [17]. MC simu-
includes the effect of strain-induced splitting of the cottations have been performed and the results calibrated
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Figure 7: Comparison of electron velocity versus fieldrigure 8: Electron velocity in strained Si on SiGe with
characteristics in unstrained and strainép ( Ge content as a parameter for field along [100]
Si on Sj7Gey .3 for [100]/[111] field direc- and [001] directions.
tions.

LVLE LVRE|RVLE RVRE

with the existing theoretical and experimental data. It
has been previously reported that the enhancement of
the bulk low-field electron mobility saturates at around
1.7 [16]. In order to maintain the desired mobility en-
hancement, the g-type coupling constants had to be de-
creased by 6% and the f-type coupling constantincreased
by 16%, as compared to the original values proposed by
Jacoboni [18]. In addition, it was required to adjust the
acoustic deformation potential from its original value of
8.9 eV [19]to 8.5 eV. The effect of impact ionization has
been neglected for the field regime investigated.

129 meV

Fig. 7 presents the velocity-field characteristics for un-
strained and strained Silicon for different field direcgon
as obtained from MC simulations. Also displayed are
the results from Bufler [20], Canali [21], Smith [22], Fis-
cher [23], and Ismail [24]. The simulation results agree
well with measured data from Smith for the [111] field

direction and with Canali for the [100] field direction fOIFigure 9: Asymmetric electron populations of the dou-

; ; ble valley close to the equilibrium state (top)
th t d d with [19], [20], and [24] for th A L )
streaiunnesdrgfl;lr:z case and with [19], [20], and [24] for the and at high-field (bottom). Solid circles in-

dicate electrons with positive group velocity.
Open circles refer to electrons with negative
group velocity. LVLE: left valley left edge;
LVRE: left valley right edge; RVLE: right val-
ley left edge; RVRE: right valley right edge

Fig. 8 depicts the velocity-field characteristics as ob-
tained from MC simulations for biaxially strained Si
grown on a relaxed SiGe substrate for different Ge con-
tent and field along the in-plane ([100]) and out-of-plane
([001]) direction, respectively. The total velocity in-
creases with strain for a field along the [100] directionhis phenomenon can be explained by the repopulation
and it decreases for a field along the [001] directioof valleys induced by the field.

For the in-plane electric field([100]) the electron veloc-

ity shows a region of small negative differential mobilityFor field along [001] direction thé\,-valleys are low-
The velocity-field characteristics for field along [001] diered in energy with increasing strain and have the lon-
rection exhibit an untypical form for high strain levelsgitudinal mass in the field direction. These valleys are



2 High-Field Electron Mobility Model for Strained Si Devige 6

o
T

Velocity [10'cm/s]

(@)
I

— — right valley

- left valley
—— average

one problem is complexity. A nonlinear system of nine
unknowns, namely the valley populations, valley veloc-
ities and valley temperatures, has to be solved numeri-
cally. The peculiar shape of thg E) curves for field
along [001] direction would pose an additional problem,
requiring some empirical fitting. The strain and field de-
pendences of the energy relaxation times for each valley
would require careful modeling in order to obtain realis-
tic carrier temperatures and, consequently, realistic val
ley population. In the past, multi-valley transport mod-

els have also been devised for compound semiconductors
[25]. As a matter of fact, it seems that such multi-valley
transport models with separate carrier gases for each val-
ley have never found application in commercial or aca-
demic device simulators.

©

o
T
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| L | |
50 100 150
Electric field (KV/cm)

200
To find a trade-off between physical rigor and an ac-
ceptable level of model complexity we abstained from
Figure 10: Velocity vs field for left valley and right val- the multi-valley approach and pursued a more empirical
ley together with the average valley velocityapproach, where analytical expressions for the velocity-
computed as explained in the text. field characteristics are directly fitted to bulk Monte
Carlo data.Our model is restricted to such strain condi-

ions where only one pair of X-valleys is shifted and four

located at a scaled distance of 0.85 and 1.15 from {f leys remain degenerate. These conditions include bi-

center of the first Brillouin zone and are separated lgy(ial stress and uniaxial stress applied along{theo}

an energy barrier .Of _129 meV at th_e X-point (Fig. 9)axes of Si. Another condition resulting in a separation of
The average velocity in the left and right valley and alé

Re A, andA, valleys is uniaxial stress in theL 10} di-
the average of these velocities are shown in Fig. 10. > : y heL 10}

Ction. Dependi the st lied, the strain ten-
low-fields, electrons in both valleys are slightlydisplcicer 'on. Pepending on Ine stress applied, the strain ten

. o : ) .sor can be calculated using Hook’s law and the strain-
V.V'th respgct_to the valley minima. This result; In t.he Nhduced valley splitting can be obtained from linear de-
tial velocity increase f_or both valleys shovv_n in Fig. 1%mrmation potential theory [26].

However, as the field increases, electrons in both valleys
gain energy, and electrons from one valley can surpass(’) = =2, (ey; + e90 + £33) + Sy €15, i =1,2,3 (5)
the energy barrier and drift to the valley in the next Bril-

louin zone. As sketched in Fig. 9, there are more elebhe values of the deformation potentiglg and=,, have
trons populating the right side of the double valley thaeen identified as 1.1 eV and 9.29 eV, respectively. The
the left side, giving rise to a slight increase in averag@lue of=, has been extracted from the numerical band
velocity. If only the left valley is considered, there arétructure data. Equation (5) shows that the valley split-
more electrons populating the left edge of the single v&Rg depends only on the diagonal elements of the strain

ley resulting in a negative valley velocity, as shown itensor. The proposed mobility model is thus applicable,
Fig. 10. if two diagonal elements are equaj; = ez # €33.

To develop a clear understanding of the model, we have

2.3 Analytical High Field Velocity Model to consider three different coordinate systems.

1. The principal coordinate system has to be oriented
such that the unit vectog, é>, andés correspond

to the [100], [010], and [001] crystallographic di-
rections, respectively. In this system the-valleys

are aligned along the [100] and [010] directions,
whereas thé\,- valleys are aligned along the [001]

In general, high field mobility is modeled differently
for the drift-diffusion and the hydrodynamic transport
model. In the former case mobility is modeled as a
function of the driving force, whereas in the latter case
a dependence on the carrier temperature is usually as-

sumed. To describe nonlocal transport effects occurring
in aggressively scaled devices a mobility model for the
hydrodynamic framework would be desirable. Such a2.
model could include a three-valley band structure and
deal with arbitrary strain conditions. It would capture
the essential physics of multi-valley transport under a
spatially rapidly varying electric field profile. However,

direction.

The unit vectorg;, €,, ande,, constitute the device
coordinate system. In this system the device geom-
etry is defined. For performing device simulations
it is essential to transform all transport parameters
into this coordinate system.
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3. A polar coordinate system is employed, comprisirjl parameters depend on the strain-induced valley split-
a unit vector along the field directiofiy = E/|E|, ting, Ac = £(Ay) — £(A4). The following empirical
and two orthogonal vectorg andé,. The polar expressions were assumed.
axis is aligned with the [001] direction. In terms of

the polar anglé and the in-plane (azimuth) angle Vs = Vst + sz - A ®)
®, the unit vectors are defined as follows. B=01+ B Ac (20)
sin(f) cos(y) n=m+mn-Ac (11)
ég = | sin() sin(p) |, Y=+ 72 - Ae (12)
cos(f) (Ae/&))
0ek 1 9eg = 3 (13)
5 . (6) 1+(A552/§1)

0= "%, Cp=
09 sin(f) 9y For all parameters exceft a linear dependence was

found to be sufficient. The parametgmwas modeled
by the rational expression in (13). The parameters

Bis mis vir & Wherei = 1,2, are constants for a par-
ticular field direction. We have chosen the three high
A widely used model describing the electron high fieledymmetry directions [100], [110], and [001] and two ad-

2.3.1 Parallel Velocity Model

behavior in unstrained Si has been adopted [27]. ditional directions [101] and [12]. The parameters
9 in (9) to (13) have been obtained using the optimization
Vg = Ho VE (7) framework of MATLAB [29]. A multidimensional un-

2 F A constrained nonlinear minimization (Nelder-Mead) tech-

1+ ( s ) nique was adopted for obtaining the parameter set.The
optimized values of the parameters for these field direc-

Here 1o denotes the low field mobility and, the satu- tions are listed in Tables 1, 2 and 3. It should be noted
ration velocity. The parametgr describes the transitionthat the optimization technique is sensitive to the initial
from low to high fields. Although (7) can describe th€onditions of the parameters and therefore a small varia-
high field behavior in unstrained Si, it can neither a@ion in the initial conditions can result in a slightly vadie
count for the small negative differential mobility nor th@arameter set.
velocity plateau seen in strained Si (Fig. 8) .

1+

Fig. 11 shows thevp(F) characteristics for a 1GPa
stressed (along [001]) Si layer for field along [100] and
Table 2: Parameter values for the parallel velocity conj001] directions, respectively. Application of uniaxial
ponentvg in unstrained Si compressive stress enhances the velocity along [100] di-
rection in the same way as biaxial tensile strain does.

Parameter Units E[00] E[110] E[4@] Conversely, applying uniaxial tensile stress results in an

E[001] E[101] enhanced velocity along [001] direction.
Vst [10"cm/s] 1.026  1.058 1.042
B1 [1] 1.085 1.2475 1.273

2.3.2 Perpendicular Velocity Model

We thus use an expression previously suggested in [28],
which can handle all types of velocity-field characterigsor the cases where the field is not oriented in a high

tics resulting from the MC simulations performed.  symmetry direction, it is observed that an electron veloc-
9 B (B/n) ity perpendicular to the field direction develops. Fig. 12

vp = LEE . v —21___ shows the perpendicular electron velocit, for field
2upepE AR L+ (E/n) along the [101] direction for increasing stress level, as

T+ 1+ (m) obtained from MC simulations. The componeit al-

though small for low stress levels, has a significant mag-
Hereuz denotes the low-field mobility in the field dj-Nitude for intermediate field regimes. For symmetry rea-
rection, obtained by projection of the low-field mobil2°"s: the velocity component in thg direction vanishes

ity tensor asugp = €% - po - €p. The additional term for all five sample directions.

in_corporated in (8) models the velo_city Kink shown iIC?’he perpendicular velocity component vanishes for
Fig. 8. The relevance of the parametés twofold: It ac- [ields along the [100], [110] and [001] directions. For

counts for the velocity plateau occurring approximate Me field directions [101] and [12], the normal veloc-

atvg(1 — £) and also signifies the small negative dlfferﬁy can be expressed in termsf andus.

ential mobility occurring in strained Si for higher strain
levels. The parametersand~ are fit parameters. v, =vg —V2u3 (24)
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After fitting vg, the component; is fitted using an ex-

pression similar to (8) le+0h- /A— i _A"g" —é' - -é— = -é— —_é
--B--877
o V2 v (E[n) - g T o @
3 s N1 VT (B serod S §
1+ |1+ (”i) T o o
Us(l - 5) E W/ ."9 1
(15) "geeroqf /% .
To ensure the correct low-field behavies, = ps3Es, = R4 i
the magnitude of the electric fiel# in the first term 8 e
in (8) has to be replaced by; = E/v/2 to obtain (15). £ 4e*04r - 7
The correct high-field limit is introduced by replacing E[00] o e -
vy in (8) by v, = v./V2. For the unstrained case .ok |.>. madl compresei| —— modelcomprecsie
the values of the parametgpsandv, are identical with & MClensile B MClensile |
those listed in Table 1. The fitting of the parameters
in (15) is performed such that the errorin is mini- ; 5'0 b 1’50 00

mized. The values of the other parameter for the field Electric Field (KV/cm)
directions [101] and [1{/2] are listed in Table 4.
Figure 11: Parallel electron velocity component versus
field for Si under uniaxial stress (1GPa)

2.3.3 Total Velocity for Fixed Field Direction along [001] and field along [100] and [001]
directions, respectively.

The total electron velocity vector is obtained by addition

of the two components. . T T T

o £ -

¥ = vnp + Vol (16) Fon 0N
[/ ~
. T N .

wherecr andéy are the unit vectors parallel and perpen-  o0.4f- 7/ ">, ™. \-\ AN O unstrained
dicular to the field direction. Fig. 13 shows acomparisong / \‘\ RRNAN —_ :2;8852 |
of the velocity components and total velocity for -3GPa.s N NN N = -1.5GPa

0. 3_’/ N\ SN -+ -2.0GPa |]
stress for field along the [A12] direction, as obtained ) i \ N N, N, | = -25GPa
from MC simulations and the analytical model. The re-2 [ DRI N il RS < R
sults from the model are in good agreement with the MCw 0.2 AN SRENUN
data. N

O. .

. | .
. . o 50 100 150 200

2.3.4 Total Velocity for Arbitrary Field Direction Electric Field (KV/cm)

The velocity-field characteristics can be extended fgure 12: Perpendicular velocity versus field for Si un-

other field directions using a spherical harmonics inter- derincreasing uniaxial stress along [001] and
polation. field along [101].

0o l
= Z Z aim P/ [cos(0)] cos(myp)  (17) wherex = cos(f). Evaluating (18) for field directions

1=0 m=0 [100], [110], [001], [101] and [1¥/2] gives

Here, @ is the function to be interpolated,,, denote 1 3
the expansion coefficients an™ are the associated P10 = aoo — 20 + gaao + 105044 (19)
Legendre polynomials. From the symmetry properties 1 3
D0, 0+ 7/2) = ®(0, ) and® (0 + 7, ) = (0, p) it Q110 = aoo — 020 + g0 — 105a44  (20)
follows thatl must be even anah = 4n. Truncating (17) Boor = a0 + g0 + auo (1)
after the 4" order yields 1 13 105

Qo1 = ago + ~az — 55040 + ——aas (22)

32 4

4
1 13 105
4

—a20 — 32 a40 — 7@44 (23)

(0, ¢) = aoo By (x) + a20P5 (x) + as0 Py (x) +
+a44 Py (x) cos(4y) (18) v = oo+
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Figure 13: Parallel (par) and perpendicular (prp) velod-igure 14: Interpolated parallel (par) electron velocity

ity components and total (tot) velocity ver- components and perpendicular (prp) velocity

sus field for Si under uniaxial stress (-3GPa) and the total (tot) velocity versus field for Si

along [001] and field along [112]. under uniaxial stress (3GPa) along [001] and
field along [111].

To determine the four coefficients from the overdeter-
mined system (19) to (23), we solve (19) to (21) exactfyonsidering the special case of transport in #@&10>

and minimize plane (0 = 0), we can write the equation system
the errorin (22) and (23). 190 = bo (29)
b b

1 7 ” D101 = bo+ 52 + f (30)

a = —(P1po+ P10+ P - —a

00 3( 100 110 + Poo1) 1540 (24) Bugi = byt byt by (31)

1 5

agp = 5(2%01 — @190 — P110) — 1o %40 (25) which gives the coefficients
8

agp = g(‘bloo + @110 + 2Po01 — 2Po11 — 29, (26) by = —3®100 + 4P101 — Poo1 (32)
1 - _

a1 = —— (D100 — P110) 27) by 28199 — 4P101 + 2Po01 (33)

210
Similarly, for transport in a< 110> plane (p = 7), we
It was found that interpolation of the quantiti®s= v% have

and® = v gives good agreement to MC data.

P10 = bo (34)

Fig. 14 show a comparison of the velocity components by by
and the total velocity as obtained from the interpolation 3 = bot 9 + 4 (35)
and MC simulations for field along the [111] direction Door = by + by + by (36)
for uniaxial tensile stressed Si. It can be seen that tensile
stress causes the parallel and perpendicular velocitiegitang
have opposite signs.

by = —3P110+4P;,,5 — Poon (37)

by = 2®110— 4P, 5+ 2Pg01 (38)

Simplification to Two-Dimensional Simulation Do- . .
mairﬁ)s The quantities to be interpolated abe= v and® =

v3. Note that for a field in [100] and [110] direction, the
componenbs vanishes. Therefore, for this quantity the
For a given value ofy, the quantity® in (18) can alter- calculation of the coefficients simplifies becadsg, =
natively be interpolated using a polynomial. ®110 = 0. Using the relations (32) and (33) for the=
0 plane and (37) and (38) for the = «/4 plane, the
®(0) = by + by cos®(6) + by cos™ () (28) velocity components can be interpolated.
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2.4

The present model has been derived for a uniform elec-
tric field, E. To apply it in a drift diffusion based de-

vice simulator, the electric field in the model has to bes

replaced by an appropriately defined driving forég,
Typical definitions of the driving force employed in prac-
tical devices simulators are the electric field component
along the current density vector or the gradient of the

Implementation Issues 1.

10

For five given field directions the parallel compo-
nentsvg (F) of the velocity vectors are empirically
fitted. These five chosen directions form a spherical
triangle.

For two out of the five field directions a normal
velocity component develops. The normal compo-
nentsvy (E) in the directioréy are also empirically
fitted. For all field directions chosen, the normal
component along thé&, direction will vanish.

quasi Fermi level.

3. The velocity vector for the actual field direction is
For the two-dimensional cases described in Section IV.A, obtained from the velocity vectors for the sample
only one angle has to be determined. With the constant, directions by means of interpolation.
two-dimensional vecto#s; denoting the [001] direction,

one obtains for the polar angle 4. In the crystallographic system the mobility tensor

is assumed to be diagonal. The three diagonal el-
ements are determined from the velocity and field
vectors.

—

(Fn i 53)2

COS2 0) = — = - 39
The mobiIity tensor is transformed to the device co-

The involved vectors are two-dimensional and specifieoB' - ! .
ordinate system by a unitary transformation.

in the device coordinate system.

In order to implement the model in conventional tWorhjs approach seems to be more suitable for device sim-
dimensional drift-diffusion based device simulators, tl ation purpose than a more physics based model due to
mobility is needed at the mid-point of the grid ed9&ne jnherent complexities discussed in Section I1I. The
By assuming a suitably interpolated value of the normalesented model is applicable for all stress conditions
component_of the driving force, the_moblhty tensorinthe.-h cause the X-valleys to split into two-fold degen-
polar coordinate system can be written as erate/,-valleys and four-fold degenerafe;-valleys. It

0 has been extended to arbitrary field directions using an
= (“’SE ) (40) interpolation technique. The path of implementing the
Ho model in drift-diffusion based device simulator is briefly
with the mobility components, outlined.
w(E) - F w(Fi) - F
|F| |F|

Here F,,, denotes the perpendicular driving force com-

ponent andF is a unit vector. In analogy with the di-
agonal form of the low-field mobility tensor, we assume
that the mobility tensor remains diagonal for high-fields.
The mobility along the grid edge, is then determined
by taking the projection of the mobility tensor.

pee =¢" (MSE O)C

Mo (42)

2.5 Conclusion

A comprehensive study of the electron high-field trans-
port in strained Si for different field directions and stress
conditions has been performed using full-band MC sim-
ulations. A phenomenological approach to calculate the
mobility tensor at high electric fields has been proposed.
The structure of the proposed high-field model can be
summarized as follows:
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Table 3: Parameter values for the parallel velocity compongntor Ae < 0

Parameter Units E [100] E [001] E[110] E[101] E[¥2]
Vs2 [10°cms eV 1] -55691  33.731 1.4988 11.739 11.067
B2 [ev1] -0.33235 -5.2879 0.22885 -0.30235 -0.39907
& [eV] 0.37994 -0.22859 0.45615 -0.84676 -0.76303
& [1] 1.6239 1.0333 1.5468 6.3401 4.7611
m [20* Vem™1] 2.1254 6.3369 0.6651 4.2133 5.4664
M2 [10° Vem~lev1] -1.13 -2.748  -0.86273 -2.0402  -1.5317
! [1] 1.3707 2.6051 1.3869 2.4453 3.4612
Yo [ev] -0.73185 -6.3392 0.61215 -13.938 -7.1773

Table 4: Parameter values for the parallel velocity compongntor Ae > 0

Parameter Units E[100] E[001] E[110] E[101] E[2]
Vg2 [10°cms leV-!] -20.608 10.822 -14.625 2.2239 3.5825
Ba [ev] 0.472 0.5135 0.21785 -0.41762 -0.27011
& [eV] 0.47701 -0.29814 1.0876 -1.3718 1.9381
& [1] 3.1569  2.1639 -8.5962 -4.2752 5.5323
M [10* vem™1] 7.6075 3.7613 5.8913 0.25071 1.1382
72 [10° vem~lev—1]  1.471 2.7214  1.3928 0.92226 -0.19962
" [1] 3.815 1.163 47754  1.4471 0.7351
Yo [ev—] 2.9118 4.8595 5.2425 0.14618 5.2995

Table 5: Parameter values for the [001] velocity component

Parameter Units E[101] E[101] E[R] E[11v2]
Ae <0 Ae >0 Ae <0 Ae >0
Vg2 [10° cms—teV—!] 4.0975 2.8429 3.53 3.4858
Ba [ev] -1.7085 -0.22173 -1.7571 -0.26191
& [eV] -0.16917 -0.3354 -0.17293 -0.36817
& 1] 0.75896 -1.9529 0.76209  2.2891
m [10* Vem™1] 3.9982 5.9335 4.223 6.5366
M2 [10° vem~lev—!] -2.2147 1.9583 -2.1683 1.8587
Y1 [1] 1.8204 1.9209 2.0921 1.668

Y [eV—1] -4.6684  3.5664  -3.5816  5.4713
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3 Analysis of Hole Transport in Ar-  the so-callecBrillouin zone is used to capture the de-
; ; ; ; pendence of the carrier energy on the wave vector. Be-
bltrarlly Strained Germanium cause of symmetry only a part of the Brillouin zone - the
irreducible wedge has to be considered for band struc-

Full-band Monte Carlo simulations are performed wre calculation. The volume of the irreducible WEdge is
study the properties of hole transport in bulk Germaniufgtermined by the number of symmetry element¥)
under general strain conditions. The band structures akdhe center of the Brillouin zone of the strained lattice
calculated with the empirical non-local pseudopotentidP Qirrea = 25z/P(I). For the diamond type lattice of
method. For Monte Carlo simulations acoustic and offlaxed GeP(I') is 48, for stress alongl00), (111), and
tical phonon scattering as well as impact ionization afé10), as shown in Fig. 15pP(I") is 16, 12, and 8, re-
taken into account. Results for biaxially strained G@ectively, while for stress along arbitrary direction the
grown on a[001] orientedSi; _,Ge, substrate and for lattice is invariant only to inversion, thu(I") = 2.
uniaxial compressive stress jhl10] exhibit a high mo- - .

bility enhancement. These results are compared to %-é]-e empirical non-local ~pseudopotential method

perimental and theoretical results from literature. PM) [33] is generalized to arbitrary stress/strain
conditions to calculate the band structures of Ge. For

discretization of the band-structure an unstructured
tetrahedral mesh is used. Mesh refinement guarantees
high resolution around the band minima, while a
relatively low total number of mesh elements is
The history of semiconductor device technology startethintained [34].

with Germanium as the preferred material, while toda - )

the mainstream semiconductor technology is centergwess modifies the band structure of a semiconductor.
around Silicon. Over decades performance gains e @ consequence the band gap changes, a splitting be-
increasing integration density of CMOS devices wheh&een light hole and heavy hole band is introduced and
successfully obtained by down-scaling, a process whigi$© the splitoff band is altered. The band splitting re-
is getting more and more cost intensive as it is pushddCes the density of states in the low energy regime
closer to some principal physical limits. So the demard suppresses interband scattering. This effect and the
for alternatives to down-scaling rises, leading to new opange of the effective masses cause the observed mobil-
portunities for Ge, particularly motivated by its highefy 9ain. Fig. 18(a) shows the energy spliting between
carrier mobility compared to Si. The hole mobility, bethe splitoff band and the valence band edge and Fig. 3.2
ing approximately four times higher than in Si, can goe heavy/hght hole band splltt!ng energies of biaxially
further enhanced by stress engineering. This has b&fgined Ge grown on @01] orientedSi; ., Ge, sub-
shown in previous experimental and theoretical worR§ate as a result of EPM calculation [33]. For higher
for biaxially strained Ge epitaxially grown or{@1] ori- COMPressive strain levels than shown the heayy/llght hole
entedSi, Ge;_, substrate [30][31][32]. In this work we band sp_llt_tmg saturates [30]. _F|g. 17(a) depicts the en-
analyze hole transport properties of arbitrarily strefsederdy splitting between the splitoff band and the valence

trained Ge by means of full-band Monte Carlo simul&@nd edge and Fig. 17(b) the heavy/light hole band split-
tion (FBMC). ting energies of compressive stressed Ge in [110] direc-

tion. The splitting energy rises almost linearly with com-
pressive stress ifi 10] direction for the shown range of
pressure.

3.1 Introduction

3.2 Band Structure Calculation
3.3 The Vienna Monte Carlo Simulator

The VIENNA MONTE CARLO SIMULATOR (VMC) [35]
offers simulation algorithms for both bulk semiconduc-
tors and one-dimensional devices based on analytical and
full-band models. Additionally, a fast zero-field algo-
rithm is included [36]. VMC provides a mature set of
scattering models including phonon scattering, ionized
impurity scattering, alloy scattering, and impact ioniza-
Figure 15: Irreducible wedge for stress applied[in0] tjon. For full-band simulation phonon scattering models
and in[111] direction. with constant matrix elements are used[37]. In this for-
mulation the scattering rates are proportional to the den-
For FBMC simulations a numerical representation of tisity of states, which is calculated from the band structure.
band structure in the unit cell of the reciprocal latticdhe coupling constants for acoustic and optical phonon
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Figure 19: Hole velocity versus field in [100] direction

for relaxed Ge compared to results from lit-

erature. [30][38]

scattering, as well as the optical phonon energy are gi\fg’n 100k
in Table 6. These parameters are used for relaxed andfor

strained Ge.

Impact ionization is modeled with a threshold expre

sion [39]
(=)

(43)
where@ is the unit step-functions is the electron en-
ergy, &, is a threshold energy, arid is a multiplica-

1
— =0(e—€wm) - P-
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(b) Heavy hole/light hole energy splitting

0.3

0.4

rgy splitting of\hehole/light hole bands in strained Ger-

tion factor which determines the softness of the thresh-
old. The parameters are tuned to reproduce reported hole
velocity field characteristics [40][38][41] for relaxed Ge

e&n = 0.69eV and P =2.0-10'2s~!. For stressed/
strained Gey,, is adjusted in dependence on the bandgap
change.

Fig. 19 shows the hole velocity field characteristics and
Fig. 20 the energy as a function of the electric field in

[100] direction for relaxed Ge. These results are com-
pared to values from literature and show good agree-
ment.
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Figure 20: Hole energy versus field in [100] direction
for relaxed Ge compared to results from lit-
erature. [30][38]
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Figure 17: Splitoff band shift and heavy hole and energy splitting of\hehole/light hole bands of stressed Ge
with compressive stress in [110] direction.
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Figure 18: Band gap and heavy hole and energy splitting of heavy hotght iole bands in strained germanium
grown on aSi,. Ge; _,, layer

(a) Band gap

Table 6: Acoustic deformation potentiad\,.., optical de-
formation potentialA,, and optical phonon
energy lw,, for the heavy hole (HH), light
hole(LH) and split-off (SO) bands.

Band Aac op thP
HH 1.71eV 9.6e8 eV/cm 37 meV
LH 2.56 eV 9.6e8 eV/cm 37 meV
SO 2.56 eV 9.6e8 eV/cm 37 meV
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Figure 21: In-plane low field mobility of holes in biax-
ially compressed Ge grown on$i,Ge;
substrate.

Figure 22: Hole velocity versus electric field for biax-
ially compressed Ge grown on$,,Ge;_,
substrate in [100] direction.

3.4 Results

Fig. 23 presents the velocity field characteristics for uni-
axial stress and field ifL 10] direction. As for biaxially
strain the curves show the highest mobility gain in the
. o . low field regime and converge at high electric fields.

In this section simulation results for bulk hole transpo,t_qg_ 24 depicts the in-plane hole mobility at low elec-

in biaxially strained Ge epitaxially grown orba, Gei— ¢ field for uniaxial compressive stress. A strong

substrate wit001] orientation are shown. Since the Iaténisotropy with the most pronounced mobility enhance-

tice constant of SiGe is smaller than that of Ge the "fient in stress direction can be observed. A stress level

sglting stlrain is compressive. Several pMOSFET deViC8§1.5GPa enhances the low field mobility by a factor

with strained Ge channels based on that technique hgy8 g 14 4790:m2/Vs. Note that tensile stress instead

been demonstrated [31][32]. of compressive stress could also be used for hole mobil-

ity enhancement. The most pronounced enhancement is
en achieved perpendicular to the applied strefdd 0

Compressively Biaxially Strained Germanium

Fig. 21 depicts the in-plane low field mobility versu
mole fraction of Siin théi, Ge;_, substrate. For a mole
fractionx = 0.4 the low field hole mobility is enhanced
by a factor of 3.38 to 6356m?/Vs. This mole fraction  1a+07
corresponds to biaxial compressive strain of 1.7% in the F
Ge layer. Fig. 22 shows the velocity field characteristics
for field in [100] direction for different Si mole fractions. _,
The highest mobility gain can be observed in the Ioﬁ
field regime, while the curves converge in the high fielel
regime. ;

le+0G

e Veloc

Uniaxially Strained Germanium

Uniaxial stress technique overcomes a few drawbacksDf
biaxially strained Ge layers, related to problems of mis-
fit and threading dislocations as well as diffusion. In
Si technology CMOS devices with uniaxially stressed

ol gl il L
channels are already fabricated in large volumes [42]. Kl 1 10 100

1le+08

The stress is hereby introduced by capping layers. In this Electric Field [kV/cm]

section results for hole transport in uniaxially stressed

Ge with compressive stress|iri0] are shown. Although Figure 23: Hole velocity as a function of the electric
this is a technologically very interesting setup it has been field in stressed Ge for field and stress in
hardly investigated by means of Monte Carlo simulation [110] direction.

so far.
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Figure 24: Low field hole mobility in bulk Ge for uni-
axial[110] compressive stress.

direction, otherwise the result looks similar as in Fig. 24
for the shown stress levels.

3.5 Conclusion

A full-band Monte Carlo simulator which efficiently
handles arbritrary stress/ strain conditions is presented
and used to analyse two technologically important appli-
cations of stress engineered Ge. It is demonstrated that
uniaxial compressive stressed Ge[irl0] direction as
well as biaxially stressed Ge show high hole mobility en-
hancement. Therefore, Germanium is indeed a promis-
ing material for future applications.

16
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4 Carrier Concentration Depen- of the work related to the mobility is on the tempera-
dence of the Mobility in Organic ture_and electric field_dependence._ Recently it has b_een
. realized that the carrier concentration also plays an im-
Semiconductors portant role for the mobility. Experiments show that for
a hole-only diode and a FET fabricated from the same
conjugated polymer, the mobility could differ up to three
The charge transport in organic materials as a functigfders of the magnitude [53]. This difference can only
of carrier concentration is investigated. An analyticte explained by taking into account the dependence of
model of the concentration dependent mobility based gibbility on the carrier concentration. Rubel [52] ana-
the variable hopping range theory is formulated. Thigzed this problem with the concept of a transport energy
model is applied to analyze the discrepancy between thebut there is no direct proof for the existence of such
experimental mobilities extracted from FETs and LEDﬁ‘ansport energy in organic systems. In this paper, we
The result shows that an exponential density of stai@#l focus on extending the percolation model based on
(DOS) is a good approximation of the tail states for d&RH theory by Vissenberg [54] to explain the discrep-
scribing the charge transport in FETs. When applied 4acy of measured mobilities in OLEDs and OFETs. An
the low carrier concentration regime, for example to thgalytical mobility model with a Gaussian DOS function
LEDs regime, a Gaussian DOS should be assumed. has been obtained. It can explain the relation between the
mobility and carrier concentration. Results are in good
agreement with experimental data.

4.1 Introduction

4.2 Theory

Organic semiconductors have witnessed a considerable
developmentin recent years, mainly pushed by commer- N _ _
cial display applications based on LEDs [43, 44] whod@ calculate the mobility of an organic semiconductor,

cost and performance are potentially better compal@A 20 152 RATEOEIOR Baton: (AGREITa BUeh B &3
with more conventional solutions. At the same tim§, 3
ﬁams) [46, 55]. The current flows through the bonds con-

"J;E_rreSt 225 alao grown ft(r)]r organic Lh',? f||Im t[anfs'sttr?hsecting sites in the network. The conductance between
( .s) [ 1 owever, the main obstacles 10 TUrth&pe siates, andm’ can be described as

application of organic transistors are the poor mobility

which can be several order of magnitudes smaller than' , = z;" exp (—2a | Ry — R |) -

that of conventional semiconductors. Another problem lem —€r |+ | €mr — € | + | €mr — €m |

is the lack of knowledge of the microscopic charge trans-  * ©*P (‘ 2knT ) :
port mechanisms [46]. However, understanding the car-

rier transport properties in these organic materials is ofhereZ; ! is a prefactora ! is the Bohr radius of the
crucial importance to design and synthesize better mdtsealized wave functions,,, ande,,, denote the position
rials and to improve device performance. and energy of siten. In theory the value o%,,,, is

In organic semiconductors, intramolecular interactioggtermined by the threshold or critical conductaige

are mainly covalent, but intermolecular interactions agg which the first infinite cluster will form, given by the
due to much weaker van der Waals and London forceslation

As a result, the transport bands in organic crystals are o=o00Z " (44)
much narrower than those of their inorganic counter-

parts, and the band structure is easily disrupted by disB€reco is a prefactor. To describe the field-effect mo-
der in such systems. This disorder causes the formatfifify in organic transistors, Vissenberg assumed an ex-
of localized states in the energy gap. In order to enabl@@nential density of localized states [54].

current through the device, charge carriers trapped at the

localized states need to escape from these sites. Such a 4 (€) = Ny exp < € ) (e <0) (45)
conduction process is entirely determined by the tunnel- BTy kyTo

ing transitions of carriers between the localized stat%%,

. . . 1 is the number of states per unit volume afydspeci-
prowded that the elef:'gronlc wave fungtlons of the loc es the width of the exponential distribution. Connecting
ized states have sufficient overlap. This theory was 14y and (2), conductivity can be described as [54]
inally given by Conwell [47] and Mott [48]. A more sys- ’

tematic theory called variable range hopping (VRH) was 78N, (To/T)? To/T
introduced by Mott in 1968 [49]. The transport propefz (6: T) = oo ((204)33 T(—To/T)T (1 +T)/T)) - (46)
ties of organic semiconductors can be well described by ‘ ‘ ‘

VRH theory [50, 51, 52]. The central transport quanHereJ is the fraction of occupied states, aBd is the

tity is the mobility n of the charge carriers and mostritical number of bonds per site. Then an expression for
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the mobility as a function of the carrier concentration This equation has to be solved far and an expression

can be obtained. for mobility can be obtained.
oo ((To/T) sin (zT/T)\ """ o0
pin,T) =20 [ 20 . 0 pTo/T—1 m= o, O (n) (52)
e (2a)” B.
(47) where
Heree is the elementary charge. However, this expres-
sion can not account for the carrier concentration inde- T, B. (2aT/T,)° T2
pendent mobility when the carrier concentration is veryn = T T | 4;2
low (LED regime). To overcome this problem, we de- 27Ny (1 * \/5)

rive a new mobility model assuming a Gaussian DO
[46] and VRH theory. In this model, the DOS function i
given as

is the Lambert function [60]. Equation (9) is obtained
assuming

(48)  ° thatthe site positions are random,

o Nt € 2
g(e) = Vel (—kBT)
It is slightly different from [46], where: is the energy
measured relative to the center of the DOS #@pdndi- » and the charge carrier concentration is very low.
cates the width of the DOS. The value of the Fermi en-
ergyer can be determined by the equation for the carrier
concentratiom. Results and Discussions

I g(e)de (49)
"= So far, much attention has been devoted to explain

oo L+exp((e —€r) /kpT)"
At low n, the exponential function is large comparet%rle temperature dependence of the mobility [61, 62].

. “As shown in Fig. 1, the model (9) gives a non-
to one (the nondegenerate case) [56], and we obtain }Xr?henius—type temperature dependence of the forn
Fermi energy as

) exp (— (Co/kBT)Q), which has also been supported
€= — kpTy +kgTné. (50) by numerical simulations [63] and analytical calculations
AT [64]. The model (9) shows good agreement for a value

_ ) C = 0.71. This value is close t¢' = 0.69 given in [65]
According to percolation theory [57], at the onset of peknq0.64 in [64]. In Fig. 2, the mobility is plotted as a

« the energy barrier for the critical hop is large,

colation, the critical numbeB,. can be written as function of (TU/T)l/S_ When plotted in this way, there
Ny exists the regime with a linear behavior betwgeand
Be = N, (51) 7-1/3 This indicates that variable-range hopping effect

B. = 2.8 for a three-dimensional amorphous systé, has to be taken into account [66, 67]

andN; are respectively the density of bonds and density, gptain (7), a Boltzmann distribution function has been
of sites in a percolation system, which can be calculatgdeq. The degenerate limit of organic semiconductors

as [58, 54] has been studied in [68, 69]. In Fig. 3 (a) we show
the Fermi energy for Boltzmann and Fermi-Dirac dis-
Ny = /dRijdeidejg (€1) g (€) 0 (sc — sij) tribution assuming some typical values of the parameter

T,/T as 1.5, 3.5 and 6.0 [61], Fig. 3 (b) is a comparison
especially for the higher carrier occupation regime. The
N, = /deg (€) 6 (sckpT— | e —er |). analytical result (7) agrees_wellwit_h the nume_rically ca_l—
culated result for decreasing carrier occupation and in-
HereR;; denotes the distance vector between sitasd creasindl;,/T. Therefore, for the LED regime with low
j, 5. is the exponent of the conductance given by the fgharge carrier concentration, (7) is a good approximation
lation o = oe 5 [59] andd is step function. of the solution of (6).
Substituting (5) and (7) into (8), we obtain a new perc
lation criterion for an organic system as

and

0r_he mobility as a function of the carrier concentration
is presented in Fig. 4, wher&,/T is in the range
2N (V2+1) 7 1.5 — 9.0, corresponding to some typical values for
~ (2aT/Ta)3 ' organic semiconductors. The mobility stays constant
) ) until a certain threshold value of the carrier occupation.
. (6F + kBTSc) exn [ — |:6F + kBTSc} Above this threshold, the mobility can increase about
kpTs kpTs, ' four orders of magnitude &f,/T= 9. These effects

c
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have been observed in the experimental work [53, 70].

However, (9) is valid only in the LED regime with very
low carrier concentration. As it is difficult to get an
analytical expression for the mobility at higher carrier
concentration, we use (4) as the mobility model for the
higher carrier concentration. The combined model can
explain the experimental data in [70, 53], as shown in
Fig. 5.

4.3 Conclusion

An analytical mobility model has been obtained on the
basis of variable range hopping theory. This model can
explain the relation between mobility and carrier con-
centration, especially the mobility’s independence of the
carrier concentration in the LED regime. We can con-
clude that a Gaussian density of states function is a better
description for the low carrier concentration regime than
an exponential one. The model also gives non-Arrhenius
temperature characteristics.

19
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5 Optimal Design for Carbon 5.2 Approach

Nanotube Transistors
In this section the models used to study the static and

. ) dynamic response of CNTFETS are explained.
A numerical study of carbon nanotube field effect tran-y P P

sistors is presented. To investigate transport phenom-
ena in such devices the non-equilibrium Green'’s function
formalism was employed. Phenomena like tunneling aReB-1 ~ Static Response
electron-phonon interactions are rigorously taken into

a_ccount. The effect ofgeometrical parameters on the %%ised on the NEGF formalism we investigated the ef-
vice performance was s_tud|ed. Our rgsglts clearly Sh?é‘(:t of device geometry on the performance of car-
that device characteristics can be optimized by appropfs, nanotube field-effect transistors. We have solved
ately selecting geometrical parameters. the coupled system of transport and Poisson equations

numerically. Due to quantum confinement along the

. tube circumference, carrier have bound wave functions

5.1 Introduction around the CNT and can propagate along the tube axis.

Under the assumption that the potential profile does not
A carbon nanotube (CNT) can be viewed as a rolled-Mpry around the circumference of the CNT, sub-bands
sheet of graphite with a diameter of a few nano-metevéll be decoupled. In this work we assume bias condi-
Depending on the chiral angle the CNT can be eithi#®ns for which the first sub-band contributes mostly to
metallic or semiconducting. Semiconducting CNTs cahe total current. In the mode-space approach [78] the
be used as channels for field-effect transistors (FET&@nsport equation for each sub-band can be written as:
CNTFETSs have been studied in recent years as potential
alternatives to CMOS devices because of their capability Gy (E) = [EI — Hy o (E) — S0 (E)] ™" (53)
of ballistic transport.

<,> _ R <,> A

Depending on the work function difference between the G (B) = Grw (B)E 7 (B) Gy (E) (54)
metal contact and the CNT, carriers at the metal-CNT ilm (53) an effective mass Hamiltonian was assumed.
terface encounter different barrier heights. Devices wigll our calculations assume a CNT with a band gap of
positive [71] and zero [72] barrier heights were fabriE, = 0.6 eV corresponding to a CNT with a diameter
cated. The barrier height is defined as the potential bef-dcyt = 1.6 nm, andm* = 0.05m for both elec-
rier which is seen by carriers at the Fermi level in thieons and holes. A recursive Green’s function method
metal. Therefore, in a device with zero barrier height used for solving (53) and (54) [79]. The total self-
carriers with energies above the Fermi level of the metatergy in (53) consists of the self-energies due to the
reach the channel by thermionic emission and carrigtsurce contact, drain contact, and electron-phonon in-
with energies below the Fermi level have to tunnel teraction, =" = ©§ + £f + X5, . The self-energy
reach the channel. Devices with positive barrier heighige to electron-phonon interaction consists of the con-
have lower on-current and also suffer from ambipolar beibution of elastic and inelastic scattering mechanisms,
havior [73, 74], while devices with zero barrier heighC> > = 57+, Assuming a single sub-band the
theoretically [75] and experimentally [76] show betteglectron-phonon self-energies are simplified to (55)-(58)
performance. In this work we focus on devices with zero
barrier height for electrons. The barrier height for holes

is given by the band gap of the CNT. Since the disper- E;(>r o (E) = Dchf,f(E) (55)
sion relations for electrons and holes are the same, our Y

discussions are valid for holes as well. iflel,(r,r)(E) _ Z DY

Using the non-equilibrium Green’s function (NEGF) for- v < (56)
malism quantum phenomena like tunneling, and scatter- [(np(hw,) + 1)Gep (B + hwy)

ing processes can be rigorously modeled. Here we ex- +np(hw,)Grp(E — hwy))

tended our previous work [77] by including the effect of
electron-phononinteraction in the calculations, conside 24 (”)(E) = Z DY 4

ing large signal dynamic response, and investigating the h v

influence of geometrical parameters. In the next section [(n(hw,) + 1)GZ (E — hw,) (57)
our methodology is described. Then the effect of differ- ’

>

ent geometrical parameters on the device characteristics i (hwy ) Gep (B + hoy )]

is analyzed, and methods for performance optimization n 1

are suggested. Sm[EHE)] = (27 - 27 (58)
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S S hwrem ~ 30 meV respectively [81, 82]. Due to small
occupation number of high energy phonons, such as OP
L= 40m| | g g & and ZB phonon modes, they do not degrade the perfor-
3 5 mance considerably, whereas the RBM phonon mode
HiO, T 2 can have a detrimental effect. However, due to weak
NI electron-phonon coupling the RBM mode has a negli-
Fonr™ S0TM gible effect at room temperature. The electron-phonon

coupling is also weak for acoustic phonon (AP) modes.
Therefore, short CNTFETSs can operate close to the bal-
listic limit. Figure 26 shows excellent agreement be-
tween simulation results and experimental data [76]. The
where np is given by the Bose-Einstein distributiorresult for the bias pointg = —1.3 V is compared with
function. In general electron-phonon interaction pararte ballistic limit, which confirms the validity of nearly
eters De1ine1) depends on the diameter and the chirdpallistic transport in short CNTFETS.

ity of the CNT. The calculation of these parameters is

presented in [80]. The imaginary and real parts of the

self-energy broadens and shifts the density of states,5e2.2 Dynamic Response

spectively. We neglected the real part of the self-energy.

Figure 25: The device structure. The device280 nm
extended into the third dimensiof.= 15.

The transport equations (53) to (58) are iterateTéa m_vestlgate th_e dynam|f: response of the device we
nsider the device delay time defined as:

to achieve convergence of the electron-phonon seif

energies, resulting in a self-consistent Born approxima- CaVob
tion. Then the coupled system of transport and Poisson =T (61)
equation is solved iteratively. The carrier concentration o
and the current density at some pairdf the device can Here, ¢ = Cas + Cap + Cac with Cae ™! =
be calculated as (59) and (60). Crs ™' + Cq~'. The quantum capacitance is given by
JE Cq = 8q?/hvp ~ 400aF /um, including the twofold
Ny = —4i/G§r(E)— (59) band and spin degeneracy [83, 84]. The insulator capac-
2m itance, occurring between the tube and a plane, is given
by [85]:
=4 [ - sz,05.00 2 o)
Ol = 2mKeQ (62)

: - : sh ™! (Tins 1
In CNTs elastic scattering is caused by acoustic phonons cosh ™ (Tins/Rowr +1)

and inelastic scattering occurs due to zone bound@r the geometry parameters given in Figure 25
(ZB), optical (OP), and radial breathing (RBM) phonog, .~ 400aF /um. For a device with50 nm channel
modes. In CNTs with diameters in the rangext = lengthCeq ~ 10aF. To calculate the gate-source and
1—2nm, the energies of the these phonon modgste-drain parasitic capacitances we assumed the capac-
arehwzp ~ 160 and 180 meV, hiwop ~ 200 meV, and jtance of two parallel plateS{cs.cp = keoA/Ls p,

(see Figure 25). Even with a small total areabf=

0 ‘ ‘ — 250 nm x 40 nm and a large spacer width éizs cp =

e L,_L,_*—-"_:’;f ] 10 nm the parasitic capacitancég;s + Cap ~ 260 aF
Fewm g et et e 4 )
r ,,/'j./:/ 7 are much bigger that'cg. As aresultCq ~ Cgs +
-~ .y 1
e 14 CGD = IQEOA(l/LS + 1/LD)
10 ‘,s—"f - // _
" mopa Y.
. == /4 Exp.V =01V
ERTE LAY e Bp =04V
o sy ’ Exp. V,=-0.7V . .
- LT L oy 5.3 Simulation Results
200 | L 2 o Exp.V =13V|
Ry Pt .= Sim.V=0.1V|
o5 NI In this section the effects of the gate-source spacer, gate-
R TG : . . - . .
LT Sim. Vg =10 V| drain spacer, insulator thickness, and the insulator cliele
. _. Sim. Ballistic V. =-1.3 V —— Sim. V. =-1.3V . i L. K
T e e s tric constant on the device characteristics are studied.
) ) % )

Due to ambipolar behavior, in the off-regime the drain
Figure 26: Comparison of the simulation results and exurrent of CNTFETs starts to increase [73, 76, 86].
perimental data [76] for the output characfo reduce this effect we have proposed to increase the
teristics. The results for the bias polrit = gate-drain spacer [77]. When increasihg, the off-
—1.3 V are compared with the ballistic limit. cyrrent decreases, while the on-current remains nearly
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Figure 27: The effect of L, on the device delay timeFigure 29: The effect of Lg on the device delay time
versud,, /Iog ratio. Ls = 2 nm andVpp = versusl,, /I.g ratio. Vpp = 0.8 V. The

0.8 V. optimal Lg for both device types are shown.

40

=
3

v =o7v 1 ponentially with the barrier width, the tunneling current
= decreases with increasirg;. However, the thermionic
emission currentis independent of the barrier width. The
contribution of the tunneling current decreases with de-
creasing barrier height, while that of thermionic emission
increases. Sinceis proportional to the parasitic capac-
itance and inversely proportional to the on-current (61),
there is an optimal value fakg, which minimizes 7.
As shown in Figure 29 the optimal value &f for the

. given material and geometrical parameters results in op-
% "oz 04 06 08 1 timized device characteristics. It can be easily shown

Drain Votage [V] that the optimal valud.so, where 2= |r,, = 0, is

Figure 28: Output characteristics at different gate bias@shieved Whe%} %ig ILso = ﬁ ‘31—5; |Lso- Considering
for devices withLp, = 4nm and Lp = the expression derived f@r; in Section II.B, we have
20 nm. Lg = 4 nm. a- 5% = [Ls(1+ Ls/Lp)]”". Figure 30 shows the
sensitivity of the on-current tds. However, the men-
tioned sensitivity is not zero due to the contribution of
unchanged, such that thg, /I, ratio increases. By the tunneling current from states below the Fermi level.
increasingLp the gate-drain parasitic capacitance d&ince at positive gate biases the conduction band-edge
creases, which results in reducing the device delgypushed below the source Fermi level, even in devices
time. Figure 27 shows the effect dfp on the device with zero barrier height the tunneling current can con-
delay time versusl,, /I,¢. As shown, a significant per-tribute to the total current. For thinner insulators the
formance improvement s achieved. The disadvantagexfith of the source-sided barrier decreases, resulting in
this method is that at low drain biases electrons havegigher tunneling current contribution to the total cur-
tunnel through a thicker barrier to reach the drain corent and a higher sensitivity of the on-currenite. The
tact, resulting in a smaller drain current (Figure 28).  optimal spacer width i€~ 6 nm at 7}, = 2 nm and
Lp = 20nm. Note that the optimal value fakg de-
When increasing_s, the gate-source parasitic capacpends onlp. For small values of.p the gate-drain par-
tance is reduced, and so is the on-current. The band edgiéic capacitance dominates the gate-source parasitic ca

profile near the source contact plays an important rgiacitance, therefore any further decreaséofioes not
in controlling the total current. Increasinigs reduces improve the delay time.

the gate control of the band-edge profile near the source

contact. Both the tunneling current and thermionic emiBfectron-phonon interaction reduces the on-current,
sion current contribute to the total current. Electromth, directly and indirectly [87, 88]. The direct ef-
with energies lower than the barrier height have to tufect is due to backscattering of carriers, but scattering
nel through the source-sided metal-CNT interface baiso redistributes the carrier concentration profile along
rier to reach the channel while electrons with energittee device. This redistribution affects the band-edge
higher than the barrier height are injected by thermionicofile so that it reduces the total current. To reduce
emission. Since the tunneling probability decreases e indirect effect one should increase the gate-CNT
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Figure 30: The sensitivity of the parasitic capacitanCgigre 31: The ratio of the drain current in the presence

and the on-current tds for different insu- of scattering to the ballistic limit for different
lator thicknesses. The intersection of the %. The proportions due to direct and indi-
curves gives the optimals, which mini- rect effect of scattering on the on-current are
MIZEST. shown. For highs the indirect part reduces.

T
coupling. If thin and Highx insulators are used then \ B
Chs > Cq andCge =~ Cq, implying that the poten- 03- |\ 1 dlen " 1
tial on the tube becomes the same as the gate (perfect
coupling). This regime is called quantum capacitance
limit in which the device is potential-controlled rather 0.2-
than charge-controlled [89]. Figure 31 compares the ra-
tio of the current in the presence of scattering to the bal-
listic limit for different insulators. For the given matati 01
and geometrical parameters a> 20 maximizes the per-
formance of the device. But, with using highmaterials
not only the on-current but also the parasitic capacitances
increase. Therefore, there igavhich optimizes the de-
lay time. It can be shown that the optimized value is

\ Ion Ok Ly =6 nm

achieved Wher&aa%m _ %%Mo- Considering Figure 32: The sensitivity of the pz_slrasitic capacitance
the expression derived faf: in Section 11.B, we have and the on-current te. Since the curves do
C_lc ag{c — L. Figure 32 shows the sensitivity of the on- notintersect at high values eflower values
current and parasitic capacitancestcSince the curves of . minimizesr.

do not intersect at high values ef lower values mini-

mizes7. Therefore, there is a trade-off between deviggtors the gate-CNT coupling increases which results in
delay time and the on-current. For a specific applicatipigher on-current, but the parasitic capacitances inereas
this parameter can be optimized. and as a result the device delay time increases.

5.4 Conclusion

We showed that the device characteristics can be opti-
mized by appropriately selecting the geometrical param-
eters. With increasing the gate-drain spacer, the off-
current and the gate-drain parasitic capacitance reduce at
the cost of a drain current reduction at low bias voltages.
With increasing the gate-source spacer, the drain current
and gate-source parasitic capacitance decrease. Since the
device delay time is proportional to the parasitic capaci-
tances and inversely proportional to the on-current, there
is a value for the gate-source spacer which minimizes the
device delay time. The optimal point is where the sensi-
tivity of these quantities are equal. By using higlnsu-
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