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1 Adaptive Energy Integration of Non-Equilibrium Greenisrfetions 1

1 Adaptive Energy Integration
of Non-Equilibrium  Green’s
Functions

Jump to
next interval

To obtain the physical quantities of interest within the
non-equilibrium Green’s function formalism, numeri-
cal integration over energy space is essential. Sev
adaptive methods have been implemented and tested
their applicability. The number of energy grid points
needed and the convergence behavior of the Schrodinger— .

Poisson iteration have been evaluated. An adaptive algg: """

rithm based on a global error criterion proved to be moe ) o _
efficient than a local adaptive algorithm. Figure 1: lllustration of the adaptive integration algo-
rithm with grid refinement. Grid points are

added as long as the error criterion is not met.

Calculate Insert additional

G® and G energy points
Interval Reduce upper
energy integration interval boundary

No

@'Lt interval? Add to complete

integral

1.1 Introduction

For nanoscaled devices, numerical simulations basedlo ~ Integration Methods
the non-equilibrium Green’s functions (NEGF) formal-
ism are commonly performed [1-4]. A very efficientimTne numerical evaluation of these quantities require a
plementation of this method has been achieved by megis retization of the energy space. A simple approach
of a recursive algorithm [5]. Proper numerical integrasing an equidistant energy grid suffers from two prob-
tion methods are vital for the stability and accuracy @ms. A small number of grid points will not correctly re-
NEGF simulations. solve narrow resonances, whereas a vast number can lead

to an unpredictable summation of numerical errors and

] to intractable memory requirements. These effects can

1.2 The NEGF Formalism yield instability or poor convergency of a self-consistent

iteration loop [6]. Therefore adaptive energy integra-
The retarded and advanced Green’s functions are detén (AEI) on a non-equidistant grid is required to in-
mined by the equation crease accuracy, humerical stability, and memory effi-
R, At , ciency. The following section outlines the different ap-
G (r,x', &) = G (r, 1", €) proaches that were implemented and tested for the appli

=[EI— H(r,r',&) — XR(r,r',€)]7F,  cability within the NEGF formalism.
(1)

whereH(r,r’, £) is the Hamiltonian of the system an
YR(r,r', €) is the retarded self-energy. The less-th
Green’s function is calculated as

gjn&l Simpson’s Rule

Simpson’s rule is a closed Newton-Cotes rule of second
< / _ R ! < / A /
G=(r,r', &) = G (r,x, E)2° (r, ', £) G (r, x ’5)('2) order. The integral of a functiofi(z) over an interval

[a, b] is given by
The lesser self energy of the left and right contact is given
by S35, (€) = 13 {SR,(€) } fi.(€) with the occupation 1, {f (a) + 4f <‘“2fb) Ly (b)} )
function f1,(€) of the left and right lead, respectively.
The Green's functions allow the calculation of physic@ne strategy to decrease the interpolation error is to
quantities of interest such as the local density of statggpdivide the interval into two equal parts and to ap-
N(r,r,&) = _‘%% {GR(r,r,£)}, and the electron andply Simpson’s rule on each subinterval. This leads to
current density the composite Simpson rule which, for five grid points,

d& writes as
n(r) = —22/G<(r,r75)2—,
i

I = b1_2a {f(a)+4f<a1b) +2f<a;rb>

b—a
6

i(r) = - 14 /[(v _ VG (1, 6)]

m*

L

r'=r 2T

a+b

af (3 > +f(b)] NG

For these quantities integration over energy is required.
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To obtain an error criterion for the adaptive integratioh.3.3 Clenshaw-Curtis Integration

algorithm (Fig. 1), the electron concentration within the

currentintegration interval is calculated using the 3apoi_ ..

and the 5-point composite Simpson rule. This leads tOFgJer [8] proposed to use the zeros of the Chebyshev

local error which is compared to the desired error tolergplynommlTn - C.Os(n areeos z) in the interval -1, 1]
ancer as quadrature points of the integralfifr),

1

< (7) / f@)de =3 wy fa). (10)

2 k=0

I — I
Iy

If this condition is satisfied, the integral is considered
accurate enough and the grid in the given interval is reor Fejér's second rule, the-1 extreme points of, are
further refined. used. Clenshaw and Curtis [9] extended this open rule to
a closed form which includes the boundary poings=
—1 andz, = 1 of the interval. The: + 1 quadrature

1.3.2 Polynomial Interpolation points are

™
. . - . . =cos(Vg), Vp:=k—, k=0,1,...,n. (11
Simpson’s rule is based on equidistant grid points and an * cos(Vs) F n n (1)

interpolation polynomial of second order. As an alterna}—

tive, a more general approach with non-equidistant gru!i]e weightsuy, in equation (10) are to be obtained by an

points and polynomials of arbitrary degree can be Co@;pllcn expression or by means of discrete Fourier trans-

sidered. For a monomial power basis the interpolati rrrt1_s [10.].h:[l'he e'pr|C|t expressions of the Clenshaw-
polynomial onN nodes takes the form urtis weights are-

S So (N b o). a2)
ple) = a' ® T P=I T R
=1
To obtain the coefficient vectorThe coefficients; andcy are given by
a = l|a,a2,0as...,any]" an equation system N
of rank N needs to be solved b; = { 2 ifj<n/2 (13)
1 = - x{VA ay Y1 [ 1, ifk=0 modn (14)
12y oz | a Y2 %=1 2, otherwise.

=1 €)
N : A useful property of the Clenshaw-Curtis rule is the op-
1oy - zy an Yn tion to create subsets of the quadrature nodes. To move
fromn + 1 to 2n + 1 points onlyn new function values
need to be evaluated.

whereV is called the Vandermonde matrix. Unfortu-

nately this system is often ill-conditioned and its solatio

may become numerically unstable. Bjorck and Pereya; 4 extended Doubly Adaptive Quadrature

[7] developed an algorithm that is able to calculate the Routine

coefficient vectom in a fast and stable manner.

1<

After the coefficients of the polynomial are obtaine8o far the presented methods used a local error criterion
the integral of the interpolation function in the intervdior adaptive energy integration. A different approach,
[z1, 2] can be calculated. For an arbitrary odd numbesich comprises two refinement strategies, has been pre-
N of grid points, a subset ¢fV + 1) /2 grid points may sented by Espelid [11]. A global error criterion is used
be used to obtain a second polynomial and consequenfind the most erroneous subinterval. This interval is
tially a second approximation of the integral. These twthen treated locally either by subdivision and applying a
results are then compared to yield the error criterion femaller order Newton-Cotes rule, or by inserting addi-
the adaptive integration algorithm. Unfortunately, polytional energy grid points and using a higher order rule,
nomial interpolation functions on equidistant points sufltepending on the estimated error. The local integral and
fer from Runge’s phenomenon for a higher degree. Thasor of the superior method for a given subinterval are
can be avoided by using non-equidistant grid points #en added to the global values. This procedure is re-
done by the Clenshaw-Curtis Rule described in the syeated until the global error is below a given tolerance as
ceeding section. depicted in Fig. 3.
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Figure 2: Local density of states of the resonant tunneling diode.pemetration into classically forbidden regions,
the reflections at the barriers, as well as the resonant lingretates within the quantum well can be seen
clearly.

1.4 Results of grid points. To evaluate the convergence behavior of
a self-consistent band edge calculation as seen in Fig-
ure 2, the square of the potential update norm is plotted

The implemented energy integration algorithms were agyer the iteration number (Fig. 5). For the polynomial

plied to an unbiased double barrier structure. The nughq the Clenshaw-Curtis method a local error criterion

ber of energy grid points needed to meet a given relatijg- — 1)-6 has been chosen. For the global adaptive

error 7 is plotted in Figure 4. For the polynomial in'algorithm the relative error has been setrto= 10—3

terpolation and the Clenshaw-Curtis method a relatiy@q, — 105, respectively. All methods show similar

error 7 < 10~* was needed to correctly resolve thgood convergence, whereas the number of energy grid
resonance in the quantum well. Using Simpson’s ”E%)ints differs considerably. The global adaptive method
event < 1077 is required to set enough grid pointsiequires about half of the points of the polynomial inter-

Comparing the local adaptive procedures, the polyngs|ation and a third of the Clenshaw-Curtis integration.

mial interpolation performs best considering the number

4000 prerre—————rr
/)

Start with )
inital grid | ©—< Polynomial ;A
Calonlate & - 8 Clenshaw Curtis / /!
alculat ,
G® and G< i >
m 3000 |-|@— ©Simpson’s rule PR

Compute integral and error

for all subintervals

Update integral
and global error

Apply higher order
Newton-Cotes rule

Process most,
erronous subinterval
by subdivision

1 Calculate 3

G® and G= '
Replace interval with Insert additional :
the two subintervals energy points :

T Levio s o0 Loviv oo 0
193 104 1075 10-6
Relative local error

Figure 3: lllustration of the extended doubly adaptivé&igure 4: Number of energy grid points needed for a
guadrature routine. given relative error tolerance.
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Figures 6 and 7 show the distribution of the grid points !

versus energy for the self-consistent calculation of the
bandedge of a resonant tunneling diode under bias. The
histograms give the number of grid points in energy in—
tervals of 1 meV width. For both applied methods,%
the significant energies at resonant levels or the contag -
chemical potentials can be distinguished. At these en=
ergies, many more grid points are placed by the alg(};j 1012
rithms. The global adaptive procedure requires approxi%
mately half of the grid points to properly resolve a reso~ 107"
nance as compared to the polynomial interpolation.

-3

1018

. 10~2
1.5 Conclusion

Local as well as a global adaptive integration strategi'é
have been used in NEGF simulations. The Simpson rule
does not suffice the demands of the diverse energy spec-
trum of a nano-electronic device. Although the polyno-

10—6 -

l>—o Polynomial

& = © Clenshaw Curtis
IA—A Global adaptive (7 =103

@ - & Global adaptive (7 = 107°

)

0

Iteration

ngure 5: The evolution of the squared potential update

norm is given for a self-consistent bandedge
calculation of a double barrier structure.

mial interpolation and the Clenshaw-Curtis method com-
bined with a local error criterion prove suitable for the
numerical energy integration, a global adaptive approac#no

. . . . - g L 4 4
is superior due to less grid points. 500 - 050 1 .
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Figure 6: Histogram of energy grid points for the poly-

nomial interpolation.
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2 First-Principles Investigation on Brillouin zone was sampled at thiepoint. For produc-
; ; tion of aSi0O2 an initial random configuration respect-
Oxide Trapplng ing exclusion radii between atoms was created apply-
ing an empirical potential method (BKS-potential). An

We conduct a thorough investigation of the tunneling dgquilibration step at000 K for 30 ps with a timestep of
namics of oxide traps in 8i0,, in particular of thell; 1fs was followed by a quench toK for 30 ps with a
center, thek/, center, their hydrogenated counterpartémestep ofl fs. Subsequently, a structural optimization
and theH atom. Based on these findings their behavior #sing DFT was carried out and the resulting silica net-
the context of tunneling can be deduced. It is found th&prk was classified by pair-correlation functions, angle
an Eﬁy center can exchange electrons with 8iebulk. distributions and the ring-distribution, which are in per-
TheE} center shows two distinct behaviors induced byfgct agreement with published data [16]. Defect levels
spread in its tunneling levels. THkatom is not affected for tunneling mechanisms (also referred to as switching

by the presence of an interface, wheredblaridge may levels or transition states) are calculated as total energy
occur in every charge state. differences of supercells in their initial and final charge

state. The atomic structure is kept fixed according to the
Frank-Condon principle.

2.1 Introduction

]
0/41%0] — 701%0] _ +1x0
Defect levels of traps have long been the subject of nu- e XT =B X7 - B X
merous investigations. Several experimental studies pro- e /X7 =E; [X7] - EQ[X7]
vide convincing indications of electron- or hole trap- 0/=[X°) =E; [X°] — EY[X°] (15)

ping in aSiO2 during bias temperature stress or expo-
sure to irradiation [12]. A large number of defects havehe sign inE{ corresponds to the formation energy in
been studied in literature [12, 13], either identified bipe charge state, where[X?] denotes the equilibrium
their electro-paramagnetic-resonance (EPR) signal ordmnfiguration.
their atomic-scale configurations. However, the fact thafter a tunneling process, a defect is not in its equilib-
defects undergo structural relaxation accompanied byiam configuration any more due to changes in the elec-
shift in their energy levels has not received much attetnostatics. This gives rise to structural relaxation arfd di
tion to date, but has important implications on the tunndérent energetics including a new transition state. In con-
ing kinetics in aSiO,. This issue can be tackled withinsequence, different levels for tunneling into a defect and
the framework of first-principles simulations. Althouglout of a defect arise, as depicted in Fig. 10. Concerning
a similar study for SiO, has been published [13], a dethe bandgap alignment, we used the same procedure as
tailed investigation addressing the variations of tummeli proposed in [13], but due to the amorphous nature of a-
levels due to deviations of the local atomic arrangemesit), we found a bandgap offset of approximat2lfy eV
in a-Si05 has not been performed up to date. The neednsistent with valence band offsets extracted from [17].
to mimick the oxide with &i10, has been demonstrated
by [14].

2.3 Results

2.2 Method The O-vacancy can be envisioned by removing a bridg-

ing O atom from the silica network, where the adjacent
For this purpose, simulations were done employing de$i- atoms reestablish a common bond. In the neutral
sity functional theory (DFT) based on gradient correcharge state, the bond length of ab®ust— 3.0 A comes
tions for the exchange-correlation functional and the prodose to the typicabi bond length in csi. For the pos-
jector augmented waves method (PAW) representing itimely charged variant, which is also referred to s
cores [15]. The plane wave cut-off energy was expandeghters, boti$i atoms repel each other without breaking
up to 400eV. Structural optimization was controlledheir bond. Therefore this variant exhibits a longer bond
through a conjugate gradient algorithm which limits thlength which expands to values varying frant A to
force on each atom to be below3 eV/A. Charged 3.2 A. Irrespective of their spread associated with vari-
supercells were calculated introducing a homogenea@i®ns in their configurations, these structural parame-
compensating background charge to ensure neutraligys are in good agreement with their crystalline coun-
The use of a plane wave code implicitly involves perterparts published in [13,14]. The bistable partner of
odic boundary conditions and implies interactions behe Ej, the E/, center (see Fig. 8), is confirmed by a
tween periodically arranged defects. To minimize thieng range of theoretical studies [13,14,17]. One part
effect, large supercells of %O, (~ 11.79 A) compris- of this configuration simply persists as a norrfiatian-
ing of 36 SiO2 units (108 atoms) were chosen. Thgling bond carrying only one electron. The other part



2 First-Principles Investigation on Oxide Trapping 6

undergoes puckering, that is, theatom binds to aback2.4 Conclusion
O to stabilize this configuration. In the neutral charge

Etatz, thle ahddl;t:ogal electrodn oc<_:up|es% ﬂ;idanglmg We presented defect levels for tunneling in and tunneling
ond. In the hydrogenated variant of thevacancy . ; of 5 trap for several well-known defects and mim-

(also termed bridge), onetl atom is located directly icked the oxide by &i0,. TheEj center turned out to

in-between botl$i atoms, moving them apart. As IIIus'show a different behavior depending on the exact posi-

trated in Fig. 10, this defect shows a strong asymmefiy, of the transition energy - TheE’V center as well

SBSiiSi - 1'5hAdar:dd2=Si*Si - 1?'2._ 2'8‘&_) W;:h the s thert bridge is found to easily exchange electrons with
Ielng at::ac i closer tolonﬁ 0 l$ueaﬂ toms 'E_t €NEU-gjlicon. In contrast, thél atom is revealed not to interact
tral case. For the positively chargdatom, this asym- . o interface.

metry dsi_u = 1.6 — 1.8 ) nearly vanishes, which is
in agreement with investigations inStO, [13]. E} E/v E;H H
Interstitial atomicH was introduced by [13] to be a cant eV eV eV eV
didate for trapping in &i0,. Inthe absence ofany othe{™ - /0 [ 1.7—36 39—-41 44—-49 49-5.1
type of defect, its bonding configurations are well estab /4 | 0.3-05 21-24 1.7-23 03-09
lished and can be explained in terms of electronegativy /— 41—43 392-—44
ity. Due to the polarity of the&i-O bond, more charge is| — /o 12-96 09-—1.2
distributed near th€ atom. The proton is therefore at-
tracted to the nearest netwdtkatom with a bond length Table 1: Energy trap levels{/0, 0/+, etc.) relative to

of 1.00 A, where the negatively chargétiis attached to the theoretical oxide valence band maximum of
a Si network atom with a bond length af48 — 1.52 A. a-Si0,. The first sign denotes the equilibrium
Both values are in good agreement with values obtained configuration of the defect in the corresponding
in c-SiO2 [13,18]. Inthe neutral charge state, fhi@atom charge state. The second sign gives the charge
prefers a position in the middle of a void. state of the defect for a given configuration.

Now we address the defect levels for tunneling in and

tunneling out of the defects, which are summarized in

Tab. 1 and illustrated in Fig. 10. For the positivell

chargedEj center, the energy level for neutralization i : -
located1.7 — 3.6 eV above theSi oxide valence band &L
maximum. When an electron is allowed to tunnel int

the trap, its energy level shifts down to the valence ba |-
of a-5i0,. As a consequence, the electron does not fi .
a hole in theSi to escape the defect. Therefore, this tre
remains neutral and is annealed permanently. This
sult is similar to the trap level behavior observed in «
SiO2 [13]. In some cases, the trap level for tunneling i

of an electron is found in the silicon bandgap. In cons
guence, this defect can also act as a fixed positive chal < S
if a hole is provided in the & O valence band.

As opposed to thé; center, thell! center has a trap
level +/0 slightly above theSi conduction band mini-
mum. The trap level after relaxation allows hole capture
from theSi valence band. As far as the energetics of hy-
drogenatedt} are concerned, the trap levels are located
near theSi band edges so that this defect strongly inter-
acts with theSi. Except for the case of charging the de-
fect negatively, thdl atom exhibits trap levels far from
the Si band edges so that an exchange of electrons with
the interface will not occur in a relevant extent.

Figure 8: Atomic structure of art, center. DB: dan-

gling bond, BO: backO, red spheres:Si
atoms, white sphere€) atoms
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Figure 9: Atomic structure of a neutral hydrogenated Figure 10: Band scheme including the calculated trap
E5 center.  This representation clearly levels. The filled circles denote occupied
demonstrates the asymmetry of tidoridge. defect levels, whereas open circles are un-

occupied defect levels.
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3 Three-Dimensional On-Chip shaped three-dimensional structures is very complicated,
; if possible at all. Thus, analytical parameter extraction
Inductqnce and Resistance methods have only limited applicability. For final analy-
Extraction sis prior to fabrication and for irregular inductor geome-
tries numerical simulation methods normally based on

o ] ] o solving the Maxwell equations provide the most accu-
An efficient three-dimensional finite element freqUeNGYe characterization. Moreover, the investigated inter-

domain method to extract the inductance and resistaige nect structure can often be embedded in a small sim-
of small structures like on-chip interconnects or on-Chifaiion region for which the optimized model of the dom-
inductors is presented. Skin effect and proximity effeglant magnetic field (DMF) can be used even at very high
are taken into account. The parameters are obtained fiogyencies. The distributed vector and scalar fields must
the field energy calculated from the magnetic field distily extracted in structures which may consist of differ-
bution in the simulation domain. The small dimensiong,t inhomogeneous complex shaped three-dimensional
of the domain of interest provide the opportunity of usinggions, like splittings, widenings, and vertical connec-
the optimized model of dominant magnetic field even g As a consequence, the vector and scalar finite ele-
very high operating frequencies. Vector and scalar shapgnt method (FEM) [22] in the frequency domain on un-

functions are used for finite element equation system &gy,ctured tetrahedral grid [23, 24] needs to be addressed.
sembling. Series of simulations for an instancing on-chip

inductor at frequencies between 1 MHz and 100 GHz afethis work an optimized model for inductance and re-

performed to extract the parameters and to visualize #)§tance analysis of an on-chip inductor at different fre-

field distributions in the simulation area. quencies is proposed. The model describes the proxim-
ity effect and the skin effect typically arising at higher
frequencies as well. The three-dimensional FEM simu-

3.1 Introduction lation softwareSAP (Smart AnalysisPrograms) [25] is
extended to implement the developed model. Simula-

High frequencies in an integrated circuit (IC) affect botftli,on _results demonsirate Fhe physical plausibility of the

the resistance and the inductance of the on-chip int@pp“_ed model a”?' num_encal r_nethO(_js, as well as the ne-

connects. These often as parasitics treated parame‘fgr?'ty of three-dimensional simulations.

cause longer signal rise, fall, and delay times and limit

the maximum allowed frequency of modern ICs. How-

ever, as the operating frequencies increase, small inddc2 The Theoretical Background

tors of high speed circuits can be also actively used. They

c?n be evehq cpnstructed onl_the Ch'pk') Thuc? th(ej 'ndUCtaﬁctﬁe characteristic lengths of the analyzed structures ar
of an on-chip interconnect line can be a disadvantage gf, . smaller than the considered wave lengths and if for
very useful d(_ependmg on the appl|cat|on-. Of course t Snducting areas/'y < 7, then the displacement current
collatfar_al resistance m_ust al_so be considered. I.n e%%rp] be neglected [26]r is the characteristic period of
case it IS necessary to mvestlgat(_e the Strl_.lcture of |rttert(|3]% time change rate,is the characteristic permittivity,

to obtain its inductance and resistance in order to es&ﬁdy is the characteristic conductivity. In this case the

mhate the |fmpa<|:_t on the_ entldr_e felectnc cwc;g [Ilé)]‘ ! axwell equations can be considerably simplified and
the case of app |cat|on5|n radio requency_( ) S SU} time independent the model DMF is achieved:
as voltage controlled oscillators or low noise amplifiers

the inductance and the resistance of the on-chip induc- VxE — —uatﬁ (16)
tors must be extensively investigated for the RF circuit - o

design, performance optimization, and inductor quality V-(uH) =0 (17)
factor. The frequency dependent inductance and resis- p(VxH) =E, (18)

tance of wide on-chip interconnects must be captured to

obtain the impact on power supply stability and sign@hereF is the electric field intensity is the magnetic
delay. field intensity, . is the material’s permeability, andis

) ) the material’s electric resistivity. The derivative witdsr
Currently there are two major techniques for mOdeé'pect to time is shortly notated &sinstead o) /dt.
ing of on-chip inductors — analytical compact mod-
eling and numerical field calculation based modeling.
In the case of a spiral inductor, where the models c -
be restricted to specific geometry classes, closed-fog -1 The Problem Description
analytical models are very well suited for fast designs
typical for the very early stage of the developing prddpplying the rotor operator to (18) and substituting the
cess [20, 21]. However, analytical modeling of arbitramyght hand side of (18) by (16) yields the following
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second-order differential equation px satisfies the Dirichlet boundary condition 6iWpo

and vanishes in the remaining simulation aré%(.e) is
(19) the Whitney 1-Form vector basis function [29] in a sin-
gle mesh element and is associated with tith edge.

For the stationary cas@)(ff = 0) the finite element For example, in a tetrahedral element, if théh edge

analysis of (19) leads to an overdetermined linear eqlﬂ)e'longs to the nodasandy, the corresponding element
tion system [27]. The matrix of this system is positivedeqe function is: '

semi-definite and its zero eigenvalues correspond to i
number of tree edges in the graph spanned by the finite /(&) _ pf(e) — L (ATAL) — \@F A,
element mesh edges [28]. ’ pa i ! ! i

Vx(pVxH) + pdH = 0.

wherel,,, is the length of the corresponding edge. The

SinceVx Ve = 0, (19) may be written as Lagrange interpolation polynomiag.e) at vertexj in the
- - o o - tetrahedral mesh element is given by:
Vx[pVx(H+Ve)] +udd =0,  (20) given by

1 Fyii;

() _
A=

which leads with the aid of the substitutidh = A+ Ve 1 =T

to R 4 5 .
= > = = whererp=(>_._, 7;)/4 is the barycenter of the tetrahe-
Vx(pVxHy) + Mat(Hl_v@; 0 (1) dral mesh (eEI:emlentl)Té is the areg of the face opposite
wherey is an arbitrary scalar field andy must exist. to thej-th nodei; is normal to this face and points out-
Equation (21) contains two unknown functions — thevard, andV is the volume of the tetrahedron. The global
vector fieldH, and the scalar fiel. Thus an additional edge functiorNj consists of all element edge functions
independent criterion is needed. For numerically statidelonging to the global edgeand does not have a tan-
and unique calculation off it is natural to impose the gential component on the remaining edges. The global
divergence condition (17), which has not been used tilbde function\; consists of all element node functions
now belonging to the global nodg and vanishes in the re-
V- [u(H,—V)] = 0. (22) maining nodes. Consequently the calculated coefficients

. — . ; represent the tangential component of the vector field
Thus the unknown field¢/; andy are the solution of ¢ rep ) 9 P .
on the j-th edge or the value of the scalar field

the partial differential equation system consisting 00(2{{1 : .
and (22), which is a boundary value problem numericaﬂg1 t_hej,,'th nqde. The_ global node or edge functions are
ctive” only in the neighbor elements of the correspond-

calculated by FEM in a simulation domajhenclosing . d q velv. Applving the Galerki
the investigated structures. The fields are approxima{QQ node or edge, respectively. Applying the Galerkin
method to (21) and (22)

by the following expressions:

n
ZCjt
Jj=1
m
>

j=n+

/ [ x (0 x H ) + iy (Fy =V o)]- Ny dV = 0,
v

N;(?) + Hg(7t)  (23)
i=1...n (25)

ﬁl (Fa t) ( )

o(7, 1) ¢; (1) N (7) + ok (7, 1) (24) /v Viu(Hi=Ve)AidV =0, i =n+1...m (26)
1

o o _ ~and using the first vector Green’s theorem and the first

Due to the FEM domain discretization the region of inscalar Green’s theorem the following system is obtained:
teresty and its surfac#) are subdivided into smaller
mesh elements — tetrahedrons and triangles consisting| (V x N;)(pV x Hy ) dV + /uatﬁl.ﬁi dv —
of edge connected nodes. The boundary of the simu-/v %
lation areadV is divided into Dirichlet boundargVp, _/ 7N (0 x H: ) dA _/ V0N dV =0
and Neumann bounda®V'y; for H; and into Dirichlet m,n [Nix (pV > Hy)] vu LV ’
boundan®Vp, and Neumann boundatyn, for p,re- ;= 1. . p (27)
spectively OV=0Vp1+9Vn1 and OV=0Vps+90Vn2). B B . .
The edges and the nodes in the simulation area are Ia-/ Vi (pHy)dV — /wi-(w@ dv—
beled with a set of integers. The non-Dirichlet edges are”Y 4
indexed froml to n and the non-Dirichlet nodes are in-_ /\iﬁ'[,u(ﬁl_ﬁ(ﬁ)] dA=0, i=n+1l...m

dexed fromn+1 to m (m>n). The non-Dirichlet edges oV
are the edges which do not belongXdp1, and the non- (28)

Dirichlet nodes are the nodes which do not belong {the correct gradient-field-free magnetic field intensity

9Vp, respectively. The known functiof satisfies ff and the current density distributioh are calculated
the Dirichlet boundary conditions @p, and does not gm:

have a tangential component on the non-Dirichlet edges T, .
of the simulation area. Analogously the known function J=VxH=VxH;, H=H—V¢ (29)
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3.2.2 Boundary Conditions it is sufficient that one node of the simulation domain
is forced as Dirichlet node. Thus, in this specific case
The boundary term in (27) can be expressed as follow$* ~ cri1Ak11. ASfar as oniye is required and not
v, the coefficienty; of this Dirichlet node can be set
R - IR to an arbitrary value.
/ A [Nix (p x Y] dA = | (N, x B) dA =
v av
/ (AxN;)-EdA = | (Exi)-N;dA _ _ _
av av 3.2.3 Assembling the Matrix and the Right Hand
(30) Side Vector

with E=pJ=pV xH;. N; has a tangential component

only on thei-th edge. Fori=1...n thei-th edge is a Under consideration of (23), (24) and the above specified
non-Dirichlet edge. ThusV; has no tangential compo-boundary conditions the weighted equation system (27)
nent on the edges of the Dirichlet boundd#y,, and and (28) corresponds in the frequency domain with
must be perpendicular t8Vp, (or parallel to7). As

clearly shown by the third member of (30) the boundary { (4]  [B] ] (c} = {v

integral in (27) has a contribution only for the Neumann B]" (0] B ’
boundarydVy: fale(EXﬁ)Ni dA. Only the supply

parts of the wire, which are used to force the electric cur-
rent, lie directly on the boundary faces of the simulatiorlii =
area. The remaining parts of the wire are surrounded i
by dielectric material. In this work the dielectric envi-
ronment enclosing the wire is assumed to be sufficiently
thick so thatE could be neglected on the dielectric outeB,; = —jw/ﬁi-(uﬁAj) dv,i=1...n,j=n+1...m
bounds of the simulation domain. On the other hand the v

electric current density is forced in a direction perpen-

dicular to the conductor boundary faces. THiwiill be Cij = Jw ﬁ)\i-(uﬁ/\j) dV,i=n+l...m,j=n+1l...m
also perpendicular to these faces and the boundary term v

in (27) will be zero.

l k
The supplied total current in the inductor wire is consi(@iz]wz Cj/vNi'(“V)‘j) dV—ij ¢i [ Ni-(uN;) dV —

(VX N:)-(pV x N;) dV +gw/ﬁi~(uﬁj)dV,
v %
l...n,5=1...n

ered by the Dirichlet condition foH : J=k+1 j=mt1 Y
k
. . » - c-/(ﬁxﬁi)-(pﬁxﬁ-)dv, i=1...n
[=¢ Hyedi=¢ Hdr=~H> L (31 jzmzﬂj v !
a4 24 =

k l
whered A is an arbitrary closed loop around the conduct- N _ ey Sy,

ing wire, p is the number of Dirichlet edges, which buil Z_]“_}%:HCJ/VV/\Z (uN3) dV ju_}zk;rlcj/VV/\Z (VAs) dV,
this loop, and; is the length of the-th loop edge. If = =

the Dirichlet edges are labeled with integers from-1 @ = ntl...m,

to k (k>m), the D|r|<1hlet boundary functiod  from where the time conventiogi“? is used and suppressed.

(23) is expressed abx =3 c;Nj With ¢;=H: 15 optain a symmetric equation system (28) has been

j=m+1

for j=m+1...k andp=k—m. ltioli .

. tiplied by —jw, wh th lar f :
Analogously the boundary term in (28) can be expressren('iJ Iplied by —jw, Wherew IS the anguiarirequency

as

/Aiﬁ-[u(ﬁl—ﬁgp)] dA = | \ii-BdA :/ XNii-BdA 3.2.4 Inductance and Resistance Extraction
oy )% VN2

with E = pH = p(H, — V). B is assumed to be per-The inductance and the resistance are calculated by the
pendicular toi on the Neumann boundaé))’ 2. Thus magnetic energy and by the electric power, respectively.
the boundary integral in (28) vanishes.

1 2 1 - — — —
Dirichlet boundary conditions must be given also for £ = ﬁ/ pH™dV, R = - /V(Vle)-(pVle)dV.

The Dirichlet nodes are labeled with numbers frbml v (32)

to [ (I>k). The functionpx from (24) can analogouslyT is the total current in the inductor, which defines the

be defined agp i = Zé’:kJrl ¢jAj. For the calculations Dirichlet boundary (31) fod; andH is given by (29).
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3.3 Domain Discretization . _
Table 2: Calculated inductance and resistance.

GHz] || L [nH] without || L [nH]with || R[Q]

The domain discretization is the first step of the finité([

element analysis. For this purpose the entire domain is substrate Substrate
d|V|ded_|nto smaller sub-domains, called elements. Foh 001 H 2 6887 H > 6881 H 3127
three-dimensional problems the volume elements can be

rectangular bricks or tetrahedrons, for instance. Then theD.01 H 2.6887 H 2.6877 H 3.127

boundary su_rface is broken up into rectangles or trian- 01 H > 688 H > 688 H 3132
gles, respectively. The rectangular elements are peyfectl

suited for discretizing rectangular domains with an uni- 1 H 2.6516 H 2.6514 H 3.463
form density. However, the physical models can not af=
ways be limited to specific regular geometries. The mesh 10 H 25501 H 25493 H 5.396
density must be high enough to achieve sufficiently ac- 100 H 2.5458 H 2.5457 H 13.156
curate solutions. Unfortunately a high number of mesh
elements leads to many unknowns, causing high memory

demands and long simulation times. For this purpose it of 10 em. The cross-section of the conductor is

:%rrzqc;g??e;oalzie?at?e ﬁlesrzirggéfeﬁ lasrg(;?igroris Gimx 1.2 um. The horizontal distance between the
! uracy. it ! u ! ding wires is10 um. The outer dimensions of the

(or smaller elements) only in the regions where h|ghf|eI ductor are300 um x 300 zm. The inductor is com-

dynamic is anticipated. In this work the regions are d‘ﬁl'etely surrounded by the dielectric environment, except

scribed .by tet_rahedra_ll or triangular elements, depend(S],glhe two small delimiting faces which lie directly in the
on the discretized object — volume or boundary surface

In addition. not onlv the density but also the qualit oundary planes of the simulation domain. The conduc-
ftion, y Ity bu quatity qf, area, the dielectric, and the substrate area close to the
the tetrahedral elements affects directly the FEM accu- . i : -
racy and efficiency [30 conductor are discretized much finer then the remaining
y y [30]. simulation domain. This is shown in Fig. 12 where a part

The example inductor geometry presented in the nﬁ[tthe dielectric environment is removed to visualize in

section is described by the constructive solid geo etail the generated mesh inside the simulation domain.
etry (CSG) format. It is discretized with the threel N€ variation of the fields in the finer discretized areas

dimensional tetrahedron mesh generation software N@t_e?(pected to_ be m_uch hlgher_than n t_he coarser dis-
gen [31]. The CSG format is very convenient for th(érenzed domain. This special discretization reduces the
description of small or medium size structures like t mber of generated nodes and edges, and the number of

spiral inductor presented in the example section. T linear equations respectively, even for big simulation
ion. intéfvironments which have to be used to satisfy the as-

section, and complement) from primitives. The primﬁumptlon of the Z€Ero '\_'e“_mar!” boundary _cond!tlon. of
arse such a discretization is only possible, if an un-

tives are generic volume elements like cubes, cylinde?g, .
spheres, or even half-spaces defined by an arbitrary p&iﬁyctured mesh is used.

in the boundary plane and an outward normal vector. If S )

CSG input is used, Netgen starts with the computatia—rl'l‘e current density distribution depends heavily on the

of the corner points. Then the edges are defined Rfrating frequency in the analyzed frequency domain.

meshed into segments. Next, the faces are generateé‘_l@ﬁlunknown and arises from the simulation. At the be-

an advancing front algorithm [32]. After optimization ofiNning of the simulation only the total currentin the in-
the surface mesh the volume inside is filled with tetrUCtOr is known. As mentioned above it is set by the

hedrons by a fast Delaunay algorithm [33]. Finally th@irichlet boundary condition fof; which is given by
volume mesh is optimized. the tangential component of the magnetic field intensity

H, on the element edges, surrounding one of the con-
ductor faces lying on the outer bound of the simulation
domain.

3.4 Examples and Results

The resistance and inductance values of the structure
As example a typical on-chip spiral inductor structuref interest are calculated numerically at different fre-
as discussed in [34] is investigated. The simulati@uencies with and without the substrate influence. The
domain consists of a transparent insulating rectangurresponding results are presented in Table 2. While
lar brick over an opaque substrate brick as shown time inductance decreases slowly with increasing operat-
Fig. 11. The aluminum inductor is placed in the insung frequency, the resistance rises dramatically, which
lating environment about xm above the substrate areanatches well the observed current density distribution
The substrate is assumed to have a constant resistinve the skin effect, respectively. A surface view of the
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current density distribution in the conductor is shown in
Fig. 13 and Fig. 14 fon00 MHz and 10 GHz, respec-
tively. At 100 MHz the skin depth is about ym and
nearly the whole conductor cross-section is filled up by
the current. At10 GHz the skin depth is abol@t6 um

and the current is concentrated at the vertical side walls
of the conductor. Fig. 15 shows the spatial current den-
sity distribution atl GHz as directed cones placed in the
discretization nodes inside of the conductor area. The
cone’s size and darkness are proportional to the field
strength. Fig. 16 depicts the corresponding spatial dis-
tribution of the magnetic field inside the dielectric envi-
ronment around the inductor. Fig. 17 and Fig. 18 show
the very different current density distribution close te th
small via for100 MHz and10 GHz, respectively. Fig. 19
and Fig. 20 show the current density distribution and the
corresponding magnetic field intensity in the substrate at
1 GHz. The underlying substrate does not influence the
inductance and the resistance of the inductor, because of
the relative high substrate resistivity. The values of the
current density distribution in the substrate (Fig. 19) dif
fer vastly to those in the inductor (Fig. 13 and Fig. 14).
As shown in Table 2 the calculated inductance taking
into account the influence of the substrate does not differ
from the inductance without substrate influence.

As the Q-factor of aninductor is inversely proportional to
its resistance, making the inductor wire thicker might de-
crease the resistance and increase the Q-factor. However,
as the examples show this is not the case for high fre-
guencies at which the skin effect is noticeable. In these
cases the current flows only in the area very close to the
vertical surface and a wider transversal conductor cross
section would not change the situation. For the visual-
ization VTK [35] is used.

3.5 Conclusion

In this work a new method for inductance and resistance
parameter extraction is proposed. It is assumed that the
operating frequencies and the characteristic lengths of
the investigated structures are suitable to use the DMF
model. This is typically the case for on-chip inductors
and interconnect loops. The rotor operator which ap-
pears in the second order partial differential equation for
the magnetic fieldd allows arbitrary unknown gradient
fieldsﬁgp. The obtained partial differential equation sys-
tem is solved numerically by FEM. Instead of solving the
more complicated wave equation, considering DMF, it is
sufficient to solve the diffusion equation to investigate
the parameters and field distributions of interest, which
is of course the more efficient way.

12
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3 Three-D

The generated gri

Figure 12

The simulation domain.

Figure 11

Surface view of the current density

[A/m?] distribution at 10 GHz.

Surface view of the current density Figure 14

[A/m?] distribution at 100 MHz.

Figure 13

Figure 16: Magnetic field intensityA/m] at 1 GHz.

Current density distribution at 1 GHz.

Figure 15
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Figure 17: Current density distribution in the via at Figure 18: Current density distribution in the via at
100 MHz. 10 GHz.

Figure 19: Current densityA/m?] distribution in the  Figure 20: Magnetic field intensity[A/m] in the
substrate at 1 GHz. substrate at 1 GHz.
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4 A Multi-Mode Mesh Gener- inaddition tothese basic software engineering issues, the
; ; ier  calculating power of modern computer systems, which
ation Approach for Scientific has been doubling every 18 months in the past, and the
Computlng emerging CPU parallelism, require different program-
ming paradigms and application design methodologies.

) ) These changes have to be taken into account as well
With the steady evolution of software tools and progrargs tne upcoming shift to fully three-dimensional sim-

ming languages, several programming paradigms hay(grions [36]. This of course also implies, that three-
become available and new methodologies related toditnensional mesh generation is getting more and more
brary centric application design have been developed.irl,r;bortam in the next decade, especially in the field of
addition to this paradigm shift, the increase of computiRgeAD where up to now, no comprehensive mesh gen-
power requires an adaptation of well known techniquggation application has emerged. Mesh generation is a
for parallel computing. Various problems of differengyite difficult task to be implemented on computers, be-
disciplines appear, for which no efficient and definitgase a rigoros algorithmic formulation does not exist.
solutions exist. This calls for new paradigms to be egpe emerging paradigm of computational topology will
tablished and the Qevglopment of_ngw ways which full,snort mesh generation in the coming years [37, 38].
exhaust the combination of sophisticated software apgterent fields of TCAD application impose a variety of
powerful hardware. different constraints and requirements on mesh genera-

. o tion, e.g. topography simulation requires a good approx-
The area of spatial discretization, unstructured mesh 9gRz oy of surface elements, while ion implantation sim-

grat|on% IS or]le |cc)jf thesi areas,(;/v:nch S]f'“ eXh'db'tS_Va”ﬁHFation requires high density near the surface, according
'SSl;eS romne Zsuc as modu alr sot;ware esign, 't%r}he gradient of the ion distribution. Diffusion simula-
performance, and mostimportantly robustness. tions add a need for a fine mesh at interfaces in addition

qa high mesh density near the surface. The complex

In this work problems for mesh generation are identifi(—ftI Id of device modeling even requires a completely dif-
and solutions explored, which anticipate the given ch?le 9 q pietely

lenges. This approach is combined in a software Iibrat ent type of mesh, necessitating a remeshing step for

based on a generic scientific simulation environment a g whole input str.ucture.. In summary, it can be .Ob'
compared to existing tools served that each simulation step has completely differ-

ent requirements on the underlying spatial discretization
Therefore, meshing is still one of the major showstoppers
. L in the field of TCAD. In this work we present a com-
4.1 Introduction and Motivation prehensive modular, library centered approach which fo-
cuses on the problems described above. Already existing

The field of scientific computing as a whole, and Tec§oncepts and libraries in the field of scientific computing,
nology Computer Aided Design (TCAD) in particularwhich have proven to be successful, are combined on a
relies on either domain-specific closed applications, 8w software basis.

components tied very closely to specific representations

which were often built for very fixed purposes and then

wrapped into a large and monolithic toolkit. To this ] ]

date, data structures and algorithms are implemented®? Problems with Mesh Generation

a heavily application specific way, making their reuse

ractically impossible.
P yimp Before introducing different techniques of mesh genera-

One of the most fundamental issues in TCAD, spatign. common problems are sketched which impose var-
discretization, requires certain and diverse constraif§'S constraints, restrictions, and difficulties for thekta
during mesh generation. Many software tools exi8f mesh generation in general.

which solve very narrow sets of problems in special andDifferent element size: The generated mesh can con-
well defined settings, but unfortunately most of the so- sist of elements of different size, meaning, that adja-
lutions to these problems are implemented repeatedlycent elements vary greatly in size, e.g. a thin layer
With the steady evolution of software engineering tech- of oxide within a three-dimensional device, which is
niques and methodologies, new paradigms have emergeghore than three order of magnitudes different in size.
which offer great opportunities related to orthogonal Boundary requirements: Various boundary require-
module design and high performance approaches. Usments cause problems for mesh generation, e.g. a
ing a generic programming approach instead of objecttetrahedra configuration known as Schonhart polyhe-
orientation, data structures and algorithms can be impledra [39] or the inclusion of preset surface edges, which
mented orthogonally, where some languages, e.g. C++imposes additional difficulties, if the surface requires
offer additional high performance possibilities as well. Delaunay conformity [40].
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- Cospherical point sets:Points are said to be cospher
ical, if at least n + 2 point are located on the perimet .
of an n-dimensional sphere S, where S does not c« :
tain any other points of the mesh. This problem on ’ ; : ' <
arises, when the Delaunay criterion has to be met. —

- Degenerated cellsDegenerated cells may result du
to several reasons, such as the requirement to adhere
to a given boundary or that the generated mesh has to
include a given point cloud. The problem with these

degenerated cells is that they may be unsuitable fooereIaunay property is called a Delaunay triangulation.

the spbsequer!t.smula_tmn tasks, &0 mterpolatlon_ﬂ%‘is property states that the circumcircles of the trian-
physical quantities. This problem increases further, als

degenerated cells cannot be refined without adding s may conta|_n no points beside the points forming the
e . jangles (see Figure 22).
ditional degeneration. Therefore several classes of de-

gener_anon are classified gn_d various mesh adaptatdswe of the main advantages of the Delaunay triangula-
techniques are used to minimize the number of th

elements §%h in two dimensions is the minimization of the max-
' imum angles and the maximization of the minimum an-

As already pointed out, the application design for megllFs' In thrge dimensions this qdvantgges canr_10t be eas-
generation not only has to deal with the given difficully @ccomplished due to non-unique flip constraints [41].

ties based on mesh generation itself, but it also requires

various software engineering methodologies to develop
robust applications.
| \ |
4.3 Meshing Methods
N\ /
There are several methods for mesh generation, which

are currently in use for scientific computing, such as:

Figure 21: Giftwrapping example

- Giftwrapping Figure 22: Delaunay property

- Incremental Delaunay Triangulation

- Advancing Front . _ An additional difficulty for this method is the incorpora-

- Advancing Front with Delaunay Triangulation tion of boundaries due to the fact that incremental De-

aunay triangulation uses the convex hull of the input
%'flﬁt set only. Given boundary representations have to
B€ marked and reconstructed after the meshing process
has completed.

I
To present the advantages and disadvantages of thes
ferent approaches, a brief overview of each is givenin
following:

_ _ Figure 22 shows two examples of a simple mesh. The left
4.3.1 Giftwrapping part violates the Delaunay criterion, because the cirum-
circles include the points of both triangles. The right

Starting with any element, a sphere is expanded aroRfft iS @ correct Delaunay triangulation, because the cir-
the element until the next point is found, where the egumcwcl_es of both triangles contain only their respective
tension of the sphere is controlled by a given directi¢Aree points.

vector. Figure 21 illustrates the idea behind the giftwrap-

ping algorithm, which is suitable for use in multiple di-

mensions. Only convex hulls can be created using the8.3 Advancing Front

giftwrapping algorithm and cospherical point sets im-

ose additional difficulties.
P The advancing front algorithm starts with a set of bound-

ary elements of a given dimension, e.g. edges. These
edges form the initial front which is advanced into the
simulation domain. An edge of this set is chosen to form
a new triangle, either with an existing point or a newly
Many triangulations exist for a set of points in a planereated point. The current edge is then removed from the
A triangulation which meets the so called circumcircleont and the two new edges are, depending on their vis-

4.3.2 Incremental Delaunay Triangulation
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ibility, added to the front. This process terminates whéace mesh generation. A method of incorporating the De-
no edges remain within the front. launay property into the advancing front method has al-
ready been proposed [42], which adds new points ahead
Figure 23 shows a simple advancing front triangulatiogf the front and triangulates them according to the De-
The figure sketches the advancing front mesh genegainay criterion. This algorithm works like the conven-
tion concept in two dimensions. The dotted line repr@pnal advancing front algorithm, only point insertion is

sents the current front. New triangles are inserted, Bytended to satisfy the Delaunay criterion.
joining the two ends of a front edge to either a newly

created point or an existing point, one at a time [42figure 24 shows the idea behind the algorithm. When

inserting a new point, there are two possibilities:

: .. . - either the point is not inside any existing triangle cir-

! cumcircle,

' - orthere exists at least one triangle, whose circumcircle
contains this new point.

/\ Figure 24: Advancing Front Delaunay Triangulation
Figure 23: Advancing Front [42] [42]

) ) A differentimplementation is available using an abstract
In contrast to the Delaunay triangulation, the advancingie get [43], which describes different methods of con-

front method, easily incorporates the boundary. It stagf3|jing the advancing front. Basically, a rule describes
from the given boundary representation and advancesfig, e noints are to be generated. The rule also manages
front into the simulation domain. A major drawback ofy,3nges in the advancing front. Some boundary elements
this method is that the quality of the generated elemei e 1o e added while others have to be deleted. If no

heavily depends on the quality of the boundary element$asching rule is found, the quality class is decreased.
For different implementations of this type of mesh geRy;s aliows the application of a rule of a lower quality
eration techmqug, the robustness issues are severe. IEO@I, which may also delete the current element.
advantages of this method are the good control mecha-

nism for the element sizes, the quality of the generated

elemen_ts, and theT not required De!aunay property wh|&h4 Software Design

can optionally be incorporated easily. Parallelization ca
be quite challenging for surface creation, because new

surface elements depend on the previously generated die meshing methods, described in the previous section,
face element. If the surface is partitioned, volume meBgave been included as modules in the Generic Scientific
generation, on the other hand, can be parallelized in &imulation Environment (GSSE [44]). The software de-
der to distribute the generation process on several co#tgn of our meshing library can be seen in Figure 25. The
puters. Using the advancing front algorithm, it is ntpllowing presents our solution of the previously men-
problem to divide the simulation domain into smallefoned meshing problems.

domains and treat each domain on its own. However Different element size

boundary information, e.g. different materials, has to beTo cope with the problem of different element sizes we
available, otherwise the problem is similar as with sur- use the concept of a local feature size (Ifs) [45]. The
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quickly write new input or output modules to accommo-

e rermat date an even wider range of file formats.

Input Preparation ‘ Tree ‘ ‘Orientation/Holes/Consistency‘
v T rr T e = An advantage of our approach is, that the developed
s Fiber e

modules can be combined in various ways, depending
on the requirements of the subsequent simulation. For
example a mesh, initially generated using the advanc-

Bundles

Surface Mesh

e

ger ing frorlt algori_thm, can be rgfined aftervyards at cer-
Volume Mesh tain points, which are interesting for the simulation, or
Output Formt the mesh can be modified to meet the Delaunay crite-

rion. The module design can also be seen in Figure 25.
Another advantage of the modularized development ap-
Figure 25: Design of GSSE proach is the possibility to interface different mesh en-
gines and thereby fully utilize the orthogonal application
approach. Our library also contains a resampling step
Ifs of a pointp is defined as the radius of the smallesthich consists of several substeps [43]. First the points
disk centered ap, which intersects two non-incidentare extracted from the input model. This extraction only
vertices or segments of the planar straight line gragpplies to the ‘points of intersection’, which are the
The Ifs guarantees that there are no abrupt changepdints where at least three surfaces intersect. To solve
the size of the elements, which is especially importathiis problem, a bisection algorithm based on geometric
with the advancing front algorithm. tests is used. Afterwards, using this minimal mesh, a
- Boundary requirements new surface is generated, with an advancing front algo-
The application of the advancing front algorithniithm [43].
based on the introduced abstract rule mechanism eas-
ily incorporates the given boundary elements. Addi-
tionally, the Delaunay criterion can be used to crea#e5 Meshing Libraries
conforming boundary representations.
- Cospherical point sets As it is our goal to focus on library centric design, var-

This problem arises, when a mesh is used for, €idus meshing libraries are incorporated and therefore

the finite volume method. The Voronoi graph [41] I%riefly presented hereTetGen: is developed by Hang

fac hat 2 Voronol raph s he dualaraph o a Delaj, o 1he Welersiass Instut for Applied Analy-
Sis and Stochastics, and generates a Delaunay triangu-
property. Our approach optionally guarantees Dela@-ﬁon' Additionally, it supports the crea_ltion o_f Voronqi
nay conformity for both the surface and the volume J129rams and convex hulls for three-dimensional point
S ‘sets [48-50].Netgen: uses the described abstract rules
- Degenerated S|mpI|ces_ . . ._for advancing front mesh generation and offers a Delau-
'I_'he use of the advan_cmg front algorl_thm N Comb'n?fay point cloud generation module [43]. This module
tion with the already introduced quality rules and t cks the modeling of a guaranteed Delaunay volume

corresponding point placement strategies reduces Esh as well as the conforming Delaunay property for

degeneration of elements. The existing rules were irfaces. deLink: was developed for TCAD applica-
tended to meet the Delaunay criterion.

tions based on an advancing front method combined with
a Delaunay method which does not create new points au-
t%%atically [51]. Therefore, additional point clouds cre-
9ed separately have to be used to refine structures. The
created meshes satisfy the Delaunay criterion for sur-

. . . faces and volumes.
To incorporate various input formats and to solve the

problems with different data models, the proposed ap-
proach uses a fiber bundle data model. Fiber bundl;iS our A h

were first introduced by Butler and Pendley [46] and af~ ur Approac

terwards enhanced [47] to include cell complex proper-

ties. The basic approach of this data model is the sdpis important to highlight that TetGen and Netgen can-
aration of cells into a base space and the connectivitgt deal with corrupted input representations, e.g. holes.
information storage within a fiber space. All current datdeLink and GSSE use various methods to correct the in-
models can be mapped to the fiber bundle data modmit representations, where our approach can also use a
This gives the advantage to read and write various fdeparate surface remeshing step. GSSE also incorporates
formats. Due to the modular design it is also possible tonstructive solid modeling [44]. Table 3 presents an

Related to software engineering issues, the proposed
lution uses a library centric application design paradi
[44] based on a multi-paradigm approach.
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overview of the features of each mesh generation mdte boundary representation of the different meshing ker-

ule.

Features

TetGen

Netgen | deLink | GSSE

Delaunay

+

X +

Advancing Front

Remesh Steps

Automatic Points

CSG Input

Polygon Input

V] ]+
,

Repair Surface

Multi Material

.
+| +|+]

+| ||+ | ]+

Table 3: Results of the comparison

4.7 Examp

les

nels. The Figures 29 and 31 summarize the respecitve
statistics. The pictures in Figure 32 and 33 present ex-
amples from TCAD / topography simulation.

4.8 Conclusion

We have identified several problems of mesh generation
and presented our solution to these problems. A mesh-
ing library based on GSSE has been developed to collect
these solutions. Finally, a comparison between GSSE
and established meshing kernels was performed show-
ing, that GSSE has more mesh generation possibilities
than the other investigated tools. The analysis of the ex-
amples also shows that GSSE produces an output of at
least the same performance and even better quality than
the other tools.

This section presents some examples of meshes, created
by the four previously outlined tools. The examples are
analyzed and the quality distribution is presented. To
compare the meshing tools, we categorize the elements
of the mesh using two main parts [52]. First four classes
of quality types, defined by the number of small dihedral
angles, as shown in Figure 26 are set up. Then, the tetra-

MY A

~J

Figure 26: Four different classes of degenerated tetrahe-
dra (wedge, spade, cap, sliver), sorted by the
number of acute dihedral angles.

hedra are classified by the number of degenerated trian-
gles, like daggers and blades. The dagger has one short
edge and at least one small angle, where the blade has no
short edge and therefore one large and two small angles.
Figure 27 shows the needle (or spire) with three daggers
(the short edges are marked in the figure), the slat (or
splinter) with two opposite short edges and, therefore,
four daggers. Finally, the spindle does not have short
edges and has therefore four blades as triangles.

Figure 27: Three different types of degenerated tetrahe-
dra (needle, slat, spindle).

The Figures 28 and 30 show the basic functionality and
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.

Figure 28: A simple sphere, but yet a complex task for a mesh generatarsed to highlight the different ap-
proaches related to the investigated types of meshingittigus, from left to right: TetGen, Netgen,
deLink, GSSE.
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Figure 29: Statistics for the meshing example in Figure 28, from lefighit: TetGen, Netgen, deLink, GSSE.

Figure 30: An example from topography simulation is used as examplBustriate the different types of meshing
results, from left to right: TetGen, Netgen, deLink, GSSE.
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Figure 31: Statistics for the meshing example in Figure 30, from lefight: TetGen, Netgen, deLink, GSSE.
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Figure 32: The complete example from topography simulation with theittwhal constraint of including a given
point cloud as can be seen in the bottom part of the struciline.middle part is made transparent to

expose the surface mesh. The top part is not required foegukat simulation and is therefore meshed
without quality constraints.

Figure 33: A three-dimensional device structure for a MOSFET with adiahal externally supplied point cloud.
The important part is the regularity of the elements in thanctel region. The different aspect ratios,

e.g. the thin red oxide part and the large blue silicon paet,adso an additional complication for the
mesh generation algorithm.
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5 Effects of Shear Strain on the modification: the degeneracy between the six equivalent
; ; F . valleys is lifted due to stress-induced valley shifts. This
Conductlon Band in Silicon: An reduces inter-valley scattering. In case of tensile biax-
Efficient Two-Band k-p Theory ial stress applied in th¢100} plane the four in-plane
valleys move up in energy and become de-populated.
. i The two populated out-of-plane valleys have favorable
We present an efficient two-barkdp theory which ac- qnqyctivity masses, which together with reduced inter-

curately describes the six lowest conduction band Vghjiey scattering results in the observed mobility en-
leys in silicon. By comparing the model with full bang,5ncement [55].

pseudo-potential calculations we demonstrate that the
model captures both the nonparabolicty effects and the
stress-induced band structure modification for general
stress conditions. It reproduces the stress dependence

of the effect_|ve masses_and the nonparabol!cny ParaBaxial stress is naturally introduced by growing Si epi-
eter. Analytical expressions for the valley shifts and ﬂfﬁxially on SiGe. This method, however, requires a sub-
transversal and longitudinal effective mass modificatiogﬁimiw modification of the CMOS fabrication process
induced by uniaxia[110] stress are obtained and ana; is not used in mass production. Instead, semicon-
lyzed. The low-field mobility enhancement in the direGy,cyor industry is exploiting techniques compatible with
tion of tensile[110] stress m_{OOl} SOl FET_S_W'”_1 arbi- existing CMOS process technologies when stress in the
trary small body thickness is due to a modification of the, s nne| is created by local stressors and/or additional
conductivity mass and is shown to be partly hampered by, |avers. Although already successfully used in mass
an increase in nonparabolicity at high stress value. ;4 ction, the technologically relevant case of stress
along [110] has received little attention within the re-
. search community. Only recently a systematic experi-
5.1 Introduction mental study of the mobility modification due fo10]
stress was performed [56]. It was shown that, contrary

Thek-p theory is a well established tool to describe tH€ [100] uniaxial stress, the electron mobility data for
band structure analytically. After the pioneering worki10] stress suggest that the conductivity mass depends
by Luttinger and Kohn [53] the six-barkdp method has ©n stress. This conclusion was also supported by re-
become a standard approach to model the valence b&fgat results of pseudo-potential band structure calcula-
in Si. However, the conduction band in Si is usually a§ions [56,57]. Shear strain modifies substantially both
proximated by three pairs of equivalent minima locatdfe longitudinal [58,59] and transversal [56, 58-60] ef-
close to theX -points of the Brillouin zone. It is com- fective masses. Any dependence of the effective masses
monly assumed that close to the minima the electron d1 stress is absent within the standard parabolic effective
persion is well described by the effective mass appro&itass description of the conduction band and can only be
mation. The nonparabolicity parameter= 0.5 eV—! is introduced phenomenologically. In order to describe the
introduced to describe deviations in the density of staté@pendence of the effective mass on stress a single-band
from the pure'y parabo"c expression' which becomscription is not SuffiCient, and Coup|ing to other bands
pronounced at higher electron energies. In ultra-tHi@s to be taken into account.

body (UTB) FETs, however, the band nonparabolicity

affects the subband quantization energies substantially,

and it was recently indicated that anisotropic, direction-

dependent nonparabolicity can explain the mobility be-

havior at high carrier concentrations in a FET with0) Recently, a 30 bandsp theory was introduced [61]. Al-
UTB orientation [54]. Therefore, a more refined descripough universal, it cannot provide an explicit analyti-
tion of the conduction band minima beyond the usu@®! solution for the energy dispersion. In this work we
nonparabolic approximation is needed. Another reas@fgsent an efficient two-bardp theory. By comparing

to challenge the standard description of the conducti8Hr results with predictions of the pseudo-potential band
band based on a single-band nonparabolic approxirgfucture calculations we demonstrate that the theory ac-

tion is its inability to properly address the band structuféirately describes both the nonparabolicty effects and
modification under stress. the stress induced band structure modification for gen-

eral stress conditions. It accurately reproduces thesstres
Stress-induced mobility enhancementin Si has becomaegpendence of the effective mass and of the nonparabol-
key technique to increase performance of modern CM@8y parameter. The analytical two-bakep model al-
devices. In biaxially stressed devices the electron nlows one to study the influence of the conduction band
bility can be nearly doubled. The reason for the mob#tructure on transport properties of stressed FETs for
ity enhancement lies in the stress-induced band structgemeral UTB orientations.
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Figure 34: [001] valley band structure obtained fronfrigure 35: [001] valley band structure obtained from
EPM calculations (lines) and the analytical EPM calculations (lines) and the analytical
expression (35) (dotted lines) At = —kq. expression (38) (dotted lines) & = Kpin,
The distance between contour lines is 50 for tensile [110] uniaxial stress of 3 GPa.
meV. Nonparabolicity is strongly direction The distance between the contour lines is 50
dependent. meV. Strong stress-induced anisotropy in the

transversal mass is observed.

5.2 Theory

used dispersion for the conduction band (the linear term
We consider the pair of equivalent conduction band va2niSnes at the minimurk, = —ko). The coupling be-
P 9 ween the bands is described by the off-diagonal terms

:szzﬁfnnaglggg?&l; direction. Other valleys can be ana up to the second order are:

h2k.k
Hiy (k) = =22 (34)

5.2.1 Two-Band kp Theory
The parameterd is obtained fromk-p perturbation

The closest band to the first conduction bangd(i = 1), theory [60]:

which we take into account, is the second conduction

bandAy (i = 2). These two bands become degener- 1 2 (py)11(p2)i2

ate exactly at theX point. Since the minimum of the M om2 Z Eu(X) = Ea, (X)|"
conduction band is only, = 0.15%7T away from theX
point, the dispersion around the minimum can be well

: : . sing degenerate perturbation theory, we find the fol-
described by degenerate perturbation theory, which onty . ) . . -
includes theytwogbands dggenerate atlshepgint. Di- Io¥vmg dispersion relation close to the minimunkat=

m
0 |1£1,2

agonal elements of the Hamiltonidfy;, < = 1,2 can be —ho:
easily obtained using the standéerg theory: 2 2 R2(R2 2
Ep(k) = P 4 G
. h R2k2 R2k2 RPk2 1/2
HQk:_lz—l_z z T Y 2/
k) = (=1) mg Pt 2my * 2my + 2my —% {14— (—2512\4/’@2@) ] -11,
(33)
wheremy is the free electron massy; is the transver- (35)

sal, andm; is the longitudinal effective mass. Here we

took into account that the matrix elemefys),; are dif- wheredk, = k. + ko, A = 2hkop/my is the gap be-
ferent only in sign, which is positive for the lower bandween theA; and theA, conduction bands at, =

p = (p2)11 = —(p.)22. The values ok, are negative —kq. In Figure 34 this analytical expression (dotted con-
since they are counted from tB¢€ point. In contrast to tour lines) is compared to the numerical band structure
the 30 bandk-p theory, which is developed around thie obtained from the empirical pseudo-potential method
point far away from the conduction band minimum [61[EPM) for k, = —kq. Excellent agreement is found up
our perturbation analysis at th¢ point allows to get ex- to an energy of 0.5 eV. Figure 34 demonstrates strong
cellent results with only two bands. Taking into accoumhisotropy in the nonparabolicity parameter, as antici-
the diagonal elements (33), we recover the commomdgted in [54].
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5.2.2 Stress 1.2

—— Analytical

. . 1+ | O m,EPM

In order to account for stress in our model we consider m ™, EPM
2

again the valley along th@01] direction. For general 0.8

stress conditions the following shift in energy is added to ?
the diagonal matrix elements (33) [62]: =06
E"’ L
H; = H) +0Ec, (36) 0.4
wheredEc = Ey (€ga + €yy + €22) + Eu €22, With Zy 0.
denoting the dilation an&, the uniaxial deformation

potentials for the conduction band. Thg,! = z,y, 2 05 ; oE + ; s
are the diagonal components of the strain tensor ex-
pressed in the principal coordinate system. The offigure 37: Dependence Of thén01] valley transver-

diagonal elements of the Hamiltonian are also modified sal effective mass on the dimensionléiss)]
by strain [60]: uniaxial strain as predicted by (41,42) (lines)

and EPM calculations (symbols). Shear
Hij(k) :H?j — Deyy, (37) stress generates strong anisotropy in the
' transversal masses
whereD > 0 denotes the deformation potential for the

off-diagonal strain component. When the off-diagonal 60 ' ' '
components in the Hamiltonian are ignored, the influ- — Analytical
ence of the shear stress component is completely lost. [ | O EPM

The off-diagonal elements of the strain tensor are, how-
ever, generated b{110] uniaxial stress. Since this is
exactly the stress direction used to enhance the perfor-
mance of modern MOSFETS, shear strain must be taken
into consideration. The dispersion relation of {he1] 20 |
valleys including the shear strain component for the con-
duction band now reads as:

m(n) / m

27,2 k2+k2)
BEk)= DB FER) g L
() 2my e OO 0 05 1 15

2 2 211/2 . n - .
_ [(ikzp) n (Dgw _ Lj\;’%) ] . Figure 38: Stress dependence of longitudinal effective

"o ‘ mass in thg001] valleys due tq110] stress.

(38) Effective mass diverges at= 1 suggesting
h h | £ itive f i . that full-band theory must be used for such

where the value of,, is positive for tensile stress in stress values.

[110] direction. In Figure 35 the analytical band struc-
ture (38) is compared with the results of the EPM calcu-

0.1%- lations for uniaxia[110] tensile stress of 3 GPa. Even for
_ such large stress values the agreement between the ana-

S 5 lytical model and the numerical EPM results is excellent
I 1_5 | up to 200 meV. The band structure shown in Figure 35
£ I suggests a strong effective mass modification, which is
% S I analyzed in more details in the next section.
)
@ 0.05 i

— Analytical. 5.3 Conduction Band Modification Due to

O EpM Shear Strain

1 L 1 L 1 L

1 M 1 M
B0z 04 06 08 1

Figure 36: [001] valley energy shift as function ofThe usually ignored off-diagonal strain component lifts
the dimensionless off-diagonal componernihe degeneracy between the two lowest conduction bands
of the strain tensor, as predicted by (40) arat the X points along theg001] axis in the Brillouin
by EPM calculations. Inset: conduction bandone [60]. This lifting of degeneracy has a strong ef-
profile along thd001] direction for different fect on the band structure. We investigate the shifts of
stress values.
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I

the valley minima, changes in the effective masses and od

in the nonparabolicity parameter. od
82_ 0.4+ T
j:/ 0.2+

. o

5.3.1 Valley Shifts = T

\55 <110> Stress [GPa]

Since the conduction band minimum along fb@l1] axis

is located near th& point, the gap opening at th&
point affects the position of the minimum. First, the . . . . . .
conduction band minimuna,,;, moves closer to th&l 5 0.2 0.4 0.6
point. From (38) we obtain i

Figure 39: Nonparabolicity parameter in tHg01] val-

kmin = —ko/1—n?. (39) leys increases as function ¢f10] tensile
stress. Inset: Relation between dimension-
Here, the dimensionless off-diagonal strain = less straim and stress in GPa.
2Deg, /A is introduced. For > 1 the conduction band
minimum is located exactly at th& point. For the longitudinal effective mass one obtains the fol-

lowing expression from (38):
The minima of the twd001] valleys move down in en- o1
ergy with respect to the remaining four fold degenerate () /my = { (1—=mn%) , Inl<1 43)
valleys. Forp < 1 the strain dependence is quadratic, 1=1/l]n)~" , Inl>1

while it is linear fornp > 1:
Eq.(43) is compared with EPM results in Figure 38. The
, Inl <1 longitudinal mass diverges gt = 1 suggesting that a
(40) full-band description is necessary for such high stress
values [58].

A2
|

AEshear =
{ —@2n-=1DAM -, Inl>1

In Figure 36 the shifts predicted by (40) are compared

with results from EPM calculations. Excellent agree- .

ment is found. %.3.3 Stress and Nonparabolicity

Shear strain affects the value of the nonparabolicity pa-

53.2 Stress Dependent Effective Masses rz_;tmetera. Proce_edlng as in [63], we arrive at an expres-
sion for the strain dependencef

Shear strain modifies the effective masses in|tid] aln) = a 1+ 2(nm./M)* (44)

valleys. Evaluating the corresponding second derivatives 1 — (gmy/M)?

of (38) at the band minimum (39), we obtain two dif

. Expression (44) is plotted in Figure 39. The relative in-
ferent branches for the effective mass acresg ] and e
e crease ofy(n) is important at large stress values. Results
along (n;2) the stress direction:

of the mobility simulations in a strained ultra-thin body
FET along the[110] stress direction, with and without
stress dependence of the the nonparabiolicity parameter

(1—nme)-? Il <1 taken into account, are shown in Figure 40. The stress
me(n)/me = { 1 dependence of the nonparabolicity parameter results in
(1 —sgn(n)5f) ;nl>1 an almost 25% decrease to the mobility enhancement in
(41) a3 nm thick SOI FET at a stress level of 3 GPa (Fig-
(1+ 77%)_1 . nl <1 ure 40). For stress values larger than 3 GPa the energy
mya(n)/me = s\ —1 difference from the minimum to the value at thepoint
(1+sgn(n)57) ;o >1 becomes smaller thans T, and a full-band description

(42) s required [58].

Here,sgn denotes the sign function. The analytical ex-

pressions for the transversal masses (41) and (42) rﬁ Conclusion
compared with the masses obtained from EPM calcufa-
tions in Figure 37. Strong anisotropy in the transversal

masses generated by shear strain is predicted by the @ma-efficient two-bandk-p model is presented, which
lytical model. accurately describes the conduction band minima in
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Figure 40: [110] channel mobility in a 3 nm thick UTB
FET at 3 GPa tensile stress along the chan-
nel. Mobility is computed withh = 9 and

a = a(y).

strained silicon. The model accurately describes stress
dependences of the effective mass and of the nonparabol-
icity parameter. Analytical dependences of the valley
shifts, transversal and longitudinal effective massed, an
the nonparabolicity parameter on shear strain are ob-
tained and analyzed. Itis demonstrated that the enhance-
ment of low-field mobility in uniaxially stressed UTB
FETs is partly hampered by an increase in nonparabolic-
ity at higher stress.
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