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Abstract-We present a two-dimensional model of ion implantation which allows for position dependent 
lateral moments. The lateral standard deviation and the lateral kurtosis as a function of depth have been 
calculated by 2-D Monte-Carlo simulations for boron, phosphorus, arsenic, and antimony in silicon for 
energies in the range of l&300 keV. The lateral moments as a function of depth and energy as well as 
the vertical moments as a function of energy have been fitted by simple formulae. We specify two types 
of distribution functions the parameters of which can be adjusted to given values of standard deviation 
and kurtosis. In this way the depth dependent lateral moments can be included into analytical distribution 
functions. 

1. INTRODUCTION 

For the purpose of describing ion implantation 
profiles, methods based on distribution functions 
together with spatial moments have now been used 
for more than 20 years. The principle of these 
methods is to assume a functional type for the 
distribution function and to calculate its free par- 
ameters from its spatial moments. These moments 
may be obtained either by experiment or by theory. 
For a long time only the first two moments, i.e. the 
mean projected range and the projected range strag- 
gling (the standard deviation), could be specified[l] 
and so the only reasonable distribution function was 
the Gaussian function. A first step of sophistication 
was carried out by Gibbons in 1973[2], who proposed 
to use joined half-Gaussian distributions to take into 
account moderate profile asymmetry. Although these 
oldest models are still frequently used for the sake of 
simplicity or for lack of higher moments[3-4], it is 
well established today that for a realistic description 
of 1-D profiles 4 moments must be taken into ac- 
count. For this purpose the Pearson IV distribution 
is commonly used[5-91 which was introduced by 
Hofker in 1975[10]. 

The first model including lateral spread was 
presented by Furukawa in 1972[11]. It is based on the 
statistical distribution function for one ion, i.e. the 
response to a punctiform beam. By a convolution of 
this distribution function he obtained the distribution 
under an infinitely steep and infinitely high mask 
edge. Later this model was extended to the case of 
arbitrarily shaped mask edges by Runge(l21 and fur- 
ther models were developed to allow for different 
stopping powers of mask and bulk material[l3-16,9]. 

In this paper we will give a sophisticated mode1 for 
the statistical distribution function of one ion. We 
denote it f (z, x), with z the vertical coordinate (per- 

pendicular to the surface) and x the lateral coordi- 
nate. z = x = 0 is the point of entrance of the ion. 
Furukawa and still Runge used a 2-D Gaussian 
function for f(z, x), which may be written: 

f (z, x) = gauss(z) gauss(x). (1) 

This approach has been refined by Ryssel [17] to: 

f(z, x) =&(z) gauss(x), (2) 

withf,,,(z) a proper 1-D distribution function. Using 
a Pearson IV function, today’s standard mode1 reads: 

f (z, x) = pears (z) gauss(x). (3) 

The major limitation of this description is that it 
ignores any correlation between the vertical (z) and 
the lateral (x) coordinate, or to say it in other words, 
that the lateral standard deviation is assumed to be 
independent of the depth. Furthermore, assuming a 
Gaussian distribution, no higher lateral moments are 
taken into account. Our Monte-Carlo simulations 
indicate that these assumptions are not correct. In 
Figures 1 and 2 the lateral standard deviation and the 
lateral kurtosis are shown, respectively, as a function 
of depth for the case of a 100 keV implantation of 
arsenic into silicon (dashed lines). As a reference the 
vertical distribution function (histogram) is also de- 
picted. 

The impact on the distribution by a vertical mask 
edge is shown in Figs 3 and 4. The standard model 
(Fig. 3) is compared with the results of our Monte- 
Carlo simulation (Fig. 4) of a 200 keV boron im- 
plantation into silicon. This example has heen chosen 
because boron has a very large lateral standard 
deviation. One can see that the classical distribution 
extends too far below the mask at the maximum 
concentration of the vertical profile and not far 
enough at regions closer to the surface. The reason 

445 



446 G. HOBLER et al. 

0.05 010 0.15 0.20 

Depth C pm 1 

Fig. I. Depth dependence of the lateral standard deviation 
for As in Si (100 keV). 
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Fig. 2. Depth dependence of the lateral kurtosis for As in 
Si (100 keV). 

for this is that the lateral standard deviation de- 
creases towards the bulk (see Fig. 8; this is in contrast 
to the arsenic implantation of Fig. 1). Figures 5 and 
6 show the results of our sophisticated analytical 
model and will be discussed in Section 4.3. 

The statistical distribution function for one ion 
may generally be written: 

f(Z, x) =Lcn(Z)fiat(X, z). (4) 

fiat@, z) is seen here as a function of x with par- 
ameters that depend on the lateral moments, which in 
turn are functions of the depth (z). In Section 4 we 
will specify f,,,(x, z) as a function of lateral standard 
deviation cr, and lateral kurtosis 8,. In Section 3 the 

functions a,(~, E) and /j,(z, E) will be given (E 
denoting the implantation energy) for the case of 
boron, phosphorus, arsenic, and antimony im- 
plantations into silicon in the range of 10-300 keV. 
These were obtained by fitting the results of our 
Monte-Carlo simulations. Also enclosed in Section 3 
are fitting formulae for the vertical moments as a 
function of energy. Special features of our Monte- 
Carlo code are outlined in Section 2. 
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Fig. 3. Ion concentration below a vertical mask edge (B 
in Si, 200 keV): classical model, constant lateral standard 

deviation. 
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Fig. 4. Ion concentration below a vertical mask edge (B in 
Si, 200 keV): Monte-Carlo results. 
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Fig. 5. Ion concentration below a vertical mask edge (B in 
Si, 200 keV): depth dependent lateral standard deviation, 

lateral kurtosis 3. 
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Fig. 6. Ion concentration below a vertical mask edge (B in 
Si, 200 keV): depth dependent lateral standard deviation 

and kurtosis. 

2. DETAILS OF THE MONTE-CARLO 
SIMULATION 

Among the Monte-Carlo codes for the simulation 
of ion implantation (e.g. Refs [l&20]) the 
“TRIM”-code of Biersack and Haggmark [20] has 
become most popular and has been used by a number 
of authors[21-231 because of its relative computer 
time efficiency. We have written our own code, based 
on the physical fundamentals of TRIM. In short, a 
large number of ion trajectories in an amorphous 

target are evaluated. Each ion undergoes collisions 
with target atoms (nuclei), which cause energy loss 
and deflection, and is additionally slowed down by 
interaction with target electrons. The Moliere poten- 
tial is used to evaluate nuclear collisions and the 
Lindhard-Scharff formula to calculate electronic en- 
ergy loss. Commonly, a correction factor of 1.5 to the 
Lindhard-Scharff formula is used for boron[ IO]. We, 
furthermore, employ a correction factor of 1.3 for 
phosphorus, which yields better agreement to some 
experimental profiles investigated by us. Recently the 
approach to the basic physics has been improved by 
Ziegler, Biersack and Littmark[24] (also reported in 
Ref. [9]), which has not yet been considered in our 
work. 

Our code has some special features in order to 
increase computer time efficiency. First, the most time 
consuming part of conventional programs, the evalu- 
ation of nuclear collisions, is replaced by linear 
interpolation in two precomputed tables, which pro- 
vide the scattering angle and the nuclear energy loss, 
respectively, as a function of impact parameter and 
energy. The strong nonlinearities in the dependence 
of the scattering quantities on impact parameter and 
energy and the limited dimension of the table 
(200 x 80) require the use of a nonlinear relation 
between table index and the corresponding values of 
the parameters. In this way we achieve an inter- 
polation error of usually less than IO-‘. Only at very 
low energies (100 eV) deviations of some percent may 
occur. 

Secondly, we use a special technique to calculate 
profiles with many different implantation energies 
simultaneously. For this purpose the ion starts with 
the greatest of these energies. When, during slowing 
down, the energy drops below the next implantation 
energy, its location and direction of motion are 
stored. From this, together with the final point of the 
trajectory, the coordinates of an ion which has been 
implanted with the lower implantation energy can 
be calculated. One complication, however, must be 
handled carefully: At a close collision with a nucleus 
the ion may lose a considerable part of its energy and 
thus fall far below the next implantation energy. If 
this happens, the ion obviously must not be taken 
into account. In the other case, when it falls only 
slightly below the next implantation energy, the final 
depth of the ion is corrected by an amount that 
corresponds to the increase of the mean projected 
range with implantation energy. The criterion when 
to omit an ion has been chosen pragmatically, so that 
at least 50% of the ions remain. In this procedure the 
deviation of the initial energies is always lower than 
10% and, at the same time, lower than 10 keV. (For 
boron ions it is even less, namely 150 eV.) In several 
tests no difference could be detected between directly 
calculated profiles and those obtained with this pro- 
cedure. So the criterion is rather too strong than too 
weak. 

To make sure that we have not introduced un- 
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Fig. 7. Comparison of TRIM results (dotted line) with ours 
(full line) for Sb in Si (120 keV). 

acceptable errors, we have also compared our results 
with that from TRIM. In Figure 7 a comparison of 
profiles for a 120 keV antimony implantation into 
silicon is shown. The dotted histogram has been 
taken from Ref. [24], the full line represents our 
results. No deviation can be seen which is clearly 
beyond statistical fluctuations. 

Finally, we make use of the cylindrical symmetry 
of the statistical distribution function of an ion in 
order to reduce the noise of the lateral moments. For 
this purpose one could include the other lateral 
coordinate, i.e. one could replace the formula for the 
k-th lateral moment 

This is permissible because x and y are distributed 
identically. Instead of this, we have employed a more 
elegant and in the context of our program simpler 
method: We first calculate the radial moment: 

ri = (xl + yf)“*, and then relate it to the lateral 
moment by: 

... k even 

10 . . k odd. (8) 

This formula can be obtained by considering the 

definition of the moments via probability density 
functions and applying the rule of transforming 
probability density functions. 

The evaluation of nuclear scattering can be re- 
placed by look-up-tables in programs for crystalline 
target as well. The other two special features, how- 
ever, are restricted to amorphous targets. 

3. FITTING OF THE SPATIAL MOMENTS 

We need the following spatial moments as input 
data for our analytical model: 

-mean projected range R,(E) 
-vertical standard deviation aZ(E) 
-vertical skewness y,(E) 
-vertical kurtosis P,(E) 
-lateral standard deviation u,(z, E) 
-lateral kurtosis fi,(z, E). 

Tabulated values are available only for R,(E), a,(E), 

y,(E) and a,(E)[3,4]. So we have calculated these 
quantities by means of Monte-Carlo method for 30 
energies between 10 keV and 300 keV and in the case 
of lateral moments for approximately 40 intervals of 
depth. To obtain small statistical fluctuations the 
simulation has been performed with 100,000 (boron) 
to 200,000 (antimony) ions. The results were then 
fitted by the below specified formulae. 

3. I. Vertical moments 

If the reader wants to get an idea of the qualitative 
dependence of the four moments on the implantation 
energy, see Ref.[21], where a graphic representation 
of the moments is given for the four elements. 
(The results of Ref.[21] are close to ours). We have 
chosen the following fitting formulae for the vertical 
moments: 

R,(E) = a, Ea2 + a3 (9a) 

oi(E) = a, E”’ + a, (9b) 

y;(E) = a, + a3 
a, + E 

(9c) 

B,(E) = &E + a3 + a4 E. (94 
2 

The units used for the implantation energy E are keV, 
for all lengths (R,, 0,) pm are used. The parameters 
are listed in Tables 14. 

Note the fitting formulae are valid only in the 
range of 10-300 keV. We have tried to produce 
formulae that behave reasonably outside this range. 

Table I. Projected range Rp 

BWXl Phosphorus Arsenic 

a1 0.00969 0.001555 0.000688 

a1 0.767 0.958 0.983 

ZSE 
-0.01815 0.000828 0.003962 

1.41% 0.57% 0.59% 

MSE denotes the mean square error. 

Antimony 

0.000668 
0.92 I 
0.005072 
0.57% 
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Table 2. Vertical standard deviation CT._ 

Boron Phosphorus Arsenic Antimony 

01 0.0521 0.002242 0.000402 0.000241 
a2 0.216 0.659 0.874 0.884 
aI -0.0684 -0.003435 0.000582 0.000923 
MSE 1.92% I .73% 0.30% 0.35% 

MSE denotes the mean square error. 

Table 3. Vertical skewness yz 

Boron Phosphorus Arsenic 

aI 312.7 336.2 339.8 
4 122.2 199.3 342.0 

&E -2.404 0.0235 - 0.0093 1.386 -0.5051 0.0047 

MSE denotes the mean square error. 

Antimony 

195.1 
339.7 

-0.0910 0.0068 

Table 4. Vertical kurtosis 8: 

Boron Phosphorus Arsenic Antimony 

aI 0.0 54.45 38.73 47.33 
02 1 .o 55.74 61.70 81.17 
a3 2.212 1.865 2.559 2.692 
&E 0.0195 1.66% 0.00482 0.0 0.0 

0.39% 0.60% 0.58% 

MSE denotes the mean square error. 

Nevertheless R, and Q, do not approach 0 for im- 
plantation energy 0. Avoiding this would have re- 
sulted either in a considerable increase of the fitting 
error or in a more complex formula. So, if one insists 
on using our data for implantation energies less than 
10 keV, one should interpolate R,, and or linearly 
between O-10 keV. 

3.2. Lateral moments 

The results for the lateral standard deviation are 
shown in Figs 8-l 1. Note that the representation in 
Figs 8 and 9 must be rotated by 90” to be compared 
with Figs 10 and 11. The lateral standard deviation 
of heavy ions (As, Sb) increases towards the bulk, 
quite opposite to the case of light ions (B). The 
physical reason might be this: Heavy ions can be 
scattered in a single collision with a target atom only 
by small angles. (E.g. the maximum deflection angle 
of an As atom in a collision with a Si atom is 20”). 
So heavy ions are very unlikely to change direction 
and to come back towards the surface if they have 
already penetrated into deeper regions. On the other 
hand, they may stop after a few close collisions 
without having moved in the lateral direction. So the 
lateral standard deviation near the surface is small, 
whereas it increases towards the bulk because of the 
spreading of the beam. 

In contrast, light ions may be deflected by angles 
up to 180”, and they may be scattered into the lateral 
direction without losing most of their energy. This 
accounts for the great standard deviation. Moreover, 
the slowing down is dominated by the electronic 
energy loss, which gives rise to an upper limit of the 
total path length. For this reason, unless an ion is 
travelling nearly perpendicular to the surface, it is not 
able to reach the maximum profile depth. So the 
lateral standard deviation will decrease towards the 
bulk, if the electronic stopping power dominates. 

Fig. 8. ux(z, E) for B in Si. 
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Fig. 9. u,(z. E) for P in Si. 

From Figures 8-11 one can also see why Giles and more or less the only example of a nearly constant 

Gibbons(231 come to the conclusion that-in op- lateral standard deviation. 

position to the message of our paper-the correlation. Figures 12 and 13 show the latera? kurtosis for 

between the vertical and lateral coordinate may be boron and phosphorus. The figures for arsenic and 

neglected; They have unfortunately proven their antimony are similar to that of phosphorus. It is 

theory with a 20 keV boron implantation. which is noticed that the kurtosis is always less than 3 for 

Fig. 10. a,(-. E) for As in Si 
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Fig. 11. CT~(Z, E) for Sb in Si. 

451 

boron and that for the heavy elements large kurtoses 
are possible near the surface. ~~(z,E)=~lnIexp(o,P,)+exp(a,P,)], (lob) 

Fitting 2-D tables requires more complex formu- with 
lae. We use: 

P,=a,2’E+a~z’+u,E+a,, (1 la) 

P,=a,z’E+a,z’+u,E+a,, (1 lb) 
(T,(z, E) = a,(E) $ln[exp(u, P,) 

and z’ the reduced depth: 

(104 
z’ = z/R,(E). (114 

The parameters a,-~, are listed in Tables 5 and 6. 

Fig. 12. px(z, E) for B in Si. 
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Fig. 13. B,(z. E) for P in Si 

It is not reasonable to give a fitting error here, 
because one could hardly decide if the error is due to 
fluctuations of the Monte-Carlo results or to bad 
approximation. Instead, we have plotted the fitted 
and the unfitted moments in a 3-D representation. An 
example is shown in Fig. 14, which may be compared 
with Fig. 8. 

4. ANALYTICAL MODEL 

4.1. Vertical distribution function 

We do not intend to present a new vertical distri- 
bution function here, but we want to point out a 
problem with the Pearson IV distribution, which 
arises together with moments derived from Monte- 
Carlo calculations (it has already been encountered 
by Peterson et al.[21]): Skewness and kurtosis violate 
an inequality that restricts the applicability of the 
Pearson IV distribution. On the other hand, the 
Pearson IV function fits experimental profiles well in 
many cases[5-91. The reason for this discrepancy is 

Table 5. Lateral standard deviation 6, 

Boron Phosphorus Arsenic Antimony 

a1 -1.443 -0.9488 -6.724 -13.884 

a2 -0.005637 0.002793 0.000582 0.000481 

03 1.558 1.205 0.5117 0.3685 

04 0.003511 -0.001370 -0.000649 -0.001024 

05 I.189 1.043 0.3709 0.4838 

% -0.013185 -0.003208 -0.000512 -0.000110 

a7 -0.2271 -0.1201 0.1299 0.1357 

08 0.014883 0.003528 0.000375 -0.000425 

a, 1.422 1.320 0.7277 0.7529 

Fable 6. Lateral kurtosis fir 

BOVXI Phosphorus AWXIiC Antimony 

0.5278 0.03496 I.134 6.462 
0.002498 -0.2996 -0.01340 -0.005668 

-0.9765 -60.76 -2.927 -0.4474 
-0.000061 0.008940 0.007873 0.004384 
2.538 -53.66 4.493 3.345 
0.02713 -0.001406 -0.000965 -0.000613 
0.5976 0.2740 -0.06646 -0.11157 

-0.03790 0.001470 0.001077 0.ooo901 
0.5911 2.504 3.224 3.246 

that real implantations are performed into crystalline 
targets where always a certain amount of channeling 
occurs. 

There are various possibilities to overcome this 
problem. First, one can simply modify the moments 
to meet the inequality between skewness and kurtosis. 
If one maintains the skewness, one has to increase the 
kurtosis by l&20% which seems to be acceptable. 
(This has been done in Figs 3-6). Another way is to 
perform a 1-D Monte-Carlo simulation to obtain the 
vertical distribution function directly. This is in many 
cases feasible, because computer time efficiency of 
Monte-Carlo programs has increased considerably. 
The last possibility is to use an experimental profile 
for the vertical distribution. However, this method 
should be handled carefully, because if there is too 
much channeling in the profile, our data for the 
lateral standard deviation could possibly not apply. 

4.2. Lateral distribution function 

We look for a function f(x) with the following 
characteristics: symmetry; positivity; only one max- 
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Fig. 14. c,(z,E) for B in Si (fitted). 

imum; smoothness; its parameters can be calculated 
from standard deviation cr and kurtosis /?. For that 
purpose the moments must exist to the fourth order. 

A. Modified Gaussian distribution-The function 
f(x) has to meet the equations: 

5 

a0 
l= f(x) dx> Wa) 

--J; 

s 

w 
62 = x2f(x) dx, (12b) 

-Y 

pa4= a 
1 

x4 f (x) dx. (12c) 
ma 

Thus we need (at least) 3 free parameters. The 
Gaussian function: 

f(x) = a exp( - (6x)‘) (13) 

has only two parameters, which are determined by 
equation (12a) and equation (12b): 

a=&, (14a) 

b=--- 
;e. 

(14b) 

The kurtosis equals 3 in any case. In order to obtain 
one additional parameter, we replace the power 2 in 
the Gaussian function equation (13) by an arbitrary 

power p: 

f(x)=aexp(-(bxy). (15) 

Introducing equation (15) into (12), we need the 
integral [25]: 

00 

x”exp(-JbxJP)dx =r (pb”+‘). (16) 

r denotes the Gamma function. /I can be expressed, 
using equation (12): 

D= 
TU/P) I’(5/P) 

r(3/P)2 
(17) 

We need the inverse function of equation (17), what 
unfortunately cannot be done analytically. So we 
have solved the problem for very large p: 

= 0.290576 Js-i_8 

and for very small p: 

UW 

tlgb) 

The actual value of l/p is obtained by interpolation 

L(JJof(l-c) (&, 
P 

W) 
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with 

c = 0.795833 exp[ - 1.94544 (fi - 1.8)] 

+ 0.204167 exp[ - 0.272172 (j - I.@]. (18d) 

Equation (18d) was fitted to 100 @,p)-values in the 
range 1.8 < b < 6. The mean square error is about 
l%, but it is centered at very small fl, so the error in 
the relevant range of p is less (e.g. /I = 3 leads to 
p = 1.999 instead of 2, which is correlated by equa- 

tion (17) to b = 3.001). 
With p from equation (18~) one obtains easily 

b=;/W (19) 

and 

a=(bp)/ 2r i 
( 0) 

. 
P 

(20) 

Equation 15 is shown in Fig. 15 for various values of 
fi. For p = 6 @ = 1) the derivation off(x) at x = 0 
is discontinuous and for fi > 6 it becomes infinite. In 
the case of ion implantation profiles, lateral kurtoses 
>6 do practically not appear. However, from a 
general point of view it might be interesting to give 
a function that may be used for arbitrary large 
kurtoses. (Extremely high lateral kurtoses appear e.g. 
with damage profiles.) 

B. Pearson VII Distribution-A function that can 
the Pearson VII distribution be applied for /I > 3 is 

1261: 

f(x)= c 

b, and b, are given by: 

2802 
b,= -- 

5/l -9 

b2= -6. 

To evaluate the constant C we need [27]: 

(21) 

(224 

(22b) 

(1 +x?rdx = B($,-p -f,. (23) 

B denotes the Beta function, which is defined by the 
Gamma function by: 

One obtains: 

(24) 

c= (25) 

The Pearson VII function is shown in Fig. 16 for 
some values of p. It tends asymptotically towards the 
Gaussian function, if /3 tends towards 3. So it is well 
suited to be used for /I z 3 together with the modified 
Gaussian distribution for j < 3. 

4.3. Distribution under a mask edge 

Considering u and /3 as functions of z [u.?(z, E), 
p,(z, E)], j”(x) of the previous section may be called 
fia,(x, z). Multiplication with the vertical distribution 
function fvcrt(z) yields the 2-D distribution function 
for one ion [cf. equation (4)]. This distribution func- 
tion can then be used in a convolution integral to 
calculate the distribution function under a mask 
edge[ 11, 12, 16,9]. We do not discuss the convolution 
integral here, but we note that it does not treat those 
ions correctly which leave the mask into the air and 
re-enter the target. 

The results of our calculations for an infinitely 
steep mask edge are shown in Figs 5 and 6. In both 
cases the vertical distribution function has been as- 
sumed a Pearson IV function. The vertical kurtosis 
has been modified as mentioned in Section 4.1, what 
accounts for the slight difference in the vertical 
profile, which can be seen at the right hand side of the 
simulation area. In Figure 5 the lateral kurtosis has 
been assumed fi = 3, so we have a Gaussian distribu- 

IO0 

16 

” 

102 

10-3 
-4 -2 0 2 4 

x 

Fig. 15. Modified Gaussian distribution for 0, = I 
p,= 2, 2.5, 3, 4, 6. 

IO0 

16’ 

;; 
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Fig. 16. Pearson VII distribution for 4, = I and fly = 3.1. 4. 
6, 100. 
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tion laterally, but with a depth dependent standard 
deviation. In Figure 6 we also take into account the 
lateral kurtosis. 

Figures 5 and 6 seem to indicate that the correct 
lateral kurtosis yields no significant improvement. So 
allowing for the lateral kurtosis might be over- 
sophisticated, especially if one considers that our data 
may deviate from real implantations in crystalline 
silicon for light ions. On the other hand, larger errors 
due to neglecting lateral kurtosis appear for heavy 
ions in regions close to the surface, where no chan- 
neling occurs. 

5. CONCLUSION 

A two-dimensional model of ion implantation has 
been presented, which allows for depth dependent 
lateral standard deviation and kurtosis. The moments 
were given in Section 3 by simple formulae. Distribu- 
tion functions which allow to include the lateral 
kurtosis were presented in Section 4. How to use 

them to calculate the distribution below a mask edge, 
is found in the cited literature. 

A comparison with experimental data could not be 
done, because 2-D profile measurements are not 
possible at present. It can be expected that our data 
apply well for heavy ions, where no channeling 
occurs, but deviations are likely for the light ion 
species boron. In order to investigate this, it would be 
interesting to perform a Monte-Carlo simulation with 
a program for crystalline targets. 
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