E2.

AN INTEGRATED TECHNOLOGY CAD ENVIRONMENT

F. Fasching, C. Fischer, S. Halama, H. Pimingstorfer, H. Read”,
S. Selberherr, H. Stippel, P. Verhas, K. Wimmer

Institute for Microelectronics, Technical University of Vienna, Austria

{ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract — A new TCAD system is presented, capable
of performing complez development tasks by means of a
powerful interaction language and an efficient database
system. The integration of tools is supported through a
comfortable layered application program interface.

1 Introduction

The demands on Technology CAD (TCAD) range from
simple simulator coupling to process, e.g. [1], and device
technology optimization. Our system as shown in Fig. 1
is controlled through an interaction language based on a
LISP interpreter — called the TCAD shell — providing
homogeneous integration of the data, tool and task lev-
els. The available TCAD tools, be they simulators or PIF
ToolBox utilities, and their data are used by the shell
which in turn can be controlled through the User Inter-
face Agent enabling graphical representations and intu-
itive usage of the system. The data format upon which
the system is built is an enhanced and extended intertool
mode of a widely used profile interchange format (PIF)
proposed in [2]. This PIF database is accessible from the
tools and the shell through the application interface, and
toolbox functions for conversion to textual (ASCII) rep-

resentation for intersite data exchange, e.g. via eMail, are
available.

2 Task Level — The TCAD Shell

To perform complex simulation tasks, the process and de-
vice engineer needs an eziension language with which he
can write programs manipulating simulator input, invok-
ing TCAD tools and feeding back the results of a simulator
call into the program in order to perform optimizations.
Additionally, this “meta language” has to be interpreta-
tive to form a shell in which the engineer works during
a TCAD session, but the ability to run task level pro-
grams as background processes or in batch mode has to
be supported too. Another issue of major importance is
portability, which means that the language interpreter’s

eMail

Data

and
PROMIS | Control
Flow

VLSICAP

PIF
DataBase

TCAD Tools

Figure 1: TCAD System Overview

sourcecode is publicly available and written in a portable
language. The language has to provide constructs power-
ful enough to ease the task of writing shell programs (a
simple command processor like the various shells under

UNIX or DCL under VMS is definitely not sufficient).

The language interpreter itself has to be eztendable with
builtin commands, i.e. linking ol self-written functions to

1991 VLSITSA 147

the interpreter must be possible, implying the availability
of the sourcecode. And finally, integrating PIF should be
an easy task which is best guaranteed with a LISP-like
syntax of the extension language.

Among the few candidates left we chose a small LISP in-
terpreter, implementing a subset of Common LISP. A sys-
tem call is provided to run separately executable TCAD
tools. By redirecting input/output from/to a file, the shell
can be run in the background. The interpreter itself is
written in portable C and implements a wide range of
control structures and functions to ease the development
of task level programs. Extendability is ensured through
modularized design and a clear C-to-LISP interface. Since
the PIF syntax is very close to LISP, it is easy to manip-
ulate PIF data in the TCAD shell. Thus all necessary
requirements on a TCAD extension language are fulfilled

ideally.

Modules or tools are directly callable as shell functions of
the extension language, thus enabling programs written
in this language to call these tools. This structure allows
arbitrarily complex tasks to be performed, ranging from
simply calling a single module interactively over coupling
simulators via a shell function to running whole optimiza-
tion loops as background processes. Starting tools on dif-
ferent machines is also possible (distributed processing),
although system dependent.

Besides of the basic needs stated above, a major influence
in the decision to use LISP as the extension language has
been that there is no distinction between program and
data structures. This allows, for example, a process flow
representation to be either executed directly in the shell
as a program, or to be stored in the database as data.

A powerful extension is the User Interface Agent (UIA)
which allows graphical control of the TCAD system in-
cluding editing, manipulating and viewing geometries, si-
mulation results and symbolic process flow representa-
tions. In addition, the experienced user can directly use
the shell language to create new functions or modify ex-
isting ones. The environment does not depend on the
graphical interface which is inherently system dependent.
It could as well be used without it (terminal capability is
enough), although it is more convenient to use the UIA.

An example of a task level program for minimizing the
bulk current of a device by means of modifying the LDD
implant dose is presented in Fig. 2. The shell function
minimize-i-b is given an implant dose and a handle to
a binary PIF file with a device geometry desription. The
process simulator PROMIS, started with an initial LDD
implant dose, adds doping profiles to the PIF file. The
device simulator MINIMOS is run on this file, calculating
the actual bulk current. Then a loop is run on these two
simulators, which performs an update of LDDimpl-dose

148 1991 VLSITSA

with compute-new-dose and breaks when the test crite-
rion of a minimal bulk current is met.

;;; sample TCAD shell task level function
(defun minimize-i-b (LDDimpl-dose obj-hdl)
(run-promis LDDimpl-dose obj-hdl)
(run-minimos obj-hdl)
(setq i-b-act
(extract obj-hdl "BulkCurrent"))
(do ((test-criterion i-b-act
LDDimpl-dose obj-hdl))
(setq LDDimpl_dose
(compute-new-dose i-b-act
LDDimpl-dose obj-hdl))
(run-promis LDDimpl-dose obj-hdl)
(run-minimos obj-hdl)
(setq i-b-act
(extract obj-hdl "BulkCurrent"))
)
LDDimpl-dose

;35 sample usage
; edit a geometry with the uia PIF editor
(setq obj-handle (uia-ped))

; call the function
(minimize-i-bulk 5e12 obj-handle)

; the output: LDDimpl-dose for minimum i-b
2.01371e13

Figure 2: Sample TCAD function

3 Tool Level — The Workhorses

Modules callable at the tool level include all kinds of sim-
ulators (process, device, circuit), grid manipulators, dis-
cretizers, solvers, measurement data translators, optimiz-
ers, graphical editors, previewers, etc., some of which are
incorporated in a PIF ToolBox which also provides for in-
tersite to intertool format conversion and vice versa. Until
now the device simulator MINIMOS, e.g. [4], the process
simulator PROMIS, e.g. [5], and the interconnect capaci-
tance simulator VLSICAP, e.g. [6], have been integrated.
Note that Fig. 1 shows the simulators explicitely, but in
fact they are just tools like those in the toolbox from the
shell point of view.

A new tool can be integrated in three manuers, depending
on the language it is programmed in (note that these items
refer only to integrating tools upwards into the task level

alias the TCAD shell; integrating them downwards into
the data level is discussed below):

o LISP tools just have to be loaded and executed from
the TCAD shell. This is useful for high-level opti-
mization loops or module sequenzers, which imple-
ment mainly logic and consume only small amounts
of computation time compared to other tools prob-

ably called.

C tools in form of a C function just have to get a
small C-to-LISP interface. Then they can be linked
together with the shell and called just like normal
builtin shell functions. This is useful for small and
frequently needed tools which consume some com-
putation time. They could as well be called as sep-
arate executables with the system call, but linking
them to the shell eliminates program load time.

¢ Tools in any language that are separate executables
can be called with a shell-builtin system call func-
tion. Conventional simulators thus can be used like
any other shell function, if a (very small) LISP in-
terface is added.

New simulators can be added very easily by replacing in-
put and output functions with corresponding application
layer functions (see below). This small change yet allows
data level invegration into the TCAD system.

Additional flexibility can be gained by splitting the sim-
ulator (e.g. separating grid generation, discretization and
solver parts) and by combining the new modules with ex-
isting TCAD tools into task level programs almost arbi-
trarily. To do so, the modules must have a small extension
language interface to make them callable from LISP, and
they have to adhere to a PIF object storage convention
[7]. As an example, Fig. 3 shows how the modularized
simulators MINIMOS and PROMIS fit into the TCAD
environment. PROMIS ic split into four completely in-
dependent executables, called from the shell through a
small LISP interface. Every module reads and writes
from/into the PIF database. MINIMOS modules are cou-
pled internally; PIF input/output is done by two spe-
cialized modules. All modules are controlled by a stack-
driven sequenzer written in FORTRAN or LISP. In case
of PROMIS there ate four interface routines to the shell,
called promis-analytic-implant, promis-mc-implant,
promis-diffuse and promis-oxidize, whereas MINI-
MOS is callable simply with run-minimos. The shell func-
tion run-promis in the TCAD function example is just
a sequence of PROMIS functions simulating a complete
process.

The major advantage when building a new simulator is
that it is no longer necessary to provide a specific grid

TCAD - Shell
LISP Past of PROMIS Modules MINIMOS Control Program
analytic Monte Init
Cardo | Diftusion [Oxid: PIF [Moduk lodule| pipE
Implant | mplanmt Input Output

i

Figure 3: MINIMOS and PROMIS in the TCAD environ-
ment

generator, solver, etc., since these tools are readily avail-
able on the shell level. Therefore, simulator designers are
able to concentrate on the specialized parts of simulator
construction.

The executable modules are usually small and can be run
(in parallel) on different machines under control of the
TCAD shell, thus yielding considerable speed improve-
ment. When modularized appropriately, the most time
consuming parts (e.g. linear solvers) can be executed on a
supercomputer communicating with the TCAD shell run-
ning on a graphics workstation using our PIF linear solver
communications protocol [7].

4 Data Level — The Database
System

The database is a binary implementation of a textual
PIF [2] which has been modified and extended to ful-
fill the needs of an integrated TCAD system. As an
example, Fig. 4 shows part of a textual PIF describing
the attributes of a physical device segment (but not its
geometry) consisting of GagrAlp.3As at 937 K. An at-
tribute MySegmentDescription is defined over the seg-
ment MySegment. The compound material MyMaterial is
specified in the subattribute MaterialType. A Material-
Compositionsubattribute (named MyComposition)and a
Temperature subattribute (named MyTemperature) com-
plete the SegmenptDescription. Note that it depends on
the simulator’s capabilities, whether these attributes are
recognized or not, but the textual PIF provides a consis-
tent and unique way to specify them.

The TCAD database, consisting of so-called binary PIF
files, is accessed from programs with the help of an ap-
plication interface (Fig. 5). Our implementation of this
interface is strictly layered, thus conforming to the most
recent software engineering standards. The interface itself

1991 VLSITSA 148

(attribute MySegmentDescription
(attributeType "SegmentDescription")
(nameList MySegment)

(attribute MyMaterial
(attributeType "MaterialType")
(valueType asciiString)

(valueList "Gallium" "Aluminum" "Arsenic")

)

(attribute MyComposition
(attributeType "MaterialComposition")
(valueType real)

(units "1")
(valueList 0.7 0.3 1.0)

)

(attribute MyTemperature
(attributeType "Temperature")
(valueType real)

(units "K")
(valueList 937.0)

Figure 4: PIF Example describing GaAlAs Segment

is implemented in C, but FORTRAN and LISP applica-
tions have been taken into account with the support of ap-
propriate language bindings to the interface’s C functions.
In contrast to other approaches (e.g. [3]) we designed even
the low-level database structure specifically for TCAD
purposes, resulting in considerable performance improve-
ments.

A system layer at the very bottom is used to hide system
specifics from the rest of the application interface. The in-
terface is open to all operating systems and not restricted
to e.g. UNIX, since only a very basic functionality like
random read/write on a file is needed.

A caching layer implementing a segment-buffer caching
algorithm sits on top of the system layer and enhances sig-
nificantly access speed and memory utilization. A highly
(partly at runtime) configurable combination of a split-
address method together with a least-recently-used al-
gorithm and variable segment sizes ensure the necessary
versatility for the layers above. Various caching degrees
are available, including completely uncached files for en-
hanced data security to fully cached (memory) files for
temporary scratch data.

The basic layer then is used to access primitive objects
which resemble LISP’s atoms and lists on a file. Addition-
ally (even compressed) arrays of those low-level objects
are available, decreasing the considerable space consump-
tion of e.g. distributed attributes on large and dense grids.

150 1991 VLSITSA

Layer structure Data structures

Application program application specific

PAI application layer application general
PIF objects

LISP primitives

PAl interface layer
PAI basic layer

PAIl compression layer] (array data)
PAI caching layer basic types, blocks

PAIl system Layer block data

Operating System

binary File

Figure 5: Application Interface Layer Structure

unsigned cardinal objects

signed cardinal objects

float objects

compr. array

special objects

Figure 6: PIF primitive data objects

Fig. 6 shows the available data types. All objects can be
linked together into lists; an additional pointer object is
used to incorporate lists in another list. A symbol hash ta-
ble maintained in the basic layer stores PIF object names
for quicker object retrieval. It should be noted that the
syntactical equality of TCAD shell language and binary
PIF, introduced already on this low level, increases signif-
icantly the versatility of the system. Thus it is possible,
for example, to bijectively transform any datum or pro-
gram into the binary PIF and the TCAD shell workspace,
as long as it is expressible in LISP notation. This implies
that even layout data based on this notation (e.g. [8]) can
be stored and manipulated with basic layer functions — a
precondition to incorporate layout information on higher
levels.

The interface layer deals with PIF objects which are made
up of primitive objects. Designed to work with C appli-
cations specifically created for PIF, it performs functions
like reading and writing specific object slots or selectively
searching objects. However, these functions will work on
data structures differing somewhat from conventionally
designed simulators.

To provide a convenient interface for existing C and FOR-
TRAN applications, an application layer has been de-
signed which deals with all TCAD objects based on PIF.
Working on common simulator-internal data structures,
it provides powerful routines that create, delete, read or
write whole PIF objects while performing unit conversions
and coordinate transformations specified by the simulator
before reading or writing in order to accomodate the data
to the PIF object storage convention [7]. Some rules have
to be obeyed, concerning the naming, arrangement and
hierarchy of objects written to the database, which are
partly guaranteed by the application layer and partly by
TCAD tools checking PIF data for consistency. These as-
pects ensure that adding any new TCAD tool (simulator,
measurement interpreter, correlator, etc.) is a simple and
straightforward task.

It should be noted that the application layer cannot pro-
vide routines suitable for any imaginable existing FOR-
TRAN or C application. However, we tried to generalize
the routines as much as possible in such a way, that con-
ventional applications using common data structures like
arrays of point coordinates or arrays of point indices repre-
senting lines etc. can easily use the application interface.
For special applications it may be necessary to add a few
routines to the application interface. But this is no big
deal since the interface layer provides all the necessary
functionality for the application layer routines.

5 Conclusion

The integration of TCAD tools by means of a LISP shell
and a binary PIF implementation provides a homogeneous
environment for all tasks of advanced device design. With
the syntax similarity of TCAD shell extension language
and database format close tool cooperation is possible. -A
specifically customized database binary format together
with a layered application program interface ensures high-
preformance data storage and retrieval while providing
different levels of functionality. Establishing a link to
horizontal layout design will make the TCAD framework
complete, allowing all activities to be performed in a ho-
mogeneous and expandable environment for the process,
device and circuit engineer.

Acknowledgements

This project is supported by the research laboratories
of: Austria Mikro Systems at Unterpremstitten, AUS-
TRIA; DIGITAL EQUIPMENT Corp. at Hudson, USA;
SIEMENS Corp. at Munich, FRG; and SONY Corp. at
Atsugi, Japan.

References

[1} E.W. Scheckler et al., A Utility-Based Integrated Pro-
cess Simulation System, Symp. on VLSI Technology,
pp. 97-98, 1990. i

[2] S.Duvall, An Interchange Format for Process and De-
vice Simulation, IEEE Trans. CAD, Vol. 7, pp. 489~
500, 1988.

(3] A. Wong et al., The Intertool Profile Interchange For-
mat, Proc. NUPAD III, pp. 61-62, 1990

[4] S. Selbetherr, Three Dimensional Device Modeling
with MINIMOS 5, Proc. VLSI Workshop, pp. 4041,
1989.

(5] G. Hobler et al., RTA-Simulation with the 2D Pro-
cess Simulator PROMIS, Proc. NUPAD III, pp. 13-
14, 1990.

(6] F. Straker et al. Capacitance Computation for VLSI
Structures, Proc. EUROCON, pp. 602-608, 1986.

(7] F. Fasching et al., Viennese Integrated System for
TCAD Applications, Institute for Microelectronics,
Technical University Vienna, Austria, 1990.

(8] EDIF - Electronic Design Interchange Format Version
2 0 0, Electronics Industries Association, Washington
D.C., 1987.

1991 VLSITSA 1561

