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1 Numerical Quadrature of the

Subband Distribution Functions

in Strained Silicon UTB Devices

In this work, the k · p method is used to calculate the

electronic subband structure. To reduce the computa-

tional cost of the carrier concentration calculation and

henceforth the required number of numerical solutions of

the Schrödinger equation, an efficient 2D k-space inte-

gration by means of the Clenshaw-Curtis method is pro-

posed. The suitability of our approach is demonstrated

by simulation results of Si UTB double gate nMOS and

pMOS devices.

1.1 Introduction

Strained silicon ultra-thin body MOSFETs are consid-

ered to be good candidates for CMOS integration in the

post 22 nm technology nodes. An accurate description of

such devices relies on the modeling of the subband struc-

ture. An efficient self-consistent Schrödinger-Poisson

model for the calculation of the electronic subband struc-

ture is presented, taking into account band nonparabol-

icity and arbitrary strain [1]. A two-band k · p Hamil-

tonian has been used for electrons and a six-band k · p
Hamiltonian for holes.

1.2 Calculation of the Subband Structure

The numerical modeling of the subband structure in ul-

tra thin body SOI MOS structures relies on an accurate

model of the bulk Hamiltonian. We applied a two-band
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Figure 1: Occupation of the heavy hole band of Si in a 3

nm wide quantum well. The grid shows the nodes of the

numerical quadrature.

k · p Hamiltonian [2, 3] to describe the silicon conduc-

tion band around the X points.

H =

[

H− Hbc

Hbc H+

]

with

H∓ = Ec(z) +
~

2k2
z

2ml
+

~
2
(

k2
x + k2

y

)

2mt
∓ ~

2k0kz

ml
,

Hbc = Dǫxy − ~
2kxky

M
.

Ec denotes the conduction band edge energy, ml and mt

are the longitudinal and transversal electron masses, re-

spectively, and 1
M ≈ 1

mt

− 1
me

. The shear strain defor-

mation potential D = 14 eV and the off-diagonal strain

component ǫxy describe the effects of shear strain on the

bandstructure. k0 = 0.15 2π
a0

corresponds to the distance

of the valley to the X point.

To model the silicon valence band structure a 6×6−k · p
Hamiltonian [4] has been implemented. Following the

notation of Manku it is written as

H = EvI6×6 +

[

S + D 03×3

03×3 S + D

]

+ Hso,

where Ev is the valence band edge and the perturbation
matrix S and the deformation potential matrix D are
given by

S=
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D=





lεxx+m(εyy+εzz) nεxy nεxz

nεxy lεyy+m(εxx+εzz) nεyz

nεxz nεyz lεzz+m(εxx+εyy)





As parameters for the silicon valence band structure

without strainL = −6.53,M = −4.64, andN = −8.75
in units of ~

2

2me

have been used [5]. l, m, and n are the

strain deformation potentials for the valence band.

The spin orbit coupling is described by the Hamiltonian

Hso = −Eso

3
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with the split off energy of silicon Eso = 44 meV.

Quantization is introduced in the bulk Hamiltonian by

the substitution kz → −i ∂z, where the z-axis is the quan-

tization direction and corresponds to the normal of the



1 Numerical Quadrature of the Subband Distribution Functions in Strained Silicon UTB Devices 2

(001) silicon crystal surface throughout this work. A fi-

nite difference scheme with hard wall boundary condi-

tions has been used to discretize the Schrödinger equa-

tion. The resulting eigenvalue problem gives rise to dis-

crete energies describing the subband structure.

1.3 Numerical Quadrature of the Subband

Distribution Functions

The contribution of subband i and valley j to the equi-

librium electron concentration is given by

ni,j(z) =

∫

BZ

d2k |ψi,j(z)|2
1

(2π)2
f0 (Ei,j (kx, ky) − EF),

where ψi,j is the wave function and f0 is the Fermi dis-

tribution and EF the Fermi level with a similar relation-

ship holding for the hole concentration in a pMOS de-

vice. Therefore, to calculate the occupation of a subband

a numerical, two-dimensional k-space integration is re-

quired. This necessitates to solve the Schrödinger equa-

tion for every discrete point (kx, ky). Hence, one seeks

after a numerical quadrature scheme that gives good ac-

curacy on a coarse grid. In contrast to previous work [6]

which made use of harmonic and cubic spline interpola-

tion for k-space integration, in this work the Clenshaw-

Curtis method [7] has been applied. As nodes in the inte-

gration interval [−1, 1] the zeros of the Chebyshev poly-

nomial are used: xk := cos(k πN ) with k = 0, 1, . . . , N .

Following [8], the weights are written explicitly as

wk =
ck
N

(

1 −
⌊N/2⌋
∑

j=1

bj
4j2 − 1

cos
(

2jk πN
)

)

with bj = 1 if j = N/2, or bj = 2, if j < N/2, and

ck = 1 if k mod N = 0, or ck = 2 otherwise. For

the k-space integration of the subbands provided by the

k · p Hamiltonian excellent accuracy has been achieved

with only 19 nodes per k direction.

1.4 Results and Discussion

A (001) silicon UTB DG-MOSFET with 3 nm film and

1 nm oxide thickness has been simulated. For the nMOS

device the donor doping of the polysilicon gates was

ND = 1.0 × 1020 cm−3 and the Si film was lightly p-

doped at NA = 2.0× 1016 cm−3, while the complemen-

tary doping has been used for the pMOS device. The oc-

cupation function of the heavy hole band is depicted in

Fig. 1. Equivalently the lowest unprimed subband of the

nMOS device with and without shear strain is depicted

in Fig. 2. The grid as shown in the figures corresponds

to the nodes of the Clenshaw-Curtis quadrature. The ze-

ros of the Chebyshev polynomial give an accumulation

of grid points at the boundary of the integration domain.

The integration intervals for the nMOS have been cho-

sen as ten percent of the width of the Brillouin zone in

each positive and negative direction around the valley.

For the pMOS device the boundaries have been set at

kx,y = ±0.2 2π
a0

. Therefore, the domain has to be normal-

ized accordingly to the interval [−1, 1] of the Clenshaw-

Curtis rule.

Fig. 3 shows the self-consistent conduction band edge

and the electron concentration for the nMOS and Fig. 4

the corresponding result for the pMOS device. Within

the well, the squared wave functions for the four low-

est, twofold degenerate unprimed subbands are displayed

at their corresponding energy levels. For each subband

the electron density is calculated by k-space integration.

For the (001) Si-nMOS device the unprimed and primed

subband ladder are taken into account to obtain the self-

consistent solution.
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Figure 2: Occupation of the lowest unprimed subband of a 3 nm (001) silicon conduction band quantum well without

strain (left) and with εxy = 0.5% shear strain (right).
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Figure 3: Self-consistent calculation of the conduction

band edge and the electron concentration of a (001) Si-

DG-nMOS with 3 nm well width and 1 nm oxide thick-

ness. The normalized wave functions [nm−1] are over-

layed at their respective energy levels. The electron

concentration is plotted for the unstrained case and for

εxy=0.5% shear strain.

The convergence behavior of the self-consistent Schröd-

inger/Poisson loop is shown in Fig. 5. The quadratic

norm of the potential update after an iteration evolves

similarly for a different number of nodes per k-direction.

As depicted in the figure, the convergence behavior is

good and hence the iteration scheme proves stable.

To give an impression of the accuracy of the numeri-

cal quadrature method a test with parabolic subbands

has been conducted. Therefore, a (001) silicon DG-

nMOS device has been simulated using the two-band

k · p Hamiltonian with k0 and 1
M set to zero which

corresponds to the parabolic effective mass approxima-

tion (EMA). Again, the unprimed and primed valleys are

taken into account. This way, the self-consistent carrier

concentration has been calculated and compared to the

results of the EMA, where the 2D subband density is cal-

culated analytically. The maximum relative difference

of the electron concentration for the 3 nm silicon well

has been used as measure of accuracy for the numerical

quadrature. The results are depicted in Fig. 6. Further-

more, the CPU time for the calculation of the electron

concentration on a single core of an Intel Core 2 Quad

Q6600 machine is given. This includes the time for solv-

ing the Schrödinger equation for all points in k-space and

the following numerical quadrature. The curve shows the

expected O(N2) behavior of the algorithm.

In Table 1 the minima of the unprimed (U) and primed

(P) subbands are shown in units of eV. The five lowest

eigenvalues of the subband ladders are summarized. The

eigenvalues of the emulated “parabolic” k · p Hamilto-

nian with k0 and 1
M set to zero and numerically inte-
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Figure 4: Same as Fig. 3 but for Si-DG-pMOS device.

grated subbands are compared to the energy levels re-

sulting of the effective mass Schrödinger equation. The

relative difference of the eigenvalues is given to show the

accuracy of the self-consistent result using our proposed

calculation scheme.

In Table 2 the effects of nonparabolicity and strain on

the bound states is summed up. As in Table 1 the un-

primed and primed subband ladder is shown in units of

eV. The nonparabolic two-band k · p Hamiltonian ap-

plied to a (001) silicon UTB device gives a two-fold de-

generate unprimed valley which is located at the X-point.

The four-fold degenerate primed valleys have their min-

imum at k = ±0.15 2π
a0

.

By applying shear strain, the unprimed subbands at the

X-point are split and shifted downwards with respect to

the primed subband ladder, therefore, favoring the occu-

pation of the unprimed valleys with lower transport mass.

Whereas the occupation of the individual subbands is

changed fundamentally, the effect on the total electron

concentration is marginal as shown in Fig. 3.

Similar simulations were carried out for the DG-pMOS

device. In the effective mass approximation three types

of holes have been considered. The heavy hole band with

mhh = 0.39me, the light hole band withmlh = 0.19me

and the split off band with mso = 0.24me and a shift of

44 meV down from the valence band edge are included

in the calculations. As illustrated in Fig. 4 this gives

a good agreement of the EMA hole concentration with

the self-consistent six-band k · p results. The calculated

bound states in the UTB are summarized in Table 3. Fur-

thermore, compressive stress of 1 GPa in [110] direc-

tion was applied. This gives an additional splitting of the

heavy hole and light hole band. Under these conditions

the transport mass in [110] of the highest band extracted

from the k · p dispersion relation was m = 0.17me as

compared to m = 0.32me in the unstrained case.
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Figure 5: Potential update after each

Schrödinger/Poisson iteration for different num-

bers of nodes per k-direction of the Clenshaw-Curtis

subband integration. Starting from the classical

solution all simulations give similar convergence

behavior.
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Figure 6: CPU time for a single Schrödinger/Poisson

iteration for different number of nodes per k direc-

tion of the Clenshaw-Curtis subband integration. The

maximum relative difference of the self-consistent car-

rier concentration within the well for numerically in-

tegrated parabolic subbands with respect to the effec-

tive mass approximation with analytically integrated

subbands is given to show the good accuracy of the

quadrature method.

1.5 Conclusion

Contrary to numerical solutions based on the one-band

effective mass Schrödinger equation, this work consid-

ers a nonparabolic dispersion relation based on a k · p
Hamiltonian. Furthermore, shear strain effects leading

to a warping of the bandstructure are accounted for. The

proposed numerical quadrature of the subbands has been

successfully applied to electron and hole states in un-

strained and strained Si. The self-consistent solutions

for the band edges and carrier concentrations of a UTB

Si nMOS and pMOS device are presented. The numeri-

cal quadrature proves as simple and yet robust method.
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Table 1: The minima of the unprimed (U) and primed (P) subbands are shown in units of eV. To test the numerical

quadrature the two-band k · p Hamiltonian has been used with k0 and 1
M set to zero which corresponds to parabolic

bands. The relative difference of the eigenvalues is given to show the accuracy of the self-consistent result using

numerical integration.

EMA k · p parabolic Relative difference

U P U P U P

−0.11210 0.04745 −0.11214 0.04741 3.6×10−4 8.4×10−4

−0.01494 0.61437 −0.01498 0.61434 2.7×10−3 4.9×10−5

0.19655 1.60525 0.19651 1.60521 2.0×10−4 2.5×10−5

0.49224 2.99374 0.49220 2.99371 8.1×10−5 1.0×10−5

0.87241 4.77407 0.87237 4.77404 4.6×10−5 6.3×10−6

Table 2: As in Table 1 the unprimed and primed subband ladder is shown in units of eV. By applying shear strain,

the unprimed subbands are split and shifted downwards with respect to the primed ladder, therefore, favoring the

occupation of the unprimed valleys with lower transport mass.

k · p nonparabolic k · p with εxy = 0.5%
Unprimed Primed Unprimed Primed

1 −0.10148 0.05773 −0.10336 0.07147
−0.10148 −0.10071

2 −0.00417 0.62431 −0.02814 0.63826
−0.00417 0.04673

3 0.20812 1.61512 0.22144 1.62886
0.20812 0.23429

4 0.50491 3.00361 0.51010 3.01732
0.50491 0.53152

5 0.88650 4.78393 0.89072 4.79764
0.88650 0.91224

Table 3: The bound states in a (001) Si DG-pMOS in units of eV. For the effective mass approximation the heavy

hole, light hole and split off states have been considered. The results are compared to k · p simulations for unstrained

and strained Si with compressive stress of 1 GPa in [110] direction.

EMA k · p
HH LH SO Unstrained Strained

1 0.11094 0.00446 0.04758 0.02275 0.04029
2 −0.15444 −0.57724 −0.40559 −0.00009 −0.00842
3 −0.65224 −1.60061 −1.21528 −0.07281 −0.09870
4 −1.34922 −3.03304 −2.34895 −0.36674 −0.34967
5 −2.24353 −4.86962 −3.80274 −0.39456 −0.40065
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2 Three-Dimensional Level Set

Based Bosch Process Simulations

Using Ray Tracing for Flux

Calculation

This paper presents three-dimensional simulations of

deep reactive ion etching processes, also known as Bosch

processes. A Monte Carlo method, accelerated by ray

tracing algorithms, is used to solve the transport equa-

tion, while advanced level set techniques are applied to

describe the movement of the surface. With multiple

level sets it is possible to describe accurately the differ-

ent material layers which are involved in the process. All

used algorithms are optimized in such a way, that the

costs of computation time and memory scale more like

with the surface size rather than with the size of the sim-

ulation domain. Finally the presented simulation tech-

niques are used to simulate the etching of holes, whereas

the influence of passivation/etching cycle times and hole

diameters on the final profile is investigated.

2.1 Introduction

The invention of the Bosch process [9] enabled high as-

pect ratio etching by alternation of passivation and etch-

ing cycles and is used in semiconductor devices and mi-

croelectromechanical systems (MEMS) fabrication. In

each cycle a chemically inert polymer layer is uniformly

deposited using fluorocarbon gases. This passivation

layer prevents the sidewalls from being attacked in the

subsequent etching step (Fig. 7). By feeding a high fre-

quency plasma with etch gases like SF6, CF4, or NF3,

a superposition of physical (directional) and chemical

(isotropic) etching is obtained. This leads to a faster re-

moval of the passivation layer at the bottom of the trench

compared to the sidewalls due to the additional sputter-

ing of the directional ions. After uncovering the substrate

at the bottom chemical etching is dominant. Hence, in

simple terms, in each cycle an isotropic etching process

is started at the bottom of the trench. After many iter-

ations profiles with high aspect ratios can be obtained.

For optimal processing the passivation and etching cycle

times have to be balanced. If the deposited passivation

layer is too thin, the process time for the etching cycle

has to be smaller to avoid the corrosion of the sidewalls

increasing the number of required iterations. If the layer

is too thick, the etching duration has to be increased re-

sulting in a longer total process time. The choice of the

process times has also an influence on the undulation of

the sidewalls caused by the two-phase procedure. Com-

puter simulations help to study parameter variations in

order to optimize the process. Several simulators have

Figure 7: A schematic illustration of the Bosch process.

The deposition of a passivation layer protects the side-

walls during the subsequent etching cycle.

been developed and applied to the Bosch process in the

past [10]- [11].

A two-dimensional simulator using a string-cell hybrid

method for surface evolution was presented in [10, 12].

Therein a simplified model for the particle transport is

used. Etching is modeled by a constant etching rate su-

perposed by a directional etching term which is propor-

tional to the incident ion flux. For the passivation cycle a

perfect conformal deposition is assumed, which is equiv-

alent to a constant surface velocity. However, this model

is not able to describe the lag effect [13] appropriately.

Therefore, a geometric shape factor was introduced [14],

accounting for different trench widths.

A simulation with a more sophisticated transport model

is presented in [15], where different sticking probabili-

ties and higher order re-emissions of neutral particles are

incorporated using the ballistic transport-reaction model

(BTRM) [16, 17]. Since the transport of neutrals to the

surface is taken into account, the lag effect is inherently

incorporated. The surface evolution is calculated using

the level set method [18], which allows easy handling

of topographic changes, while sub-grid resolution of the

surface can be achieved. The transport equations, which

result in surface integral equations, are solved by con-

ventional integration techniques [19].

Another approach to calculate the particle transport is

based on the Monte Carlo method which was first ap-

plied to Bosch process simulation in combination with a

string-cell method for surface evolution in [20]. Many

particle trajectories and their surface reactions are calcu-

lated to determine the surface rates.

Three-dimensional simulations of the Bosch process

were recently reported in [11, 21]. Both use simplified

transport models and do not incorporate higher order re-

emissions of neutrals. Instead, a uniform surface rate

is assumed. The particle transport is calculated using

conventional integral methods. For surface evolution a
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voxel-based method and the level set method are used,

respectively.

In the following we describe a new approach for three-

dimensional Bosch process simulations. We use ad-

vanced level set techniques to represent the geometry

and also the different material regions. To determine

the reaction rates on the surface we apply a Monte Carlo

method, accelerated by ray tracing algorithms and paral-

lelization.

2.2 Model

The scope of this paper is the demonstration of three-

dimensional Bosch process simulations by means of fast

computation techniques. For this purpose we use the

model as given in [15], where a Bosch process with alter-

nating flows of SF6 and fluorocarbon gases is described,

including a full set of parameters. In the following we

summarize the model and discuss the solution of the gov-

erning equations.

2.2.1 Particle Transport

The model is based on the BTRM [16, 17], where the

mean free path of particles is assumed to be much larger

than the typical structure sizes of the geometry. Hence,

particle–particle interactions can be neglected at feature

scale. The arrival angle distributions of all particles are

given at a certain plane P , called source plane, just above

the surface S (Fig. 8). For neutral particles a cosine-like

arrival angle distribution (flux per solid angle)

Γsrc
n (~t) = F src

n

1

π
(~t · ~nP). (1)

is assumed, while a more directional distribution is used

for ions

Γsrc
i (~t) = F src

i

κ+ 1

2π
(~t · ~nP)κ. (2)

Here ~t denotes the direction and ~nP is the normal on the

source plane pointing to the surface. F src
n and F src

i are the

total incoming fluxes of neutrals and ions, respectively.

The parameter κ is used to model the narrow angular dis-

tribution of ions [22]. For κ ≫ 1 this distribution is

equivalent to a normal distribution for the arrival angles

with a standard deviation of σ = 1√
κ

.

Figure 8: The arriving flux at point ~x on the surface S is

the sum of the flux coming directly from the source plane

P and the re-emitted flux originating from the surface

itself. In case of reflective or periodic domain boundaries

the regions of integration P and S are finite.

The arriving flux for neutrals can be obtained by solving

the surface integral equation

Fn(~x) =

∫

P

Γsrc
n (~t)

vis(~x, ~x′)(−~t · ~n)

‖~x− ~x′‖2
dA′+

∫

S

Fn(~x
′)

1

π
(~t · ~n′)(1 − θ(~x′))

vis(~x, ~x′)(−~t · ~n)

‖~x− ~x′‖2
dA′,

(3)

with ~t = (~x−~x′)
‖~x−~x′‖ . The first term describes the direct flux

from the source. The second term is the flux which ori-

gins from the surface itself due to re-emission. vis(~x, ~x′)
is the visibility function which returns 1 or 0, if the sur-

face points ~x and ~x′ are in line of sight or not, respec-

tively. For neutrals diffusive re-emission with a sticking

probability θ(~x) is assumed. During the passivation cy-

cle the sticking probability is uniform, because the whole

surface gets covered with the same type of material. Dur-

ing the etching cycle the sticking probability depends on

the local material on the surface. For ions a constant

sticking probability of 1 is assumed. Therefore, the ion

flux can be written as

Fi(~x) =

∫

P

Γsrc
i (~t)

vis(~x, ~x′)(−~t · ~n)

‖~x− ~x′‖2
dA′. (4)

2.2.2 Surface Kinetics

The deposition and etching rates in both cycles of the

Bosch process are simply modeled by linear combina-

tions of neutral and ion fluxes

R(~x) = αFi(~x) + βFn(~x). (5)
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The coefficients α and β are model parameters, and in

case of etching they depend on the exposed material. The

model assumes that three different types of material are

involved in the Bosch process: the mask, the substrate,

and the passivation (polymer) layer.

The numeric values of all parameters for the passivation

and the etching cycle, which we used for all simulations,

are listed in Table 4 and Table 5, respectively. Contrary

to [15] we also consider mask etching by assuming a

mask/substrate etch selectivity of 1:20. The coefficients

α and β for the mask are adjusted accordingly. Further-

more, a spread of the arrival angles of ions is assumed

(σ = 2◦).

Table 4: The numeric values of the parameters used for

the simulation of the passivation cycle.

Parameter Value

σ 2◦

F src
n 2 · 1018 atoms/(cm2s)

F src
i 3.125 · 1015 atoms/(cm2s)

α 10 Å3/atom

β 0.5 Å3/atom

θ 0.1

Table 5: The numeric values of the parameters used for

the simulation of the etching cycle.

Parameter Value

σ 2◦

F src
n 1019 atoms/(cm2s)

F src
i 4.375 · 1015 atoms/(cm2s)

αpolymer 125 Å3/atom

αsubstrate 270 Å3/atom

αmask 13.5Å3/atom

βpolymer 0.03 Å3/atom

βsubstrate 0.9 Å3/atom

βmask 0.045 Å3/atom

θpolymer 0.1
θsubstrate 0.2
θmask 0.2

To solve the above-described equations two different

methods are necessary. One for tracking the surface and

the different material regions over time and a second to

determine the fluxes on the surface. In the following two

sections the numerical framework is presented to accom-

plish these tasks.

2.3 Surface Evolution

This section addresses the description of the geometry

and of its evolution over time. For Bosch process simu-

lation it is important that the profile evolution algorithm

can handle different material regions. We use the level

set method, since it allows a sub-cell accurate represen-

tation of the surface, while topographic changes are han-

dled inherently.

2.3.1 Level Set Method

The basic idea of the level set method is to describe a

boundary by means of a continuous function [18]. For

a given surface S a level set function Φ is initialized in

such a way that S can be obtained as its zero level set

S = {~x : Φ(~x) = 0}. (6)

The advantage of this representation is that the propaga-

tion of a boundary driven by a given velocity field V (~x)
can be easily determined by solving the level set equation

∂Φ

∂t
+ V (~x)‖∇Φ‖ = 0. (7)

If discretized on a Cartesian grid, this equation can

be easily solved by means of simple finite difference

schemes. To guarantee a stable time integration a

Courant–Friedrichs–Lewy (CFL) condition has to be ful-

filled, which restricts the maximum advancement of the

surface per time step. For our calculations we used a

maximum step size of 0.1 grid spacings.

In topography simulations the surface velocities are only

defined on the surface. Therefore, to get the required

surface velocity field an extension technique has to be

applied [23]. To keep the level set function a signed

distance function, it was proposed to take for each grid

point the surface velocity of its closest surface point [24].

Later, we will discuss this mapping and more generally,

how to couple the transport equation solver with the level

set method.

2.3.2 Sparse Field Level Set Method

The original level set method shows a non-linear scaling

of computation time and memory consumption with the

surface size, since the level set function is stored and in-

tegrated over time for all grid points of the simulation

domain. A linear scaling law for the computation time

was achieved by the narrow band level set method which

only considers active grid points close to the surface for

time integration. The approach makes use of the fact

that the level set values of grid points far away do not

influence the actual position of the surface. A further

enhancement of this method is the sparse field level set

method [25], which has the advantage that only a single

layer of active grid points, namely those with an absolute

level set value less than 0.5, must be considered for time
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integration. Only for those grid points the surface ve-

locity field has to be known, making the mapping from

the surface very easy. Another advantage of the sparse

field level set method is that periodic re-initializations of

the level set function as needed for conventional level set

methods are not necessary. The level set values at neigh-

boring grid points, which are required to determine the

derivatives of the level set function, are obtained by a

simple and fast update scheme.

2.3.3 Run-Length-Encoding

To reduce the memory consumption for storing a level set

function the recently developed hierarchical run-length-

encoding (HRLE) data structure [26] was implemented.

Only for grid points close to the surface the explicit level

set values are stored. For all other grid points only the

signs of the level set function are stored using run-length

compression. The availability of the signs of all grid

points is very useful, since the sign of the level set reveals

on which side of the level set a grid point is located.

The HRLE data structure enables fast sequential and

random access to grid points with constant and sub-

logarithmic complexity, respectively. In combination

with the sparse field level set method a perfect linearly

scaling level set algorithm in terms of surface size can be

realized.

Boolean operations like union or intersection of two re-

gions play a role in multi-level-set methods, where dif-

ferent material regions are represented by more than one

level set. These operations can be expressed as mini-

mum or maximum of the corresponding level set func-

tions [27], which can be computed with an optimal linear

complexity using the HRLE data structure.

2.3.4 Multiple Materials

The simulation of the Bosch process requires accurate

handling of all three involved material regions: The sub-

strate, the mask, and the passivation layer, labeled by

Ωsubstrate, Ωmask, and Ωpolymer, respectively. Three level

sets are used to represent the whole geometry. They are

defined as follows

Φ1(~x) ≤ 0 ⇔ ~x ∈ Ωsubstrate,

Φ2(~x) ≤ 0 ⇔ ~x ∈ Ωsubstrate ∪ Ωmask,

Φ(~x) ≤ 0 ⇔ ~x ∈ Ωsubstrate ∪ Ωmask ∪ Ωpolymer.
(8)

Here the zero level set of Φ is equal to the surface, while

those of Φ1 and Φ2 can be assigned to interfaces. The

representation of a structure consisting of three different

material regions is illustrated in Fig. 9. If the level set

Figure 9: The different material regions which have to be

considered during a Bosch process simulation (left) and

their representation using level sets (right).

functions are initialized using a metric function, the in-

equation

Φ1(~x) ≥ Φ2(~x) ≥ Φ(~x) (9)

holds.

Obviously there are other alternatives to choose the level

sets to represent this structure. For example, it is possible

to describe each material region by one enclosing level

set. However, by nature, if the level set functions are dis-

cretized on a Cartesian grid, it is not possible to resolve

layers accurately which are thinner than one grid spac-

ing. Therefore, it is possible that the passivation layer

suddenly disappears, if a certain thinness is reached dur-

ing the etching cycle. Consequently, the etching of the

underlying substrate starts too early, leading to wrong

profiles. This effect is intensified due to the etch rate ra-

tio and due to the multiple repetitions during the Bosch

process. Therefore, it is very important to resolve the

passivation layer accurately. With the level set configu-

ration as defined in (8) also very thin layers can be re-

solved.

A time integration step consists of solving the level set

equation for the surface level set function Φ and subse-

quent adapting the interface level sets Φ1 and Φ2 using

the boolean operation

Φ
(t+∆t)
i (~x) = max

(

Φ
(t)
i (~x),Φ(t+∆t)(~x)

)

. (10)

It should be noted that this adaption rule maintains in-

equation (9). As mentioned previously, the maximum of

two level set functions can be constructed very efficiently

using the HRLE data structure.

The type of material at a certain surface point ~x can be

obtained from the level set functions as follows:

Φ1(~x) = Φ2(~x) = Φ(~x) ⇒ substrate, (11)

Φ1(~x) > Φ2(~x) = Φ(~x) ⇒ mask, (12)

Φ1(~x) ≥ Φ2(~x) > Φ(~x) ⇒ polymer. (13)
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The surface velocities of different materials are taken

into account during time integration. If the surface front

reaches another material within a time step (during the

etching cycle), the different surface rates are incorpo-

rated adequately. A detailed description of this method-

ology can be found in [28].

2.4 Flux Calculation

Every time step the surface rates have to be determined

to enable the profile evolution calculation using the level

set method. For this purpose the flux equation (3) has to

be solved. Especially in three dimensions it is crucial to

use fast techniques and algorithms to speed up the whole

topography simulation.

Conventionally, this surface integral equation is solved

by discretization of the surface using triangle [29] or

voxel elements [30], resulting in a system of linear equa-

tions. The system matrix contains the visibility factors

which have to determined for each pair of elements. If

they are visible from each other, the corresponding sys-

tem matrix entry is non-zero. Generally the system ma-

trix is dense, which to set up and to solve is compu-

tational intensive, since at least a quadratic scaling law

with surface size can be expected. The visibility check

can lead to an even worse scaling [31].

The particle fluxes are often calculated using an explicit

representation of the surface. However, surface extrac-

tion algorithms like the marching cubes algorithm [32]

result in a huge number of surface elements, revealing

the importance of a well scaling algorithm. A way to

reduce the number of elements is coarsening of the re-

sulting surface mesh [33]. However, this approach does

not only reduce the number of elements and hence the

computation time, it also reduces the resolution of the

flux. This is a problem, since even on plane regions of

the surface the flux can change abruptly due to shadow-

ing. Therefore, coarsening is limited and the unfavorable

scaling law is maintained.

2.4.1 Ray Tracing

Since ballistic transport of particles is assumed, the flux

calculation is quite analogous to rendering a scene in

computer graphics. Due to the ballistic transport of par-

ticles the propagation is linear like that of light rays.

A widely applied technique to get a realistic picture of

a three-dimensional scene is ray tracing [34], a Monte

Carlo technique, where a huge number of light rays

is simulated. Applied correspondingly to our problem,

many particle trajectories are calculated. Whenever, a

Figure 10: Spatial subdivision accelerates the calculation

of particle trajectories. Within the surface cells (gray) tri-

linear interpolation is used to find the intersection with

the surface.

particle hits the surface it contributes locally to the sur-

face. Thus, the main task is to find the first intersec-

tions of rays with the surface. Spatial subdivision can

reduce the complexity of finding the first intersection to

an expected logarithmic scaling O(logN) [35], where

N is the number of surface discretization elements, or

in our case the number of surface grid cells. Grid cells

having corners with different signed level set values con-

tain parts of the surface, which consequently have to be

checked for intersection. To optimize the data structure

for fast traversals we use binary subdivision along grid

planes with simultaneous consideration of a cost func-

tion based on surface area heuristics (SAH) as described

in [36]. As exemplified in Fig. 10 only a small num-

ber of boxes have to be traversed to find the intersection

with the surface. Ray tracing can be directly applied to

the level set surface representation. The intersection can

be found by tri-linear interpolation of the level set func-

tion within grid cells and finding the zero-crossing along

the particle ray [37].

Since ray tracing is a statistical method, its accuracy

strongly depends on the number of simulated rays. To

obtain a desired accuracy the number of simulated parti-

cle trajectories has to scale with the surface size, to keep

the statistical events per unit area constant. Therefore an

overall complexity of O(N logN) can be achieved us-

ing ray tracing, which is a much better scaling law than

that for solving the flux balance equation directly.

To be able to determine the incident flux for a certain

surface point a reference area has to be defined to relate

the number of incidences to the local fluxes. Each parti-

cle hitting a reference area of size Aref contributes to the

local flux of the corresponding surface point following

∆F =
F src

n ·Aref
. (14)
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Here n denotes the number of simulated particles which

are launched per unit area from the source plane. In

principle, these reference areas can be arbitrarily shaped

plain areas. For example, the triangles of a surface mesh,

or, as we will describe in the next section, tangential

disks can be used as reference areas. It is only impor-

tant that they are localized around the surface point for

which the flux has to be determined. However, it is not

necessary that the sum of all reference areas equals the

real physical area of the surface. In particular, it is even

possible that they overlap. In this case an incident parti-

cle can contribute to the fluxes of various reference areas

following (14).

According to our model neutral particles have a sticking

probability much less than 1. Hence, also higher order

re-emissions have to be incorporated. This can be per-

formed by continuing the particle trajectory calculation

in compliance with the applied re-emission law. The

particle trajectory is stopped with a probability equal to

the sticking probability. Elsewise, a new direction is

randomly chosen in accordance to the used re-emission

model, and the particle is re-emitted. In contrast to real-

ity where a particle only contributes to the surface veloc-

ity at the point where it finally remains sticking, a parti-

cle trajectory contributes to the flux each time it reaches

the surface, independent from being re-emitted or not.

Hence, more statistical events are generated and a better

accuracy is obtained.

Alternatively, instead of re-emitting a particle following

the complementary sticking probability, it is also possi-

ble to assign a weight factorw to the particle as described

in [38]. Starting with an initial value w(0) = 1 the par-

ticle contributes to the local flux according to its weight

factor

∆F = w · F src

n ·Aref
. (15)

In contrast to the first method the particle is always re-

emitted, however, with a reduced weight factor

w(k+1) = w(k) · (1 − θstick). (16)

This method is equivalent with the first one, because the

expected contribution to the local flux of a particle which

is re-emitted k times is the same in both cases

〈∆F 〉 = ρk ·
F src

n ·Aref
= w(k) · F src

n ·Aref
. (17)

Here ρk = (1 − θstick)
k denotes the probability that a

particle is re-emitted k times. The trajectory calculation

is stopped, if the weight factor falls under a certain

fraction w < wlimit, or, if the particle leaves the sim-

ulation domain upwards. In our simulations we used

wlimit = 10−3. The error introduced by aborting the

particle trajectory is given by wlimit. Usually, the error

is smaller, because the particle leaves the simulation do-

main after a couple of re-emissions before reaching this

critical weight. For the latter method a better accuracy

can be expected especially at regions which are unlikely

reached by lower order particles.

2.4.2 Coupling with Surface Evolution

In the following we describe how to link the ray tracing

algorithm for flux calculation with the level set method.

On the one hand side the surface velocities at all ac-

tive grid points have to be determined as needed for the

sparse field level set method. On the other hand side

reference areas for the flux calculation using ray tracing

have to be defined. In [39] it was proposed to choose for

each active grid point an environment around its closest

surface point. However, this approach requires a triangu-

lation of the surface.

As already mentioned ray tracing can be performed di-

rectly using the implicit level set surface representation.

To avoid an explicit surface representation at all, which

increases not only the memory requirements but also

the calculation time due to the surface extraction algo-

rithm, a disk with predefined radius ρ is set up for each

active grid point. These disks serve as reference areas

(Aref = πρ2) for the calculation of the fluxes for the cor-

responding active grid points. Their positions are chosen

in such a way that they are tangential to the surface at

the closest surface point of the corresponding grid point.

The closest surface point of a grid point ~p can be approx-

imated by

~p′ = ~p+ d · ~n = ~p+
Φ(~p)

‖∇Φ(~p)‖ · ∇Φ(~p)

‖∇Φ(~p)‖ . (18)

d denotes the distance to the closest surface point and ~n
is the normal vector. As applied, both expressions can

be estimated from the surface level set function Φ [25].

Fig. 11 shows the tangential disk for an active grid point.

Whenever a particle hits the disk, it contributes to the

flux of the corresponding grid point according to (15).

As shown it might be necessary to continue the trajectory

calculation after finding the intersection with the surface

to ensure a proper calculation of the fluxes. In our simu-

lations the particle rays are extended for 3 grid spacings

from the intersection point. Then, in case of a neutral

particle, for which diffusive re-emission is assumed, the

trajectory is continued from the memorized intersection

point. The direction is randomized in accordance with

diffusive re-emission. The surface normal is obtained

from the tri-linear interpolated level set function in the

corresponding grid cell.

Since for all active grid points ~p, |Φ(~p)| ≤ 1
2 and for

the gradient ‖∇Φ(~p)‖ ≥ 1 holds except for some special

cases, the distance to the surface is always within a half

grid spacing |d| ≤ 1
2 . Thus, if the radius is chosen in
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Figure 11: The tangential disk for an active grid point

~p. All particles hitting the disk contribute to the local

flux of the grid point. Due to the curvature of the surface

it can be necessary to continue the trajectory calculation

for a couple of grid spacings (dashed) to calculate the

flux correctly. However, re-emission takes place at the

surface intersection point.

such a manner that

ρ ≤
√

1 −
(

1
2

)2 ≈ 0.866, (19)

the disk is almost always within the 8 grid cells which

are adjacent to the corresponding active grid point. In

very rare cases the distance d has to be reduced to fit the

disk into these cells. Hence, the same data structure can

be used as for the tri-linear interpolation, which requires

for each surface cell links to all its corners in order to

access the corresponding level set values. Therefore, it is

sufficient within a grid cell to check its 8 corners, if they

are active and if their corresponding tangential disks are

hit by the particle.

The choice of the disk size is a compromise between sta-

tistical and spatial accuracy. If the disk size is too large,

the calculated fluxes are spatially averaged. In case of

disk radii much larger than the grid spacing the spatial

resolution of the flux, and consequently that of the sur-

face velocity, might be not sufficient for an accurate time

evolution of the surface. Larger disks also intensify the

previously mentioned problem at surface regions with

larger curvature, resulting in additional errors. Further-

more, if (19) is not satisfied, the disks of much more grid

points have to be checked for intersections, which slows

down the ray tracing algorithm and also requires addi-

tional data structures. Otherwise, if the disk size is too

small, only a few particle rays hit the disk leading to a

poor statistical accuracy of the fluxes. The statistical er-

rors are inversely proportional to the chosen disk radius.

A good choice is a value close to the upper limit in (19).

We compared simulations with ρ = 0.4 and ρ = 0.8,

where 4 times more particles are used for the first case to

obtain the same statistical accuracy. However, we could

Figure 12: The simulation algorithm.

not observe an improvement of the simulation result for

the smaller radius. Consequently, it does not make sense

to further decrease the radius. In our simulations ρ = 0.8
is used which seems to be a good choice.

2.5 Simulation

Assuming that small changes in geometry have only a

small impact on the local fluxes, which is also known as

pseudo-steady state assumption [16], the flux can be con-

sidered constant during the whole time step. Therefore a

simulator can simply pass the surface velocities obtained

from the calculated fluxes to the profile evolution algo-

rithm.

2.5.1 Algorithm

An overview of the whole algorithm is shown in Fig. 12.

After reading the initial geometry a distance transforma-

tion initializes the level set functions. Then a loop over

the flux calculation and the profile evolution modules is

started, until the final time is reached.
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Figure 13: The speedup of ray tracing versus the number

of used CPUs.

Within the flux calculation part the tangential disks are

set up first. Then all cells are determined which contain

parts of the surface or parts of the tangential disks. Links

to their corner grid points are stored, since they are nec-

essary for the tri-linear interpolation and for the ray-disk

intersection tests. Subsequently, the simulation domain

is subdivided into boxes in such a manner that all surface

cells represent individual boxes. This additional data

structure speeds up the ray tracer which calculates the

particle fluxes for all active grid points. Within the pro-

file evolution module the surface velocities are computed

from the fluxes. Then the maximum possible time step

according to the CFL-condition is determined and used

for integrating the level set equation (7) over time. Af-

terwards the interface level sets Φ1 and Φ2 are adjusted

accordingly (10).

After the final time is reached, the marching cubes algo-

rithm is applied to extract explicit representations of the

surface and the interface level sets, which are used for

visualization.

2.5.2 Parallelization

For good statistical accuracy a huge number of particles

has to be simulated each time step. Despite the appli-

cation of fast algorithms, the simulator spends most of

the time with ray tracing. To resolve this bottle neck

we use parallelization. Since individual trajectories are

independent from each other due to ballistic transport,

their calculation can be simply distributed among mul-

tiple cores. Especially on shared memory architectures,

which are getting more and more popular due to the in-

creasing number of processor cores, the parallelization

is straightforward using OpenMP [40]. To get for all

threads independent streams of random numbers, which

are required for ray tracing, we used the Scalable Paral-

lel Random Number Generators Library (SPRNG) [41].

The ray tracing speedup shows a very good scaling with

the number of applied CPUs (Fig. 13).

2.6 Results and Discussion

For all in the following presented simulations we use the

same parameters, as described in Section Section 2.2 for

the passivation and the etching cycle. For all calculations

reflective boundary conditions are used for both lateral

directions. If not mentioned differently, the grid spacing

is 25nm. The radii of the tangential disks are set to 0.8
grid spacings.

2.6.1 Process Time Variations

The effect of different passivation and etching cycle du-

rations is studied on a structure existing of a substrate

and a 1µm thick mask, which has a cylindrical hole

with diameter 2.5µm. Despite the rotational symme-

try this problem can not be straightforwardly reduced

to two dimensions. The introduction of cylindrical co-

ordinates leads to non-linear particle trajectories, which

makes the determination of the visibilities in the particle

transport equation (3) much more difficult. For convex

holes, where all points are visible from each other, the

solution of the transport equation using cylindrical coor-

dinates was demonstrated in [19]. However, due to the

rippled, non-convex side walls of the hole, which evolve

during the Bosch process, this method can not be ap-

plied.

In three dimensions the simulation domain can be re-

duced to a quarter due to the reflective boundary con-

ditions and the twofold reflection symmetry of the hole.

However, to proof the symmetry of the solution and to

avoid reflections to generate our final visualizations the

process is simulated on half of the domain, which was

discretized using a grid with lateral extensions 140× 70.

100 particles for each involved species are launched per

grid unit area each time step from the open boundary

(n = 100). Hence, in total 1.96 million particle trajecto-

ries are calculated.

The final profiles after 20 cycles with different process

times for deposition (5s and 8s) and etching (11s and

13s) are given in Fig. 14. The results show the influence

of the process time on the depths of the holes, tilt angles

of the side walls, and the resulting polymer layers. Since

also mask etching is incorporated, its final thickness can

also be studied. Such simulations can help to find the

optimal process parameters.

2.6.2 Lag Effect

Next the influence of the hole diameter on the final pro-

file is investigated. A Bosch process with 6s passivation

followed by 12s etching cycles is applied on a 1µm thick
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5s deposition / 13s etching 5s deposition / 11s etching 8s deposition / 13s etching 8s deposition / 11s etching

Figure 14: The final profiles after 20 cycles for different combinations of deposition and etching process times. The

zero level sets of the functions Φ1 (light gray), Φ2 (dark gray), and Φ (black) are visualized. Lengths are given in

µm. The grid spacing is 25nm, which corresponds to a grid with lateral extensions 140 × 70.

Figure 15: Deep reactive ion etching of holes with varying diameters (2.5µm, 2µm, 1.5µm, 1µm, and 0.5µm). The

different depths are a result of the lag effect. The structure is resolved on a grid with lateral extensions 500 × 140.
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n = 1 n = 10 n = 100 n = 1000

Figure 17: The final profiles for different n. Apart from the roughness of the surface the results are very similar,

although n and hence the computation time for ray tracing varies over 3 orders of magnitude.
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Figure 16: The characteristic dependence of the neutral

and ion fluxes at the bottom center on the aspect ratio.

perforated mask with cylindrical holes of varying diam-

eters (2.5µm, 2µm, 1.5µm, 1µm, and 0.5µm).

The simulation domain is resolved on a grid with exten-

sions 500× 140 proving the practicability of the applied

techniques on larger geometries. Despite this large sim-

ulation domain the total memory consumption does not

exceed 300MB during the whole simulation thanks to the

applied adaptive memory saving data structures.

For each of both species 100 particle trajectories are cal-

culated per grid unit area (n = 100), which gives 12.5
millions in total for each time step. Using 8 cores of

AMD Opteron 2222 processors (3GHz) the total compu-

tation time is about 2 days. 6480 time steps are neces-

sary to simulate all 20 cycles of the Bosch process. The

sequential part of the algorithm takes 3.4s and the par-

allelized ray tracing takes 24s in average. The runtimes

increase continuously during the whole simulation due to

the increasing depths of the holes and the increasing sur-

face area. However, the runtime of these simulation can

be reduced drastically by lowering the accuracy, which

is described in the next section.

Fig. 15 shows the final profile after 20 cycles. The dif-

ferent etching depths due to the lag effect can be clearly

seen. With increasing aspect ratio the effective etching

rate decreases.

To analyze the reason of the lag effect in more detail, the

ion and neutral fluxes are calculated at the bottom center

of cylindrical holes for various aspect ratios x = d/2r.

Here d denotes the depth and r the radius of the hole.

The ion fluxes obtained by ray tracing are in very good

agreement with those calculated analytically (Fig. 16).

The analytical expression

Fi = F src
i

(

1 −
(

2x√
1 + 4x2

)κ+1
)

(20)

can be derived from (2) by integration over the open solid

angle. For the calculation of the neutral flux the sticking

coefficient is set to 0.1, which corresponds to the sticking

probability of neutrals on the passivation layer as used in

our model. The results show that the neutral flux is much

more affected by the aspect ratio than the directional ion

flux (σ = 2◦). With increasing depth the hole surface

area increases, leading to a smaller fraction of particles,

which remain sticking at the bottom and not at the side-

walls.

According to our Bosch process model (5) and Table 4

the neutral flux is the main contribution to the deposition

rate of the passivation layer. Hence, with increasing as-

pect ratio the thickness of the deposited passivation layer

decreases due to the smaller neutral fluxes. However,

the ion flux is not alike reduced. As consequence, the
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passivation layer is faster etched through. The ion flux

countervails the lag effect, because the substrate is at-

tacked earlier in the etching cycle for larger aspect ra-

tios. However, this head start is more than compensated

by the larger substrate etch rate for smaller aspect ratios

due to the larger neutral fluxes.

2.6.3 Accuracy vs. Runtime

Inaccuracies of the final profiles are mainly caused by

statistical and spatial discretization errors. Both can be

reduced at the expense of the runtime.

Statistical errors can be reduced by simulating more par-

ticles. Principally, the statistical accuracy of the final

profiles strongly depends on the total number of par-

ticles, which are calculated during the whole simula-

tion. Therefore, larger time steps also require the sim-

ulation of more particles each time step to obtain final

profiles of similar quality. Time steps can only be in-

creased by choosing a weaker CFL-criterion, hence al-

lowing larger advancements of the surface, at the ex-

pense of the time resolution. However, if the total num-

ber of simulated particles is kept constant, the runtime

is only marginally reduced, because for good accuracies

the simulator spends most of the time with ray tracing

anyway. As trade-off we limit the maximum advance-

ment of the surface by 0.1 grid spacings, as already men-

tioned earlier.

One way to improve the total runtime considerably apart

from using more and faster CPUs is to simulate less par-

ticles at the expense of the statistical accuracy. The in-

fluence of the number of particles n, which are launched

per unit area from the top of the simulation domain, on

accuracy and runtime is studied on the basis of a 6s/12s

Bosch process simulation. Fig. 17 shows the final pro-

files for n = 1, n = 10, n = 100, and n = 1000 af-

ter 20 cycles. Interestingly, even for the least accurate

case quite good results are obtained. Although the final

surface is very rough the qualitative characteristics are

maintained. The etched hole is only 3.8% deeper than

for n = 1000.

From measurements of the total runtime T for different

n and different number of CPUs we obtain the relation

T ≈ Nsteps · (n/p · 0.31s + 0.52s) . (21)

Here p denotes the speedup due to parallelization as

given in Fig. 13. Fig. 18 shows plots of T and the

number of time steps Nsteps, which are necessary for the

whole simulation. The times are referred to 4.8h, which

is the runtime for n = 1 on a single CPU. For small

n the number of time steps increases due to the poorer

statistics. The expected maximum surface velocity of all
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Figure 18: The relative runtimes for different accuracies

n and different numbers of used CPUs. In addition the

number of required time steps is also given (dashed).

grid points is larger for smaller n due to the larger varia-

tion of the velocity distribution. Hence, according to the

CFL-criterion the maximum allowed time step must be

smaller, leading to more time steps. This on the other

hand side implies that the total number of simulated par-

ticles during the whole calculation increases, which im-

proves the accuracy again. Consequently, a minimum

exists for the total runtime as can be seen in Fig. 18.

Choosing a value for n smaller than that of the minimum

is not favorable.

Another way to speed up the calculation is the usage of

coarser spatial discretizations. In Fig. 19 the simulation

results are compared for n = 100 and grid spacings of

70nm and 14nm, which correspond to grids with lateral

extensions 50×25 and 250×125, respectively. The run-

time between both calculations differs by a factor more

than 53 = 125. This comes from the fact that the num-

ber of surface discretization elements N scales inversely

quadratically with the grid spacing. Furthermore, due

to the CFL-condition, the number of required time steps

scales inversely with the grid spacing.

Despite the large difference in computation time the re-

sults look again very similar. Due to the sub-time step

resolution of the material dependent etch rates within

our multi-level-set framework [28] the error introduced

by the coarse grid is kept small. The final depths differ

only by 2.1%. However, the coarse grid is not able to

represent the rippled sidewalls accurately.

2.7 Conclusion

We applied modern techniques like the sparse field level

set method and the HRLE data structure for the pro-

file evolution as well as ray tracing algorithms for the

flux calculation to three-dimensional simulations of the

Bosch process. The presented multi-level-set approach
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Figure 19: The final results of calculations on grids with

grid spacing 70nm (left) and 14nm (right).

allows an accurate, robust, and memory efficient han-

dling of different material regions, including thin layers.

Due to its simple parallelization and due to the increasing

number of processor cores, ray tracing becomes an alter-

native to common direct integration methods for particle

transport calculation.

Although the Monte Carlo method was only demon-

strated with a relative simple model, it is capable to

solve more complex ones, where for example energy

dependent sputter rates or specular reflexions of ions

are incorporated. In contrast to direct integration meth-

ods such effects can be straightforwardly implemented

without increasing the algorithmic complexity. A three-

dimensional simulation of a more complex reactive ion

etching model was already demonstrated in [42].

At the expense of accuracy the whole calculation can be

drastically accelerated by reducing the number of simu-

lated particles or the grid resolution. The results still re-

flect the qualitative characteristics. Therefore, the Monte

Carlo method is useful for the fast examination of pa-

rameter variations. After finding the optimized set of pa-

rameters a final simulation can be carried out to get an

appropriately accurate profile.

For future work it may be interesting to incorporate mask

charging effects [43], where the emerging electric field

leads to non-linear trajectories of ions, which compli-

cates ray tracing.
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3 The Effect of Copper Grain Size

Statistics on the Electromigration

Lifetime Distribution

We investigate the influence of the statistical distribution

of copper grain sizes on the electromigration time-to-

failure distribution. We have applied a continuum multi-

physics electromigration model which incorporates the

effects of grain boundaries for stress build-up. The peak

of tensile stress develops at the intersection of copper

grain boundaries with the capping layer. It is shown that

the electromigration lifetimes follow lognormal distribu-

tions. Moreover, the increase of the standard deviation

of the grain size distribution results in an increase of

the electromigration lifetimes standard deviation. The

results strongly imply that the lognormal distribution of

the grain sizes is a primary cause for the lognormal dis-

tribution of electromigration lifetimes.

3.1 Introduction

The continuous shrinking of the dimensions of on-chip

interconnects and the introduction of advanced backend-

of-line (BEoL) manufacturing process steps increases

the complexity of physical phenomena behind electromi-

gration failure. The total wiring length amounts to kilo-

meters arranged in several levels of metallization with

millions of interlevel connections. The tendency of mod-

ern technologies to increase the interconnect length and,

at the same time, to reduce the cross section, makes

the interconnect structures more and more susceptible to

electromigration. Currently, integrated circuits are often

designed using simple and conservative design rules to

ensure that the resulting circuits meet reliability goals.

However, this precaution leads to reduced performance

for a given circuit and metallization technology.

Electromigration data have been described by lognormal

distributions [44]. Although the origin of the lognor-

mal distribution of electromigration lifetimes is not en-

tirely clear, it has been argued that the diffusion process

in connection with the effect of microstructure on elec-

tromigration provides the basis for the lognormal distri-

bution [45]. In copper dual-damascene interconnects

the main diffusivity path is along the copper/capping

layer interface. This interfacial diffusion is affected by

the orientation of the grains. As the copper grain sizes

seem to follow lognormal distributions in typical dual-

damascene process technology [45] and due to the influ-

ence of microstructure on the electromigration process,

the lognormal distribution has been used as the underly-

ing statistics for electromigration lifetimes. However, it

has been discussed whether this choice is the most appro-

priate [46, 47]. The understanding of the electromigra-

tion lifetime distribution is crucial for the extrapolation

of the times to failure obtained empirically from acceler-

ated tests to real operating conditions, as performed by a

modified form of the Black equation [44].

Also, it has been shown that the microstructure plays

a key role regarding the failure mechanisms in copper

dual-damascene interconnects [48]. It affects electromi-

gration in different ways. Grain boundaries are natural

locations of atomic flux divergence, they act as fast dif-

fusivity paths for vacancy diffusion [49], and they act as

sites of annihilation and production of vacancies [50].

The main challenge in electromigration modeling is the

diversity of physical phenomena which have to be taken

into account for an adequate description of the problem.

Electromigration transport is also accompanied by ma-

terial transport driven by the gradients of material con-

centration, mechanical stress, and temperature. Further-

more, taking into account the effects of interfaces and

grain boundaries as fast diffusivity paths imposes new

challenges for electromigration modeling.

In this work we investigate the origin of the statistical

distribution of electromigration times to failure as a func-

tion of the distribution of copper grain sizes. The effect

of lognormal grain size distributions on the distribution

of electromigration lifetimes of fully three-dimensional

copper dual damascene interconnect structures is stud-

ied based on numerical simulations. We have applied a

continuum multi-physics electromigration model which

incorporates the effects of grain boundaries for stress

build-up. Moreover, we have developed a tool to include

the microstructure into the simulations based on a given

statistical distribution of grains sizes.

3.2 Electromigration Modeling

Several driving forces are responsible for the vacancy

transport in a conductor line under electromigration. The

combination of these driving forces leads to the total va-

cancy flux given by

~Jv = −Dv

(

∇Cv+
|Z∗e|
kBT

Cv∇ϕ+
fΩ

kBT
Cv∇σ

)

, (22)

whereDv is the vacancy diffusion coefficient of the dom-

inant transport path, Cv is the vacancy concentration,

Z∗e is the effective charge, f is the vacancy relaxation

ratio, Ω is the atomic volume, σ is the hydrostatic stress,

kB is Boltzmann’s constant, and T is the temperature.

Vacancies accumulate or vanish in sites of flux diver-

gence, and this dynamics is described by the continuity

equation
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∂Cv
∂t

= −∇ · ~Jv +G(Cv), (23)

where G(Cv) is the source function which models va-

cancy generation and annihilation processes [51]. The

source term plays a major role for the mechanical stress

buildup and is taken into account only at interfaces and

grain boundaries. It comprises three processes, namely,

the exchange of point defects between adjacent grains,

the exchange of point defects between grains and grain

boundaries, and the formation/annihilation of point de-

fects at grain boundaries.

In our model grain boundaries are treated as separate re-

gions which can trap or release vacancies [52], as shown

in Fig. 20. We denote the vacancy concentration from

both sides of the grain boundary as C1
v and C2

v , re-

spectively, and the concentration of immobile vacancies

which are trapped inside the grain boundary as Cimv .

The trapping rate of vacancies at the grain boundary,

which corresponds to the generation/recombination rate,

is controlled by the atomic fluxes J1
v and J2

v , yield-

ing [52]

∂Cimv
∂t

= G =
1

τ

[

Ceqv − Cimv

(

1 +
2ωR

ωT (C1
v + C2

v )

)]

,

(24)

where ωT is the trapping rate of vacancies from both

neighboring grains, ωR is the release rate, and Ceqv is

the equilibrium vacancy concentration inside the grain

boundary, given by

Ceqv = C0
v exp

(σnnΩ

kB T

)

, (25)

whereC0
v is the equilibrium vacancy concentration in the

absence of stress and σnn is the stress component normal

to the grain boundary. In (24) τ represents the vacancy

relaxation time which characterizes the efficiency of the

grain boundary as vacancy sink/source [52]

1

τ
=
ωT (C1

v + C2
v )

δ
. (26)

δ

Figure 20: Grain boundary model.

Sarychev et al. [53] introduced the contribution of va-

cancy migration and generation/annihilation processes

for stress build-up in a three-dimensional model of stress

evolution during electromigration. Considering the grain

boundary model we have proposed that the strain growth

from both sides of the grain boundary is proportional to

the growth rate of immobile vacancies

∂εkk
∂t

= Ω
[

(1 − f)∇ · ~Jv + f
∂Cimv
∂t

]

, (27)

where ǫkk is the trace of the strain vector.

Equation (27) shows that vacancies trapped at the grain

boundaries are responsible for build-up of tensile stress.

When the grain boundaries are able to capture large

amounts of vacancies, a high tensile stress develops.

The system of equations formed by (22)–(27) is solved

until a stress threshold (σth) for void nucleation is

reached at an intersection of grain boundaries with the

capping layer. These intersections are considered sites

of weak adhesion and, consequently, most susceptible to

void nucleation [54].

Gleixner et al. [55] showed that the stress threshold is

given by

σth =
2γs sinθc
Rp

, (28)

where Rp is the radius of the adhesion-free patch, θc is

the contact angle between the void and the surface, and

γs is the surface energy.

3.3 Simulation Approach

Equations (22)–(27) are solved using the finite element

method (FEM) until the stress threshold for void nucle-

ation is reached at some weak adhesion point. We con-

sider the intersection of grain boundaries with the cop-

per/capping layer interface as natural places of weak ad-

hesion [54]. As grain boundaries and interfaces act as

fast diffusivity paths, the diffusion coefficient in (22)

has to be adapted for these regions. We have used

Dgb
v = 104Dbulk

v for grain boundaries and DCu−cap
v =

105Dbulk
v for the copper/capping layer interface [56]. It

should be pointed out that all model parameters are equal

for all grains and all simulated structures. Grain bound-

aries, and generally, material interfaces of the geome-

try have to be supplied with an appropriately fine FEM

mesh. This is necessary in order to provide sufficient res-

olution for the local dynamics described by the proposed

model.

In order to include the grain distribution into the numeri-

cal simulations, a microstructure generator tool has been
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Figure 21: Schematic simulation procedure.

developed. Given a specific interconnect structure and

providing the tool with a median grain size and corre-

sponding standard deviation, it generates a lognormal

distribution of grain sizes. Then, following this distri-

bution, the interconnect line is cut along its length by the

planes that form the grain boundaries. Furthermore, the

angles between the grain boundaries’ planes and the line

surface follow a normal distribution with median value

of 90 ◦C. The corresponding standard deviation can also

be specified.

In Fig. 21 we present the schema of the simulation pro-

cedure. Three standard deviations for the distribution

of grain sizes are considered, namely 0.1, 0.3 and 0.6.

For each of them 20 dual-damascene interconnect struc-

tures were created with the microstructure generator. As

the interconnect line is assumed to present a bamboo-

like structure, the median grain size is equal to the line

width, 0.10 µm. The barrier, capping and interlayer di-

electric layers are Ta, SiN, and SiO2, respectively. The

corresponding interconnect structure is shown in Fig. 22.

The applied current density is 1.5 MA/cm2, and the tem-

perature is 300 ◦C. We have used a stress threshold value

as failure criterion, which means that the electromigra-

tion time to failure represents the time for a void nucle-

ation to occur. Thus, the time to failure is determined by

the time for the stress to reach a given threshold value at

some intersection between a grain boundary and the SiN

layer.

Figure 22: Dual-damscene interconnect structure.

Figure 23: Hydrostatic stress distribution in a simulated

interconnect (in MPa). The peak value is located at grain

boundaries, where vacancies are trapped.

3.4 Discussion

Fig. 24 shows the hydrostatic tensile stress development

for the structures with grain size standard deviation of

0.3. The stress peak value follows the peak of trapped

vacancy concentration and is located at the intersection

of grain boundaries with the capping layer, as shown by

Fig. 23.

Collecting the times to failure from Fig. 24 and calculat-

ing the cumulative failure percentages resulted in the dis-

tributions of electromigration lifetimes shown in Fig. 25.

The lifetimes are fitted by lognormal distributions. The

obtained standard deviations are 0.0065, 0.0080, and

0.0085 for the grain size distributions with standard de-

viations of 0.1, 0.3, and 0.6, respectively. The standard

deviation for a lognormal distribution is given by

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(ln TTFi − ln MTF )
2
. (29)

where TTFi is the time to failure of the i-th test struc-

ture, N is the number of test structures, and MTF is the

mean time to failure of the lognormal distribution
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Figure 24: Peak of hydrostatic stress development for the

set with grain size standard deviation of 0.3.
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ln MTF =
1

N

N
∑

i=1

ln TTFi, (30)

Figure 25: Electromigration lifetime distributions.
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Figure 26: Electromigration lifetime standard deviation

for different standard deviations of grain size.

The standard deviations for the electromigration life-

times are very small compared to those frequently ob-

served in experiments [44]. Several factors can explain

this behavior. First, for convenience, we have used a

small value of stress threshold as failure criterion to de-

termine the interconnect lifetime. As can be seen from

Fig. 24, the variation of the lifetimes can be more pro-

nounced for higher stress thresholds. Second, the sim-

ulation parameters and material properties are indepen-

dent of the grain distribution. This means that mechan-

ical properties and diffusivities, for example, are equal

and constant for all grains in an interconnect line, for all

simulated structures. This is clearly not the case in real

experiments, as it is well known that material properties

vary according to the grain orientation. It is expected that

atomic diffusion along the copper/capping layer interface

changes from grain to grain, inducing a flux divergence

at the corresponding grain boundary. Moreover, the dif-

fusivities are different from line to line as the grain dis-

tribution varies. Therefore, given the simplifications we

have made, the small standard deviations obtained from

our simulations should be expected.

Nevertheless, our results show that the grain distribu-

tion still affects the electromigration lifetime distribu-

tion.When the grain size distribution exhibits a smaller

standard deviation the corresponding interconnect lines

have a more uniform distribution of the grains. As a

consequence, the stress build-up has smaller variations

yielding a smaller standard deviation of the electromi-

gration lifetimes. On the other hand, increasing the grain

size standard deviation, the lines exhibit significant dif-

ferences in the grain structures. This leads to increased

variations for the stress development. Thus, a bigger

standard deviation of electromigration lifetimes is ex-

pected. This behavior is presented in Fig. 26. It shows

that the increase of the standard deviation of the distri-

bution of grains sizes increases the standard deviation of

the electromigration lifetime distribution.

3.5 Conclusion

We analyzed the electromigration failure development

in typical copper dual-damascene interconnect structures

based on numerical simulations. A continuum electromi-

gration model which describes mechanical stress build-

up in connection with the microstructure effect was ap-

plied. We observed that the peak of tensile stress is lo-

cated at the intersection of grain boundaries with the cap-

ping layer, following the peak of trapped vacancy con-

centration. This shows that the microstructure has a deci-

sive impact on the determination of void nucleation sites.

The simulation results indicate that the lognormal distri-

bution of the copper grain sizes is a primary cause for

the lognormal distributions of the electromigration life-

times. Moreover, an increase of the standard deviation

of the grain size distribution leads to an increase of the

electromigration time-to-failure distribution.



4 Possible Correlation Between Flicker Noise and Bias Temperature Stress 22

4 Possible Correlation Between

Flicker Noise and Bias Tempera-

ture Stress

A link between Bias Temperature Stress (BTS, NBTI)

and flicker noise (1/f -noise) is explored by comparing

flicker noise data to charge pumping data. Large-area

devices are shown to initially have very low, bias inde-

pendent normalized flicker noise. After BTS the normal-

ized noise increases considerably and becomes gate bias

dependent. Small-area devices are shown to exhibit bias

dependent burst noise (RTS) in addition to flicker noise,

regardless of BTS.

4.1 Introduction

When subjected to strong-inversion bias and high tem-

peratures, the drain current of MOSFETs degrades, a

phenomenon known as Bias Temperature stress (BTS).

The drain current degradation is often described as an

increase of the threshold voltage, but other parame-

ters, foremost the carrier mobility and the sub-threshold

slope, degrade as well. The exact physical mechanism

responsible for BTS are still controversial, but there is

ample evidence that both interface states, possibly cre-

ated by breaking the bonds of passivating hydrogen [57],

and oxide traps play a role [58].

Since flicker noise has been used as a diagnostic tool

in various places before [59, 60], we conducted a se-

ries of flicker noise measurements on MOSFETs that

previously experienced BTS degradation. To assess the

amount of degradation, the increase in interface state

density was monitored using charge pumping measure-

ments [61].

4.2 Methodology

The devices measured were pMOSFETs with W/L =
50 [µm]/10 [µm] and tox = 30 [nm]. We studied three

wafers that differed only in the back-end-of-line process-

ing, described in [62]. One process variant resulted in

a high initial interface trap density Nit0, but showed a

comparatively low increase ∆Nit after BTS; this wafer

is referred to as wafer A. Wafer B had both medium ini-

tial interface traps and medium increase of traps after

BTS. The third wafer (C) exhibited a high ∆Nit, re-

sulting in the highest post-stress interface state density,

despite the fact that this wafer’s initial interface state

density was lowest. On every wafer at least two neigh-

bouring devices were measured using constant-baselevel

charge pumping at 2 [MHz] [63]. Next, on every wafer

one device was stressed for e3[s] at Vgs = −17.5 [V] and

175 [◦C], and charge pumping was done again immedi-

ately upon release of stress.

Then, noise measurements were performed in the linear

region of the MOSFETs (|Vds| < 0.3[V]) at gate volt-

ages Vgs = −1.54 [V],−3.07 [V],−4.59 [V]. Fig. 27

depicts the spectra for a fresh and a stressed device at

weak inversion. Although the bias point is approxi-

mately the same, the noise power density is tenfold for

the stressed device. Prior to the noise measurements, the

Id(Vgs)-characteristic of a fresh device was measured,

and the SPICE level-1 model was fitted yielding the pa-

rameters Vt = −0.95 [V], β = 1.23e − 4 [A/V2], and

θ = 0.128 [V−1].

In addition to the large-area transistors, small-area tran-

sistors with W/L = 2.4 [µm]/2.6[µm] were examined.

Fig. 28 shows that with these devices the noise is not con-

veniently described by a pure 1/f -dependence. Because

of the smaller number of free carriers the Lorentzians

of distinct traps may be visible, and their superposi-

tion yields 1/fγ-noise with γ appreciably deviating from

unity, as predicted by the criterionN < 1/(4πα) in [64].

Using the empirical relation [65]

SVds

V 2
ds

∣

∣

∣

∣

Id=const

=
SId

I2
d

∣

∣

∣

∣

Vds=const

=
Srds

r2ds
=

α

Nf
,

(31)

an α was calculated for every device at every bias by tak-

ing f0SVds
(f0)/V

2
ds at f0 = 10 [Hz]. Care was taken to

verify a 1/f -dependence of SVds
around f0, which was

the case for all large-area transistors. Assuming a homo-

geneous channel, the number of carriers in the channel

N was obtained via N = L2/(µqrds), where rds is the

(measured) channel resistance at Vds ≈ 0, q the elemen-

tary charge, and the carrier mobility µ was calculated

from the SPICE model parameter β.

4.3 Results

The fresh devices showed very low α values around

10−6 that were only weakly dependent on the gate volt-

age. The values were quite similar for all three wafers.

The stressed devices exhibited considerably higher noise

power, corresponding to higher α values, that moreover

turned out to be bias dependent: For weak inversion, α of

the stressed devices was up to ten times the value of the

fresh ones, where at strong inversion fresh and stressed

devices had comparable α values, cf. Fig. 29.

Since the conductivity is proportional to the product of

carrier number N and carrier mobility µ, assuming that

both N and µ fluctuate independently allows to split
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Figure 27: Noise spectrum of a large-area MOSFET (wafer C) biased at Vgs = −1.54 [V] before and after BTS and

respective least-squares fits. The crosses show the background noise (Id = 0).

α = αµ + αN . In a first order approximation, mo-

bility reduction and parasitic resistances are negligible,

hence αµ is independent of gate bias. It seems likely

that the unstressed (fresh) devices just show this kind of

flicker noise, i.e. αf = αµ, which is a bulk noise effect.

Continuing with this interpretation, for stressed devices

αN = α−αµ = αs−αf = ∆α is the flicker noise com-

ponent due to carrier number fluctuations. According to

the McWhorter theory, αN ∝ 1/V ∗
g , as nicely confirmed

by Fig. 29.

4.4 Conclusion

The low-frequency noise behaviour of large-area pMOS-

FETs subjected to bias temperature stress was investi-

gated. Unstressed devices showed very low and gate bias

independent α values around origin for the flicker noise

in these devices. After BTS, the devices showed con-

siderably increased, gate bias dependent α values, indi-

cating that in competition with the bulk mobility noise,

a surface-provoked noise component of the McWhorter

type emerges.
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Figure 28: Noise spectra of small-area MOSFETs (unstressed) for different biases. The spectra clearly deviate from

the 1/f -form: One can partly be fitted with a much higher slope, thus more resembling a 1/f2-spectrum. The other

one can be fitted by a superposition of a ‘true’ 1/f -component and a Lorentzian. This situation is characteristic for

the presence of a single dominant trap. These traps were also visible in the time domain.
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5 Modeling of Low Concentrated

Buffer DNA Detection with Sus-

pend Gate Field-Effect Transis-

tors (SGFET)

The experimental data of a suspend gate field-effect tran-

sistor (SGFET) have been analyzed with three different

models. A SGFET is a MOSFET with an elevated gate

and an empty space below it. The exposed gate-oxide

layer is biofunctionalized with single stranded DNA,

which is able to hybridize with a complementary strand.

Due to the intrinsic charge of the phosphate groups (mi-

nus one elementary charge per group) of the DNA, large

shifts in the transfer characteristics are induced. Thus

label-free, time-resolved, and in-situ detection of DNA

is possible. It can be shown that for buffer concentra-

tions below mmol/l the Poisson-Boltzmann description

it is not valid anymore. Because of the low number of

counter ions at small buffer concentrations, the screen-

ing of the oligo-deoxynucleotides/DNA is more appro-

priately described with the Debye-Hückel model. Ad-

ditionally we propose an extended Poisson-Boltzmann

model which takes the closest possible ion distance to the

oxide surface into account, and we compare the analyt-

ical soultion of this model with the Poisson-Boltzmann

and the Debye-Hückel model.

5.1 Introduction

The need for fast, cheap, reliable, and in-situ detection of

DNA, antibody, protein and tumor markers, also known

as “point of care” applications, requires new technologi-

cal approaches. Today the detection of DNA needs sev-

eral complex and time consuming steps, like amplifica-

tion of the DNA by polymerase chain reaction (PCR) or

reverse transcription (RT), followed by a procedure to

add certain molecules which are able to fluroescent or

radiate (called labeling), and at last an optical read out of

the experimental data with a microarray reader [66, 67].

One promissing approach is to exchange the optical de-

tection mechanism by an electrically working principle

[68–74]. The field-effect based approach has several ad-

vantages over the optical method. The application of a

field-effect transistor eases the integration of amplifying

and analyzing circuits on the same chip, thus reducing

the costs for the read-out equipment. Additionally, the

use of semiconductor process technology enables mass

production and a corresponding huge decrease in price

per device. In this work the experimental data of a

biosensor for detecting DNA are studied via three differ-

ent models. The biosensor is a suspend gate field-effect

transistor (SGFET). This device is a MOSFET with a

Gate

Analyte

p

nn Oxide

Drain
Source

Sxxxy
Figure 30: Scheme of suspend gate field-effect transistor.

raised gate and an empty space beneath it (see Fig. 30).

Within this empty gap the gate-oxide layer is chemically

modified with single stranded DNA which is able to hy-

bridize with a complementary strand. Due to the intrinsic

charge of the phosphate groups (minus one elementary

charge per group) of the DNA large shifts in the trans-

fer characteristics are induced. Thus label-free, time-

resolved, and in situ detection of DNA is possible. Inter-

estingly the commonly used Poisson-Boltzmann models

are not able to reproduce the experimental data, while the

Debye-Hückel model [75] works, although its validity in

the used regime is questionable.

Finally we introduce an extended Poisson-Boltzmann

formulation which takes the closest possible approach

between ions into account. In an aqueous solution the

salt ions are covered with water molecules. Due to the

thereby increased effective ion radius there is a minimum

distance between the ions and the oxide surface, called

outer Helmholtz plane (OHP). Within this OHP there is

no screening.

5.2 Experimental Data

In the work of Harnois [76] 60 oligo-deoxynucleotides

(ODN), also known as single stranded DNA, were at-

tached onto a glutaraldehyd coated nitride layer. Then

one test run with mismatched ODNs and one test run

with matching ODNs were carried out. The runs with

the mismatching DNA show no relevant change in the

output curves, while for the matching single stranded

DNA a big shift in the threshold voltage becomes visi-

ble. The results show two interesting properties. Firstly,

a threshold voltage shift of about 800mV between the

probe curve and the target transfer curve and, secondly,

the probe transfer curve lies in the middle between target

and reference. The average threshold voltage shift is in a

range from several mV to 100mV [77], depending on the

buffer concentration, the 800mV shift is quite big and the

Poisson-Boltzmannregime shows a big shift between ref-
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erence and probe/target (∼ 100mV), but a much smaller

shift between probe and target (10 − 20mV) [67].

5.3 Simulation

First a Poisson-Boltzmannmodel was utilized which

treats the buffer as continuous ion concentrations

weighted with Boltzmann type terms (e
− qV

kBT ) (Fig. 32),

combined with a space charge density that corresponds

to 60 base pairs (probe) and 120 base pairs (target).

ǫ0∇ · (ǫAna∇ψ(x, y)) = −
∑

ξ∈S
ξ q c∞ξ e

−ξ q

kBT
(ψ(x,y)−ψµ)

+ ρSpace(x, y) (32)

kB denotes Boltzmann’s constant, T the temperature in

Kelvin, and ξ ∈ S, where S contains the valences of

the ions in the electrolyte. ǫ0 describes the permittivity

of vacuum, and q denotes the elementary charge. ψµ is

the chemical potential. c∞σ is the ion concentration in

equilibrium, while ǫAna ≈ 80 is the relative permittiv-

ity of water. The second model also uses the Poisson-

Boltzmann description but assumes a sheet charge den-

sity at the oxide-analyte interface (Fig. 33).

ǫ0∇ · (ǫAna∇ψ(x, y)) = −
∑

ξ∈S
ξ q c∞ξ e

−ξ q

kBT
(ψ(x,y)−ψµ)

+ σSheet(x) δ(y − y0) (33)

The third model uses the Debye-Hückel formulation

which can be derived by linearizing the Poisson-

Boltzmann model (Fig. 34).

ǫ0∇ · (ǫAna∇ψ(x, y)) =
2q2

kBT
(ψ(x, y) − ψµ)

∑

ξ∈S
ξ2c∞ξ

+ ρSace(x, y) (34)

5.4 Discussion

Fig. 32, Fig. 33, and Fig. 34 show the transfer char-

acteristics for the unprepared SGFET (reference), the

prepared but unbound (probe), and when the DNA has

bound to functionalized surface (target), respectively.

For better comparison between experimental data and

our simulation, the curves of the experiment are in dis-

crete grey tones included. As can be seen for Fig. 32 and

Fig. 33, even for the low salt concentration of 0.6 mmol,
the shift between the reference curve and the probe/target

is bigger than between the probe and target curves. This

behavior complies with the observations by [67] and is

attributed to the nonlinear screening of the used models.

Looking at Fig. 35 and Fig. 36 shows that doubling the

charge at the interface does not lead to a doubled poten-

tial shift. Nevertheless there is a bigger shift for the sheet

charge model due to the description of the DNA charge

as sheet with infinite small height. Therefore less screen-

ing compared to the space charge model that distributes

the same amount of charge over 20 nm takes place.

However, just by decreasing the salt concentration it is

impossible to fit the experimental data. Nevertheless the

Debye-Hückel model shows acceptable agreement with

the experimental data for the same parameters as in the

Poisson-Boltzmann description (Fig. 34). Here, dou-

bling the amount of charge leads to twice the potential

shift Fig. 37 because of the linear screening term in the

model (34).

In order to understand why the Poisson-Boltzmann

model fails and the Debye-Hückel model works, one hast

to look for the validity constraints of the used models.

For instance, assuming a volume of 10 · 10 · 20 nm3 for

a single 60 bases DNA strand and one mmol sodium-

chloride bulk concentration leads to an average concen-

tration of about one sodium/chlorine atom within this

given volume. So there will be no strong nonlinear

screening in this regime. The Poisson-Boltzmann model

treats the salt concentration as continuous quantity, so it

is overestimating the screening and therefore is not valid

for small salt concentrations.

The Debye-Hückel model can be derived by expanding

the exponential terms into a Taylor series and neglecting

all terms higher than second order [75]. According to

the laws of series expansion qΨ
kBT

≪ 1 and thus the po-

tential has to be small compared to the thermal energy.

By treating the ions as infinite small point charges, the

mean distance between the ions in the solution must be

big and therefore the bulk salt concentration low. How-

ever, even though only one of the constraints is fullfilled,

the Debye-Hückelmodel is able to fit the data.

Additionally we investigated a modified Poisson-

Boltzmann model. This modified model takes the av-

erage closest possible approach of two ions within the

liquid into account and is able to reproduce the Stern

layer, where no screening takes place [67]. For better

comparison to the other two models we study the one-

dimensional analytical solutions for the Debye-Hückel,

the Poisson-Boltzmann, and the extended Poisson-

Boltzmann model.
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Reformulating the Laplace term to

dϕ2

dx2
= −dE

dx
= E · dE

dϕ
(35)

and transforming the equations with

ϕ =
qψ

kBT
and (36)

1

λ2
=

2qc0
kBTǫ0ǫAna

, (37)

leads to the following differential equations:

E · dE
dϕ

=
1

λ2
sinh (ϕ) (38)

for the Poisson-Boltzmannmodel [78],

E · dE
dϕ

=
1

λ2
ϕ , (39)

for the Debye-Hückelmodel. Integrating these equations

twice gives the following solutions:

ϕ(x) = 2 ln

(

1 + e−x/λ tanh(ϕ0/4)

1 − e−x/λ tanh(ϕ0/4)

)

(40)

E(x) =
4

λ

e−x/λ tanh(ϕ0/4)

1 + e−x/λ tanh(ϕ0/4)
, (41)

for the Poisson-Boltzmannmodel and

ϕ(x) = ϕ0 e
−x/λ (42)

E(x) = ϕ0/λ e
−x/λ (43)

for the Debye-Hückel model. Our proposed extended

Poisson-Boltzmann model is formulated as

E · dE
dϕ

=
2

λ2

(a− (a− 1) cosh(ϕ/2)) sinh(ϕ/2)

((1 − a) + a cosh(ϕ/2))
3

(44)

or simplified,

E(ϕ) =
2

λ

sinh(ϕ/2)

1 − a+ a cosh(ϕ/2)
, (45)
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Figure 31: Analytic solution of different models at same

interface charge.

where a is the closest average distance between ions. For

the limit a → 0 the initial Poisson-Boltzmann formula-

tion is obtained. Fig. 31 shows the behavior of the ex-

tended Poisson-Boltzmann model. Close to the surface

the extended model shows no screening, also known as

the Stern layer [79]. The stern layer arises from the salt

ions which are covered in a shell of water molecules.

This water shell causes a minimum distance to the ox-

ide surface (OHP) and generates a region without screen-

ing. While when one gets outside the OHP strong non-

linear screening takes place (Gouy-Chapman diffusive

layer). Fig. 31 confirms that for a = 0 the potential of

the Poisson-Boltzmann model is recovered. Increasing a
leads to reduced screening and generates for a = 0.28 a

similar behavior like the Debye-Hückel model. For bet-

ter comparability the calculations were carried out in di-

mensionles units and with the same surface charge.

5.5 Conclusion

Decreasing the salt concentration does not improve the

result of the Poisson-Boltzmann model. The reason is

that due to nonlinear screening doubling the charge den-

sity does not lead to twice the potential shift (shown in

Fig. 35). The Debye-Hückel formulation produces the

best fit. Two conditions for this model must be met [75].

Firstly, the salt concentration has to be low and, sec-

ondly, the potential in the exponential terms has to be

small compared to kBT. Despite the fact that the po-

tential is not small enough to satisfy the linear model,

it is able to reproduce the experimental data. A possi-

ble reason is that the Poisson-Boltzmann model overes-

timates screening. Indeed, for small salt concentrations

the Poisson-Boltzmann model breaks down at high po-

tential values, when there are not enough ions to cause

screening. Therefore, the physical behavior is far more

complex and requires further investigation.
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Figure 32: Transfer characteristics of a SGFET for

Poisson-Boltzmannmodel and DNA charge modeled

via space charge density.
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Figure 33: Transfer characteristics of a SGFET for

Poisson-Boltzmannmodel and DNA charge modeled

via sheet charge density.
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Figure 34: Transfer characteristics of a SGFET for

Debye-Hückelmodel and DNA charge modeled via

space charge density.

Figure 35: Potential for the Poisson-Boltzmannmodel

with space charge, starting from the semiconductor

(left) and ending in the analyte (right). It can be seen

that doubling the charge does not lead to twice the po-

tential shift due to nonlinear screening.

Figure 36: Potential for the Poisson-Boltzmannmodel

with sheet charge, starting from the semiconductor

(left) and ending in the analyte (right). Here the shift

is a bit increased but far away from the values from

the measurement. However, also here doubling the

charge does not lead to twice the potential shift due to

nonlinear screening.

1.98e−05 1.99e−05 2.00e−05 2.01e−05 2.02e−05
y [m]

−1.5

−1

−0.5

0

0.5

p
o
te

n
ti

al
 [

V
]

semiconductor

SiO
2

Si
3
N

4
analyte

reference

probe

target

Figure 37: Potential for the Debye-Hückelmodel with

space charge, starting from the semiconductor (left)

and ending in the analyte (right). It can be seen that

doubling the charge leads to twice the potential shift

due to the weaker linear screening.
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