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~~A~E~~ ANALYSIS OF SURFACE ACOUSTIC 
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Institute for Microelectronics, Technical University of Vienna, G~shausstrasse 27-291360, A-1040 

Wien. Austria 

Abstract-Numerical techniques for the analysis and simulation of surface acoustic wave generation 
and propagation are presented. The first part of this contribution deals with a numerical algorithm for 
the extraction of SAW properties with respect to different substrate materials and arbitrary crystal 
cuts. As one particular application this algorithm is used to improve the accuracy of the tensor 
coefficients of the substrate material LiNbO,. The second part concerns a two-dimensional transient 
sim~atio~ of acoustic wave genera~on by interdi~tal transducers. The developed simulation tool is 
applied to investigations about parasitic bulk wave generation. Finally, some remarks on the 
computational requirements are given. 

1. INTRODUCTION 

Modeling of wave propagation phenomena in anisotropic piezoelectric materials has become 
eminently important for surface acoustic wave device characterization and design. Most of the 
common computer programs for the analysis of the extrinsic device behavior require on input 
the phase velocity of the surface wave [9], and in many cases the decay of the surface wave into 
the bulk is also of great interest. As experimental results are difficult to obtain for arbitrary 
cristal cuts the developed efficient algorithm for the calculation of the properties of surface 
acoustic waves (Section 3) is an important tool for the investigation of less common materials 
and crystal cuts. 

One concrete application presented in this paper (Section 4) concerns the improvement of 
material data using measured SAW velocities and a nonlinear least squares algorithm that 
needs as basis a fast algorithm for computing the SAW velocities at given tensor coefficients. 

In contrast to the above mentioned question for the properties of theoreti~a~y undam~d 
propagating surface acoustic waves the developed do-dimensional, transient simulation 
program takes also a given stimulation by an interdigital transducer as well as the resulting 
second-order effects (i.e. bulk wave generation and interaction between bulk and surface 
waves) into account (Section 5). That program solves the initial boundary value problem (with 

“artificial boundaries”) time-dependent by a semi-implicit finite difference scheme. It is 

wo~w~e to note that the tensor ~e~cients for the most ~mmon materials and used by both 
programs are stored in a database where new materials can easily be added. Furthermore, any 
arbitrary crystal cut defined by the so-called Euler’s angles [13] can be analyzed. 

2. PHYSICAL MODEL 

The physical model is based on the fundamental set of equations describing acoustic wave 
propagation in arbitrary piezoelectric material consisting of equations of motion (l), the linear, 
strain-mechanical displacement relations (2), Maxwell’s equation under the quasi-static 
assumptions (3), (4) and the linear piezoelectric constitutive relations (5), (6) [2]. It is to be 
noted that standard tensor notation as well as Einstein’s summation convention is used. 
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E.22 
dXi (4) 

Tj = cijkm * Sk,,, - e,,q * E,, (5) 
Di = elk,,, * Sk, + &in * En (6) 

T denotes the stress, p the mass density, u the mechanical displacement, S the strain, D the 
electric displacement, E the electric field, + the electric potential. The fourth rank tensor c is 
the elastic stiffness tensor, the third tank tensor e the piezoelectric tensor, and the second rank 
tensor E the dielectric tensor in the actual, i.e. rotated according to the given Euler’s angles, 
coordinate system. 

By substituting equations (2) and (4) into equations (5) and (6) and then eliminating the 
mechanical stress T and the electric displacement D, one obtains a system of partial differential 
equations in three spatial dimensions (j = 1, 2, 3) which consists of three mechanical wave 
equations (7) and Poisson’s equation (8): 
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For all following considerations the system is reduced to two spatial dimensions x = xi and 
z = x3, i.e. the sagittal plane (x denotes the SAW propagation direction and z is perpendicular 
to the surface) assuming negligible derivatives of all parameters in direction y =x2 which is 
perpendicular to the sagittal plane. 

This is no restriction at all for the analysis of the exact surface acoustic waves since plane 
waves are assumed in that case. For the two-dimensional time-dependent simulation that 
assumption means that the finger length of the interdigital transducer structure must be infinite 
or-more realistic-at least much larger than the finger width. 

Defining the solution vector s with its components u i, u2, u3 (components of the mechanical 
displacement vector u) and @ (electrical potential) leads to the following matrix equation (9): 

A - s,, + B . s,, + C - s,, = 52 * sn (9) 

A, B, C, and Sz are symmetric 4 X 4 matrices where 8 is a diagonal matrix whose main 
diagonal has the entries p, p, p, 0. The elements of A, B, and C consist without exception of 
the coefficients of the material tensors c, e, and E. As the values of the elastic stiffness tensor c 
and of the dielectric tensor E are in the order of 10” and 10-l’, respectively, the scaling of the 
equation system is an absolute necessity for all numerical investigations. Owing to lack of space 
the adequate scaling procedure can not be discussed here in detail. 

3. ANALYSIS OF SAW PROPERTIES 

This section deals with a description of a recently developed algorithm for an efficient 
computation of surface acoustic wave properties for arbitrary propagation directions. In 
contrast to an early publication [7] the SAW solution is derived here from the functional 
relationship between the so-called “effective permittivity” (10) and the phase velocity [lo]. 
There are two reasons for this modification: on the one hand the new algorithm is faster and on 
the other hand more stable even for propagation directions 
since the effective permittivity is a physical quantity that 
properties on the surface with respect to wave propagation. 

with weak piezoelectric coupling 
describes the electrical material 

(IO) E,~=& for z = 0 
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The formula for the effective permittivity includes the plane charge CT at the surface, the wave 
number k, and the electric potential Cp at the surface. It can easily be seen that this formula 
includes two special cases of electrical boundary conditions: CT = 0 means the boundary 
condition for a free surface (E,~ is singular) and 9(O) = 0 means a constant and time 
independent potential at the surface and therefore an ideally metallized surface (ctr has a pole 
in this case). 

The plane charge can be substituted by <T = @ - Da where 4 and DG are the components of 
the electric displa~ment ~~e~dicular to the surface in the substrate material and in the 
surrounding air, respectively (but both infinitely close to the surface). In order to obtain only 
variables defined within the substrate one has to eliminate D, by solving the Laplace equation 
in the air (11): 

A$,=0 (II) 

My model of the surface wave is a linear combination of partial waves (12). In contrast to other 
authors I do not assume a pure exponential decay of these partial waves into the depth but 
allow a general vector function g(z). 

s = exp(jkx -jot) l g(2) (12) 

Substituting (12) into Laplace equation (11) leads to 

& =I: 0, . elkI + a2 . e-@~*, (I31 

where the constant al must vanish because the limit of g*(z) for z-+ +QJ has to be zero. a2 is 
estimated by a comparison of g, with g4 for z = 0 (a2 = @(O)) and one obtains 

&=_Eo.?& Ed. lkl. @ for 2 =O. (14) 

After the elimination of 0, the formula for the effective permittivity (10) can be rewritten as 

E eff= EQ” l-j.T”’ 
[ 

4 sign(k) 

Ik 1 %‘4(0> ’ (15) 

where the electrical quantities & and #(0) must be supplied by the solution of the partial 
differential equation set (9) in connexion with the mechanical surface boundary condition 
Z+ = 0 for j = 1,2,3 and z = 0. That condition results from the fact that all force components 
perpendicular to the surface have to vanish since the air can not supply a compensating force. 

The mechanical boundary condition at the surface yealds the matrix equation (16) where the 
fourth equation is no (electrical) boundary condition at all but finally necessary for the 
computation of Q which is needed for the effective permittivity (15). 

Bo* s, + C * s,=(O, 0, 0, 4)' for z =0 (16) 

It should be mentioned that the relation B0 -t- B$= B holds. 
It is advantag~us to make a transfo~ation of the z-coordinate by introducing the new 

function f according to g(z) = f(5) = f(j lkl z). Substituting the SAW model (12) into equations 
(9) and (16) yea& a homogeneous system of four ordinary differential equations (17) with the 
phase velocity v = w/k as parameter and the mechanical surface boundary condition (18). 

(A -z?* St).f+sign(k). B.f’+C.f”=O 07) 

B,*f+sign(k).C*f’=(O,O,O,D,/(jk))T for g=O (18) 

As the solution must decrease in depth direction the trivial boundary condition s(x, E, t) = 0 for 
&+-j.co holds. TO solve the second order ordinary differential equation system (17) it is 
transformed to first order (20) using the new solution vector h (19). 

h,=f, hz=Bo.f+sign(k)*C.f’ (19) 

h’ = H l h with H = sign(k). (,2. sz _~~~Fic_l * B ‘-’ +,T, C--l > (20) 
0 
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The formal solution reads 

h=G.exp(A-53)-q, (21) 

where G denotes the eigenvector matrix of H, A is a diagonal matrix whose entries are the 
eigenvalues of H, and q is a linear combination vector representing the amplitudes of the 
partial waves. If one reorders the eigenvalues within A (and, of course, also the eigenvectors 
within G) in that way that the first four represent decreasing solutions in depth direction (i.e. 
these eigenvalues must have a negative imaginary part) one can set the last four components of 
r~ to zero, thus eliminating the unphysically increasing solutions. The other components of rl 
are obtained by solving the linear homogeneous algebraic equation system (22) where q1 
denotes the first four components of VI. 

hz = G& *ql =0 for E=O (22) 

This equation results from the substitution (19) where the left side of the mechanical boundary 
condition (18) has been used. G,, represents the lower left 4 x 4 submatrix of G; the 
superscript “ * ” in equation (22) means that the fourth component of h2 and the fourth row of 
GZ1, respectively, has to be ignored. 

Now it is possible to calculate the effective permittivity (15) for a given phase velocity u: 
DJ(jk) is given by the fourth row of the left side of equation (18) and therefore by the last row 
of the solution for h (21) with 5 = 0; the surface potential is given by the fourth component of h 
with E = 0. This procedure leads to the final expression for the normalized effective 
permittivity: 

z= 1 -j .sign(k) . 
i Gsi . Vi 
i=14 (23) 

EO * z G4i * Vi 

If that expression is zero or quasi infinite the undamped propagating SAW for the given 
propagation direction has been found and its depth dependence is given by 

g(z) = $I (Gri)i * Vi * exp(h -i WI 21, (24) 

where (GrJi represents the ith column of the submatrix G1i and Ai is the corresponding 
eigenvalue of H. 

Real port - lmoglnory port ----- 

v Cm IsI 

Fig. 1. Typical behavior of the effective permittivity 
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Fig. 2. Decay into depth of SAW for 128” rotated Y-LiNbO,. 

4.0 

Figure 1 shows the typical behavior of the normalized effective permittivity depending on the 
phase velocity for Lithiumniobate with Euler’s angles I = !30”, p = 90”, and 6 = 0“. One can 
see that eeff is a monotonously increasing real function for low velocities until it reaches the 
pole where the solution of the SAW-problem for the metallized surface is located. After the 
pole it is increasing again and passes zero where the free surface solution can be found. 
Beginning at a certain phase velocity the effective permittivity becomes complex. 

This behavior of the functional relationship between the effective permittivity and the phase 
velocity offers an easily implementable searching algorithm: starting with a velocity which is 
certainly higher than the SAW-velocity for the free surface (e.g. the velocity of the slower 
transversal bulk mode) one has to calculate seff with decreasing velocity until the singularity 
and/or the pole has been found. 

The solution vector g(z) with its four components ul, u2, u3, and @ is shown in Fig. 2 for the 
128” rotated Y-cut of LiNb03 (free surface). The full lines represent the real part and the 

Fig. 3. Phase velocities in the surface of 128” rotated Y-LiNbO,. 
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dashed lines the imaginary part; the length of the displacement vector u at the surface has been 
normalized to 1. One can nicely observe that the surface acoustic wave is nearly vanishing 
within two wavelength for that special crystal cut of LiNb03. It should also be mentioned that 
there is a constant phase shift of 90” between the component u1 (which has no imaginary part) 
and the other components u2, u3, and C#I (whose real part is zero). The maximum value of the 
component +-the displacement component perpendicular to the sagittal plane-is sig- 
nificantly smaller than the other components of u. 

Figure 3 shows the phase velocities in the surface of the 128” rotated Y-cut of LiNb03: the 
full line and the short dashed line correspond to the SAW velocities for the free and the 
metallized surface, respectively. Furthermore, one can see on this drawing the phase velocities 
of the bulk transversal modes propagatable parallel to the surface (but within the crystal 
volume). The origin of Fig. 3 corresponds to a phase velocity of 3250m/s. Just such a plot 
allows to select the most useful propagation direction for a possible surface acoustic wave 
device: for 0 = 0 the piezoelectric coupling (that is proportional to the difference between the 
two SAW velocities) has a maximum and the partial derivative dvldO has a minimum what is 
very important for the reproducibility of surface acoustic devices. 

4. IMPROVEMENT OF MATERIAL DATA OF LiNb03 

In the past, several authors, e.g. [15], [14], [ll], [3], made careful experiments to determine 
either a complete data set or some specific constants of LiNb03 where the techniques used are 
based on bulk acoustic wave propagation. Additional low frequency capacity measurements are 
mostly included. However, even for this widely investigated material the derived and 
published constants typically vary from some percent up to 10%. As an example Table 1 
compares the 13 independent constants of LiNb03 as found by (a) Warner et al. [15], (b) 
Smith and Welsh [14], and (c) Nakagawa et al. [ll]. The superscripts E and S mean 
measurements at constant electric field and constant strain, respectively; abbreviated notation 
for cs and e; is assumed, as usually. Figure 4 shows a comparison of the SAW velocities 
measured by Anhorn et al. [l] (full line) for free surface with the calculated data given in Table 
1 (dashed line: Warner et al., dotted line: Smith and Welsh, dashed-dotted line: Nakagawa et 
al.). While the data by Nakagawa et al. give the best overall agreement the velocity for the 
Z-axis is met best by Warner et al. However, in all three cases the average velocity difference is 
much more than the measurement accuracy of 1 m/s as it can be seen in the lower part of Fig. 
4. 

Our aim was now to fit optimally the material constants of LiNb03 to the measured SAW 
velocities; that has been achieved by using a nonlinear least squares algorithm. As this 
algorithm can not be discussed here in detail the interested reader is referred to [6]. This 
method can be extended in quite a straight forward way to include other measurements, too. 
There are only two requirements to add further equations: (1) an accurate measurement as well 
as a good estimate of it’s accuracy and (2) a (nonlinear) model to calculate the measured 
quantity as a function of the unknown crystal constants. 

Table 1. Independent constants for LiNbO, 

(a) (b) Cc) 

4.7 4.64 4.7 

20.3 20.30 20.0 

5.3 5.73 5.4 

7.5 1.52 6.0 

0.9 0.85 0.8 

24.5 24.24 24.3 

6.0 5.95 6.0 

3.1 3.76 3.8 

2.5 2.43 2.5 

0.2 0.23 0.35 

1.3 1.33 1.42 

44 44.30 42.12 

29 27.90 27.16 
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Fig. 4. Free surface SAW velocities on Y-cut LiNbCh. 

For the case of the SAW velocities the measurements are taken from Anhorn et al. [I] and 
the mathematical model is based on the calculation of the SAW velocities described already in 
Section 3. From our first calculations we have realized that it is not possible to obtain all 13 
inde~ndent materials constants of LiNb03 from SAW velocity me~urements only, This can 
easily be understood from the following equations: 

ZfSAW -f 
e2 

e--c+- 
E 

(25) 

Scaling of the complete data set with an arbitrary constant results in almost the same SAW 
velocities, and there are even additional degrees of freedom because only the ratio of e2 to E 
gives the piezoelectric stiffning of c. As a consequence of this discussion we have included in 
addition to the measured SAW velocities equations for the definition of the mass density p and 
the dielectric tensor E within a reasonable interval. 

Surprisingly even for such a basic parameter as the mass density the published values vary 
from 4628 kg/m3 to 4700 kg/m3 at room temperature. This may partly be explained by the fact 
that commercially available LiNb03 has changed over the years [5]. An accurate me~~rement 
of the mass density, therefore, is strongly recommended. 

Figure 5 represents the velocity difference for Y-cut LiNb03 between the measurements by 
Anhorn et al. and the curves calculated from our fitted constants (full line: free surface, dotted 
line: metallized surface). The maximum deviation is less than 1.2 m/s and the average is about 
0.43 m/s. While most constants obtained from our calculations are roughly within the range of 
those from Table 1, the piezoelectric constant e 33 is distinctly greater and, as a consequence, c& 
is smaller. Our result is most similar to the value found by Graham [4] who measured the 
piezoelectric stress constants from shock wave propagation. 

It should be noted that the accuracy of the obtained tensor coefficients does not depend only 
on the accuracy of the measured velocities but also on the crystal cut chosen for the 
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Fig. 5. Difference between measured and calculated SAW velocities based on fitted tensor 
coefficients. 

measurements. While the measurements on Y-cut LiNb03 provide not enough information to 
reach high precision, the SAW velocities on 128” rotated Y-LiNb03 are sensitive to all material 
constants. 

5. TWO-DIMENSIONAL TRANSIENT SIMULATION 

As already reported in Section 2 the investigations of the time-dependent simulation of surface 
acoustic wave generation and propagation are restricted to the two spatial dimensions in the 
sagittal plane. The primary reason for this is actually the enormous amount of computing 
resources required by a three-dimensional numerical solution of the partial differential 
equation set (7), (8). Such an expense is not necessary as I am mainly interested in the parasitic 
bulk wave generation of interdigital transducers. Figure 6 shows the geometry of the 
investigated transducer structures schematically. The length of the metallized fingers in 
y-direction is assumed to be much larger than the finger width. 

The second order partial differential equation system (9) to be solved as well as the surface 
boundary condition for the free parts of the surface (16) are the same as in Section 3 whereas 
the surface boundary condition at the electrodes is given by 

B, as, + Cm -s,+M,,, .s=(O,O,O,&JT. (26) 

This “mixed” boundary condition results from the Neumann conditions for the mechanical 
wave equations and from the Dirichlet condition for the electric potential. Assuming negligible 
mass loading of the electrodes the first three rows of B, and C,,, are equal to the corresponding 
rows of B. and C and the fourth row of B, and C,,, is zero. The matrix Mm has only one 
non-zero entry (the element 44). 

Fig. 6. Principle geometry of a transducer structure. 
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The most serious problem is represented by all other boundaries as it is not yet applicable to 
simulate a whole SAW device because of the two following reasons: (1) the dimensions of real 
devices would lead to an equation system of extremely high rank after the discretization, and 
(2) the practical fabrication of SAW devices includes some special treatment of the bulk 
boundaries (e.g. sticking on of some viscous material) such that undesired modes are absorbed 
or at least scattered; these technological steps can not be formulated satisfactory. 

Therefore, ignoring the real dimensions and assuming the substrate to build an infinite 
half-plane one has to introduce artificial boundaries in the sagittal plane in order to obtain a 
finite-dimensional linear system of equations with (9) and discretized boundary conditions at 
the surface (16), (26) f or each timestep. The obvious way to do this is to solve the problem in 
a rectangle (which includes all fingers) and to impose zero Neumann or Dirichlet boundary 
conditions at those boundaries of the rectangle which do not coincide with the surface. This 
approach, however, leads to reflections as soon as the first wave (i.e. in general a longitudinal 
bulk mode) hits the artificial boundary and, therefore, has to be abandoned. The method of 
transformation of the infinite sagittal plane into finite subdomains [8] has the drawback of 
relatively large discretization errors in these domains. 

My actually preferred method is based on the fact that at a sufficiently large distance from 
the fingers there exist mainly plane bulk waves with approximately radial propagation 
direction. First equation (9) is transformed into polar coordinates T, (Y and the limiting value 
for r to infinity is formed. This yields a system of partial differential equations in one spatial 
dimension which has the mentioned plane waves as solutions: 

Q - s, = Q 9 s, with Q=A.cos2cr+B.sincu.coscr+C.sin2a (27) 

The boundary condition (28) which is a generalized form of Sommerfeld’s radiation condition, 
satisfies the equation system (9) implicitely and, therefore, absorbes all possible radial 
propagating plane waves. 

s, = s ,~cosa+s, - sin (Y = -dm . s, 

The discretization is performed by the finite difference method with an equidistant spatial 
mesh and a constant time step size. The grid spacing depends, of course, on the required 
resolution concerning the electrodes as well as the shortest expected wavelength. In order to 
get a stable algorithm the criterion 

$>JT 
(29) 

must hold [12] where r(A*) and r(C*) denote the spectral radii of the 3 x 3 main minors of A 
and C (these submatrices only consist of elements of the elastic stiffness tensor). The stability 
condition (29) forces the algorithm to be “quicker” than the fastest acoustic wave. 

Owing to the hyperbolic-elliptic type of the partial differential equation set (7), (8) a 
semi-implicit time integration scheme must be used for the solution: while the mechanical 
quantities within the simulation area (i.e. the components of the displacement vector u) can be 
calculated for each time step explicitely using the results from the two previous time steps, the 
electric potential as well as all unknowns at the boundaries build an algebraic equation system 
(whose rank is given approximately by the number of nodes) which has to be solved at each 
time step simultaneously. 

For the solution of the resulting sparse linear (or linearized) algebraic equation system two 
different solvers have been implemented: the solution is performed either by Gaussian 
elimination or iteratively by a modified SOR-algorithm with adaptive relaxation parameter. 
The choice depends on the number of nodes as well as on the size of the time interval which 
shall be simulated. 

The main advantage of the described finite difference method compared to the frequently 
used Fourier transform method is that the difference method can easily be applied to non-linear 
elasticy laws, while the Fourier method relies strictly on the linearity of the problem. 

AS one particular example I present a transient analysis of a six finger transducer structure 
for Y-cut Z-propagating LiNb03. The geometry of the simulation area (in the sagittal plane) is 
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Fig. 7. Geometry of an investigated transducer structure. 

shown in Fig. 7. The distance between two neighbouring electrodes as well as the finger width 
amounts of 21.8 pm; as I take a so-called U6transducer the wavelength of the expected SAW 
is 87.2 pm. The dimensions of the simulation area are about 15 wavelength in x-direction and 
about 3 wavelength into the depth. The resonance frequency of the structure is given by 

;,=,,“f,; 40 MI-Ix since the phase velocity v of the SAW for the actual crystal cut amounts of 

The applied voltage on the electrodes is a sinusoidal function in time with a horizontal 
tangent at t = 0 to get consistent initial values (all unknowns at t = 0 are zero). The amplitude 
of the voltage is 1 V and the frequency amounts to 40 MHz. Figure 8 shows the mechanical 
displacement components u1 (which is the component parallel to the surface) and u3 (which is 
perpendicular to the surface) after three periods in a quasi three-dimensional plot. [It should be 
mentioned that for this special cut of LiNb03, the second equation of the PDE-set (9) is 
decoupled from the others. Therefore, the mechanical displacement component u2 is not 
relevant for wave propagation in this case.] The rectangular bottom of the drawing is the 
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Fig. 8(b). Mechanical displacement component ui after three periods. 

sag&al plane, whereas the third dimension represents the value of the dependent variable (the 
scale factor right to the vertical axis amounts to lo-‘O). Please note that the two axes have been 
scaled with different factors. The difference of the depth behavior is quite similar to Fig. 2 
(although another crystal cut has been analyzed there). 

In order to obtain information about the parasitic bulk wave generation the energy radiation 
of the ~~sd~~r structure is regarded. For that purpose one has to calculate Poynting’s vector 
P [2] which represents the transported energy per unit of time and per unit of area. The 
general Poynting’s theorem sounds for the time domain 

P(t) = -v(t) l T(t) + E(t) X H(t) (30) 
and in complex notation 

Y*‘T: exa* p=- - 
2 2 ’ 

(31) 

where H denotes the magnetic field and the superscript “*” means the conjugate value. It 
should be noted that in this context v represents the particle velocity (i.e. the partial derivative 
of the displacement vector u with respect to the time). 

Introducing the quasistatic approximation leads to the equations (32) and (33). 

P(f) = -v(t) l T(t) + e(t) * at (32) 

(33) 
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Fig. 9(a). Energy radiation in the sagittal plane. 

substituting equations (3)-(6) into (33) one obtains a formula for the stationary case 
only includes the primary variables u and C#J: 

a=-~~]*.[ciiimn.~+~~i~.~]+ 

(34) 

Figure 9 shows the real part of Poynting’s vector within two different subdomains of the 
simulation area. In Fig. 9(a) the vertical dimension is equal to that of the simulation area 
whereas the size in x-direction is only about one fifth of the investigated geometry in Fig. 7 
(it is approximately the area below the electrodes). It can clearly be seen that the energy 
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Fig. 9(b). Detailed view of the energy radiation. 
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radiation for that crystal cut of LiNb03 is quite unsymmetric. Most of the transported energy 
seen in this plot belongs to the generated SAW. 

Figure 9(b) represents the distribution of the real part of Poynting’s vector within a very 
small part of the simulation area. Please note that the upper boundary does not represent the 
surface but the lower boundary is equal to that of the simulation area. The x-dimension is 
about one tenth of that of Fig. 9(a). This distribution is representative for bulk mode 
generation as the surface acoustic wave already is very small in such a depth. The information 
given by the distribution of Poynting’s vector now could be processed in order to obtain more 
quantitative results. 

Finally, I should like to give some remarks on the required computational resources of the 
algorithms briefly described in this paper. The calculation of the two SAW solutions for one 
propagation direction (Section 3) needs about 2 CP-seconds (the value depends strongly on the 
starting velocity) on a mainframe computer with 1 million floating point operations per second. 
This seems not too much, even for the analysis of a wide spectrum of propagation directions 
within a certain material. For the improvement of the material data (Section 4) some 
thousands of CP-seconds were necessary. The two-dimensional transient analysis, of course, 
needs quite a lot of CP-time. The example in this chapter, for instance, requires due to the 
discretization an estimation of 38403 unknowns per time step and the rank of the sparse linear 
equation system that has to be solved simultaneously for each time step has a rank of 14001 
(the number of grid points in x-direction is 251 and that in z-direction amounts to 51). 
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