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ABSTRACT

The free energy distribution across the interface of coexisting quark and hadron mat-
ter is studied in the framework of lattice QCD. We calculate the interface tension a with
the " differential method” for pure SU(3) gauge theory and in the presence of dynamical
quarks with four flavors. Using lattices with spatial volume 82x16 it turns out that a
is very small and compatible with zero. The chiral condensate indicates the same width
of the domain wall as the Polyakov loop distribution and the other thermodynamical
observables.
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1. Introduction

It was the merit of QCD thermodynamics on space-time lattices to show that
matter can exist in two phases, a confining hadron phase and a free quark-gluon
plasma-phase. In pure gluonic QCD and in full QCD with four light dynamical
fermions most numerical simulations support the fact that the phase transition is
of first order!'? which implies that the two different phases can coexist at the crit-
ical temperature. This enables a mechanism to create an inhomogeneous universe
and can be studied from the first principles of lattice QCD. The most important
observable under consideration is the surface energy o between the quark-gluon
plasma-state and the hadronic bubbles. The numerical value of a is a fundamental
quantity for the inhomogeneity of the universe. It represents an input parame-
ter for the probability of nucleation and the average distance between nucleation
centers.® Further, it effects the nucleosynthesis of light elements. The thickness of
the domain wall of a coexisting two-phase system can also be associated with the
skin of the fireball of a quark-gluon plasma being currently under investigation in
ultrarelativistic heavy-ion experiments.

To extract o one has to evaluate thermodynamical expressions demanding to
differentiate the partition function with respect to the temperature, volume and in-
terface area. This can be realized on the lattice by directly summing over plaquettes
at fixed couplings (differential method) or by integrating the sum of plaquettes over
the coupling (integral method). Lattice simulations of pure gluonic QCD on four-

189



Int. J. Mod. Phys. C 1992.03:961-970. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA @ DAVIS on 02/09/15. For persona use only.

962 M. Hackel et al.

dimensional hypercubes of sizes N, x Ny x N, x 2 have led to a non-vanishing
a/T3 =~ 0.24 for both methods.»®> On N, x N, x N, x 4 lattices the situation is
not clear and comprises a value of a/T> compatible with zero.®” We perform an
independent analysis for N; = 4 relying on the differential method. A further aim
of this paper is to study the situation in the presence of dynamical quarks for which
we choose the number of flavors ny = 4 and the mass m = 0.05. This allows to
explore the domain wall between a two-phase system with spontaneously broken
and restored chiral symmetry. In addition to the surface tension and other thermo-
dynamical observables we calculate the distribution of the chiral condensate across
the interface.

In Sec. 2 the formulae of the lattice version of the thermodynamical quantities are
outlined. Sec. 3 presents our results with a discussion of the observables. In Sec. 4
we summarize the physical interpretation and give an outlook to future extensions
on this subject.

2. Theory

Starting from the relation for the free energy F
F(T,V,A) = -Thn Z(T, V, 4), (2.1)
we express the partition function Z
22,Y,4) = [ T] a0 [ dx. T e expl-S(0, % 20) (2.2)
by a path integral over the lattice action S(U,%, x) (Refs. 8, 9)

S(U) X, X) = SG(U) + SF(U7 X X)

la 1la 1 a2 1 aga,
=Z [73(P01+P02)+ = —2(Pia+ Pp3) + 5 —Po3 + 0231’12]
z L91 @0 gz @3 g3 aoas 93 At
ny — 1 —_n
+*4" Xz: M)z Xz + 2 §Xzﬁ (UzMXzﬂt - Uj—u,uxx-u)] . (2-3)
In the gluonic part of the action, the plaquettes P,, are defined as
P = Pu(2) = t2[2 — UpUpyun UL, UL, — hec] (2.4)

and U,, means the gauge field on a link of a hypercubic lattice. The factors 1/g?
denote the couplings for an anisotropic lattice with the so-called Karsch coeflicients
Csy €ty Bo = ¢, + c; entering the renormalization group equation.® The anisotropic
couplings determine the corresponding lattice spacings a;. In the fermionic part
of the action, according to the Kogut-Susskind formulation the fermion fields are
represented by single component Grassmann fields ¥,, x at the sites of the lattice.?
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Fig. 1. Realization of a two-phase system with an interface at 8.. The phase transition occurs

in the z direction at n, = 8 and n, = 16 due to periodic boundary conditions.

The fermionic action describes ns flavors with mass m and the Dirac matrices reduce
to phase factors n, = (—1)%1+F%u-1,

To perform QCD lattice-thermodynamics on a two-phase lattice of size N, x
N, x N, x N, we place the interface in the (x,y) plane (see Fig. 1). To be able to take
partial derivatives with respect to one variable while keeping two other variables
constant we choose three different lattice constants ag, a; = a; = ar, as which are
all set equal after the derivation of the observables. The temperature, volume and
interface size are given by

T =1/Niag, V = N}Nsatas, A= NZlad2. (2.5)
Now we can proceed straightforward to derive the gluonic thermodynamical observ-

ables we are interested in, i.e. the energy €g, pressure pg, surface energy ag and
entropy sg (Ref. 4)

v 8S¢
— = (—T722C&
‘e ={-T%5p A,V)

= (Z [(glz — ¢5)(P12 + Py3 + Pa3) — (;13 + ¢t)(Poy + Pz + Poa)] )y

v d5¢
— = (—v2C
Pa7 =V, )

= (Z ,:(9_12' + Ct)(P03 + Pl3 + P23) - (glz — C,)(P(n + P(]z + PIZ)] ),

x

A 8S¢
Z—(42C
ae = (A5 TJ,)

1 1
= (Z(;; + 'Z_(Ct —¢:))(2Po3 — Poy — Poz — 2Py3 + P13 + Py3)),

14 A
s¢V = (ee +PG)? e

1 1
= <Z(g~2 + E(Ct —¢))(2P12 + P13 + P23 — Py — Poz — 2Py3)). (2.6)
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To relate the energy and pressure to the T = 0 case we have to subtract the
vacuum contribution given by the average plaquette P,,(g%) on a symmetric lattice,
€vac = Pvac = —300P,y. A further observable of interest is the Polyakov loop which
on one hand represents the propagator in periodic time direction for a static quark

N,
(L) = (%;Ztr I Uzp=o) (2.7)

ny=1

and on the other hand acts as an order parameter.
Similarly, we treat the fermionic part of the thermodynamical observables. After
integration over the fermionic fields one obtains the fermion determinant

exp(—SH) = %‘det[D(U) + m], (2.8)

with the covariant derivative

n
Dysy(U) = 2 Ve g — ULy e (2.9)
i

Pzrforming the thermodynamical differentiations we get the fermionic parts of the
thermodynamical observables, i.e. the energy e, pressure pg, surface energy ap
and entropy sp. The derivation was given for the first time for Wilson fermions in
Ref. 4 and is formulated here for Kogut-Susskind fermions

14 n 1 1 _
er s = —-(1x[Do(D +m) ™)) — = Neng + - m((Xyxz))r=0,

T
v n B 1 1 —
pro = =3 ([D3(D +m) ™)) + FNeny — gl (Xoxe))7=0,
A
ar s = "L (ul(Ds + Dy — 2D5)(D +m)~Y]),
|4
spV = (ep +PF)?1-__O‘F%' (2:10)

The fermionic vacuum contribution for the energy and pressure is considered explic-
itly for gauge group SU(N.). In the fermionic system the chiral order parameter
appears which is related to spontaneous chiral symmetry breaking and is a measure
for the virtual quark density

— n _
(XaXa)) = g (42(D +m);0). (2.11)
Single brackets mean path integration over the gauge field after fermionic integra-
tion whereas double brackets denote additional fermionic integration. The total
expectation value of a thermodynamical observable O consists of the gluonic and

fermionic parts
O = Og + Op. (2.12)
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The simulations are realized on a system with one half in the hadron phase at
an inverse gluon coupling # = 3. — Af and the other half in the quark phase at
B = B. + AB (see Fig. 1). The partition wall is set to the critical coupling S,.
Thus, the interface is forced by construction and is not created dynamically. To
obtain the physical expectation value for a coexisting two-phase system, one has to
extrapolate the observables to the critical point.

3. Results

For the pure gluonic system we approximated the path integral by 25000 Monte
Carlo iterations around 3, with several values of AG = 0.05, 0.10, 0.15, 0.20,0.250n a
hypercubic lattice.!® For QCD with dynamical quarks we performed 5000 iterations
using the pseudofermionic algorithm!! with 50 fermionic steps and scanned over
ApB =0.05,0.10,0.15,0.20, 0.25, 0.30. The dynamical quark field has flavor number
ny = 4 and mass m = 0.05. In the fermionic simulation we used the corrected
Karsch coefficients.!?

08 ke v
07| -Orap=005 4
~0-48 =0.10
o o 96 F —aap=0.15
8 8 os | —oap=o020
2 5 oa] wap-ox
] 3 ) S
= 2 03} >
(=] o
'Y & 02 >
!
0.1
. : 0 s PN
1 3 s 7 9 11 13 15 1 3 S 7§ 1 13 15
z coordinate z coordinate

Fig. 2. Distribution of the Polyakov loop for pure gluonic QCD (left plot) and for full QCD
(right plot) with four flavors across the interface. The two-phase systems have time elongation

Nt = 4 and various coupling (temperature) gradients.

In Fig. 2 we compare our results on lattices with space-time volume 8 x 8 x 16 x 4
with (right plot) and without (left plot) dynamical fermions. The Polyakov loop
is an order parameter for the pure gauge spin-system and changes smoothly from
zero to a finite value. Since we plot the absolute value [(L)| without the factor
1/3 we find a positve number in the confinement compartment which is not only
due to the spreading of the hot phase. Also in the presence of dynamical quarks
a clear change is seen at the transition point from confinement to deconfinement.
Here the Polyakov loop has a non-vanishing expectation value due to the broken Z3
symmetry from the fermions in the confining phase.

The chiral order parameter is presented Fig. 3. Chiral symmetry is broken in
the confinement and restored in the deconfinement. For the chiral order parameter
profile crossing the interface at n, = 8 we find an increase of the wall thickness when
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Fig. 3. Profiles of the chiral condensate for full QCD with four flavors and for various two-phase

systems.

we approach the coexisting phases at A@ — 0. For A3 = 0.3 the width is about 5
lattice spacings @ which corresponds to roughly 1 fm. It turns out that the chiral
condensate has the same width as the corresponding Polyakov loop distribution.
The order parameter with dynamical quarks has not reached a plateau like in pure
gluonic studies on larger lattices indicating a width of the domain wall of 2.5 fm.*®
The lattice results can be compared with a study of the o model which predicts a
width of about 4.5 fm.3

In Fig. 4 our results for the thermodynamical quantities are presented with the
pure gluonic case placed to the left and full QCD to the right. All observables are
influenced by the interface induced between 8 < n, < 9. The kinks are due to the
discretization effects depending on the local construction of the operators* and are
decreasing with A8 — 0. Error bars corresponding to the mean standard deviation
have been computed and it was seen that they exceed the symbols in general only
around the interface. For all thermodynamical observables in full QCD vacuum it
is found that the gluonic and fermionic contributions are of the same size.

We start with the distribution of the energy. The vacuum corrections have been
determined from a consistent simulation of an 8* lattice with the same parameters.
The difference between the cold and the hot phase is less pronounced with increas-
ing time elongation due to the smaller magnetization of the plaquette operator
(2.4) (Refs. 4, 5). In the N; = 4 case discretization artefacts become increasingly
important and especially energy and pressure are difficult to be resolved. In the
deconfining phase the energy is in accordance with the Stefan-Boltzmann limit of
an ideal gas with a tendency of overshooting.!* We turn to the z component of the
pressure in Fig. 4. Discretization effects at the phase transition are clearly visible.
At high temperatures the ideal gas relation ¢ = 3p holds. The next plots present
the profile of the entropy which also increases towards the hot phase. The dis-
cretization effects are partially compensated because pressure and surface energy
enter into the entropy with different signs. Finally, the distribution of the surface
energy a(z) which has no direct physical meaning is plotted in Fig 4. In the region
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Fig. 4. Thermodynamical observables for pure gluonic QCD as a function of the z coordi-
ni

nate (left plots) and for QCD with four dynamical quarks (right plots) at different temperature
& gradients.
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of the phase transition the surface energy has a non-vanishing value. In full QCD
the total surface energy is stabilized by the fermionic contribution.

10 v - v v T | 10 T v v v v
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Fig. 5. Surface energy for full QCD with ny = 4 in comparison to the pure gluonic case (left
plot). Gluonic and fermionic contributions to the total surface energy in the presence of dynamical

quarks (right plot). Error bars denote mean standard deviation.

To get the surface energy o we have to integrate its distribution along the
z axis. The phase transition occurs twice due to periodic boundary conditions.
Thus, we have to divide the sum by two in order to obtain the surface energy for
one confinement-deconfinement tranmsition. In Fig. 5 the surface energy /T2 is
normalized to physical units. In the left plot we compare our N; = 4 computations
with and without dynamical fermions. We find that the surface energy has a small
numerical value in both cases, a/T2 < 0.1. We discuss our gluonic resulis and
compare them with some other recent data obtained by the integral method® and
the differential method.* There is a remarkable agreement if one keeps in mind that
the two methods are completely different. For N, = 2 the differential method* yields
a value of /T2 = 0.24 4 0.06 and the integral method® gives a/T> = 0.12 + 0.02.
Because the difference between the space like and time like plaquettes decreases
with increasing elongation in time the interface tension becomes more difficult to
be extracted. All computations for time extension N; = 4 have given a value
of a compatible with zero; an exception is the extension of the integral method
employing Polyakov lines to stabilize the interface which leads on a 16 x 16 x 32 x 4
lattice to a/T2 = 0.024 + 0.004.7 Our data points agree within error bars with
those of Refs. 4, 6 but are systematically lower especially for A3 = 0.05. Since
both analyses rely on the differential method the deviation is a consequence of the
shorter z elongation of our system, N, = 16 compared to N, = 40. For small
coupling gradients AS the two phases begin to intermix and the resolution of the
surface energy becomes unstable. The choice of a smallest reliable AG and the
numerical extrapolation A8 — 0 represent a serious problem.'® The right plot in
Fig. 5 shows the gluonic and fermionic contributions to the total surface energy
a = ag + ap normalized to T2 in the presence of dynamical quarks as a function

196



Int. J. Mod. Phys. C 1992.03:961-970. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA @ DAVIS on 02/09/15. For persona use only.

Chiral Interface for QCD with Dynamical Fermions 969

of the coupling gradient AZ. One finds that the fermionic part is smaller than the
gluonic one. The extrapolated surface energy for a coexisting two-phase system is
hard to extract and compatible with zero.

4. Summary

This paper contains a first trial to extract the interface tension in the presence
of dynamical quarks. We derived the corresponding expressions for Kogut-Susskind
fermions in the framework of the differential method and made an exploratory com-
putation of . OQur simulations were performed on a lattice of moderate spatial
volume 82 x 16. We started with the pure SU(3) case and time extension N, = 4.
Switching on dynamical fermions with four flavors we found that the gluonic and
fermionic contributions to the interface tension are of comparable size. The extrap-
olation to the coexisting two-phase system represents a great difficulty, especially
with increasing time elongation and on our moderate lattice size with limited statis-
tics. Important for astrophysics, we can predict /T2 ~ 0.1 as an upper bound for
the interface tension. Further, we studied the fermionic behavior of different ther-
modynamical observables together with the order parameters of confinement and
chiral symmetry. We made a crude estimate of the thickness of the domain wall,
which is for AB = 0.3 about 5 lattice spacings corresponding roughly to 1 fm. The
wall thickness increases towards the coexisting two-phase system which might give
some first principle information for heavy-ion experiments.

For fature investigations beside larger lattices and higher statistics more so-
phisticated methods should be considered. We propose in analogy to the method
which uses an external Polyakov loop field kL for stabilizing the interface, to em-
ploy the internal chiral condensate mwy+ of the fermionic action.” In this way, by
differentiating the partition function with respect to m, the surface energy could
be extracted in case of full QCD from the chiral condensate relying on the inte-
gral method. Another possibility might be to use the multicanonical algorithm and
the tunneling probability between metastable states to calculate the tension of a
dynamically created interface.®
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