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Abstract—In this work we have undertaken a comparison of
several previously reported computer codes which solve the semi-
classical Boltzmann equation for electron transport in silicon.
Most of the codes are based on the Monte Carlo particle tech-
nique, and have been used here to calculate a relatively simple set
of transport characteristics, such as the average electron energy.
The results have been contributed by researchers from Japan,
Europe, and the United States, and the results were subsequently
collected by an independent observer. Although the computed
data vary widely, depending on the models and input parameters
which are used, they provide for the first time a quantitative
(though not comprehensive) comparison of Boltzmann Equation
solutions.
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I. INTRODUCTION

S the available computing power increases, it has become

more appealing to solve the Boltzmann Transport equa-
tion for electronic transport in semiconductors, as opposed to
solving approximate sets of equations based on moments of
the Boltzmann equation. Solutions of the Boltzmann equation
allow one to investigate particular transport phenomena on
a microscopic scale, and under the best of circumstances to
simulate realistic devices. While solutions of the Boltzmann
equation can be replaced by simpler models and methods
for limited energy ranges, effects such as impact ionization,
that require the knowledge of the electron distribution over
an energy range of several electron volts, demand a more
fundamental approach. The availability of computational re-
sources has often forced researchers to make approximations
beyond those inherent in the Boltzmann equation itself, and
each of the existing transport simulation codes is-a highly
individualized collection of physical approximations and nu-
merical algorithms. The choice of models and algorithms is
often dictated by the particular phenomena and energy range
of interest. It is nearly impossible to compare the simulations in
detail, since most of them exist in either university or industrial
laboratories and are not available in the public domain. The
National Center for Computational Electronics (NCCE) has
provided an organization within which a direct comparison
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Fig. 1. The first three Legendre polynomials are used [15], [25]. (Goldsman,
Hennacy, Lin, S.-L. Wang).

has been performed [1], and this paper documents our results.
We emphasize that this study is not meant to be the final word
on transport simulation, but rather a starting point for an open
discussion.

We have focused this study on a single issue, the physical
models and their consequences for the high energy tail of
the electron distribution, which controls, for example, impact
ionization and electron injection from silicon into its oxide.
The calculations deal with transport at electric field strengths
typical of those found in modern MOS transistors, and repre-
sent the kind of calculation that we would like to be able to
do with confidence.

The results should be of use to those interested in construct-
ing a transport (or device) simulation program, in that one
can see various approximations to the Boltzmann Transport
Equation applied to the same example problem. This work thus
serves as a companion to each of the previous publications
regarding the models. Furthermore, these results represent a
benchmark for the state-of-the-art in semiclassical transport
simulation.

[I. THE CALCULATION

Each simulation code was used to calculate the energy
distribution of electrons in homogeneous, intrinsic silicon at
room temperature with time-invariant applied electric fields of
5 kV/em, 30 kV/cm, 150 kV/cm, and 300 kV/cm. For each
field, the percentage of electrons above 1.1 eV, 1.8 eV, and
3.1 eV were calculated. For intrinsic silicon the effects of

electron-electron scattering and impurity scattering need not -

be included in the simulation.

Figs. 1-20 show these data for each model, along with the
effective scattering parameters, and electron-phonon scattering
rates. The data sets have been arranged in order of increasing
complexity of bandstructure models, i.e., Figs. 1-7 use effec-
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Fig. 2. Parbolic, spherical bandmodel, six equivalent valleys [18],
(Hesto, Galdin, Dolfus, Castagne).
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Fig. 3. Nonparabolic, ellipsoidal band model [15], [17]. (Kosina, Hackel,
Selberherr).

tive mass bandstructures (only Fig. 2 uses parabolic bands, all
others are nonparabolic). The model corresponding to Fig. 8
uses effective mass bands, including nonparabolic, ellipsoidal
bands at the band minimum, and spherical parabolic bands for
higher lying minima. Figs. 9—16 represent the fit-band models
(discussed also in the Appendix) which use analytic functions
with adjustable parameters to capture some features of the
full bandstructure while maintaining the advantages of analytic
energy momentum relationships.

Figs. 17-21 represent the full band models, where the
bandstructure is calculated using a pseudopotential approach
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Fig. 4. Nonparabolic, ellipsoidal band model [40]. (K. Tomizawa).
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Fig. 5. Nonparabolic, ellipsoidal band model [27], [28]. (Charef, Dessenne,
Thobel, Baudry, Fauquembergue).

(see [14] for a summary of relevant pseudopotential param-
eters), and tabulated on a 3-D grid in momentum space.
The latter three data sets, shown in Figs. 19-21, use not
only full pseudopotential bandstructures, but also electron-
phonon matrix elements (coupling) calculated from the pseu-
dopotential description of the crystal, as opposed to using
phenomenological coupling constants as in models 1-18.

We have chosen to simply plot the total electron-phonon
scattering (emission plus absorption) rates as a function of
energy for each model. Although this is an incomplete rep-
resentation of any particular transport model (the relative
magnitudes of rates for different mechanisms and the impact
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Fig. 6. Nonparabolic, ellipsoidal band model [5]. (Ramaswamy, Tang).
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Fig. 7. Nonparabolic, ellipsoidal band model (7], [8]. (lizuka).

ionization rate are not shown) it does give some indication
about the density of electronic states and the strength of the
electron-phonon coupling which was used in the model. At
high electric fields the impact ionization scattering rate will
also have a strong effect on the calculated electron distribution
and the details of the ionization scattering rates can be found
in the references given for each data set. Recent work on the
impact ionization in silicon [22], [41], [42] has furthered our
understanding of the underlying physics as well as our ability
to construct physically realistic ionization scattering rates.
The Appendix contains a derivation of the electron-phonon
scattering rates, an explanation of the various approximations
which are typically used, and a definition of the parameters
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Fig. 9. Analytic fit band model [4], [24]: (Wang, Maziar).

which are listed in the figures. The figure captions indicate the
type of bandstructure model used, references which describe
the models, and the names of the individual contributors.
Fig. 22 shows a collective plot of the data for the average
energy of the electron distribution as a function of the applied
field. This figure summarizes a certain lack of consensus,
as we observe that the average energy can span nearly one
order of magnitude from the highest to lowest result, even
for fields as low as 30 kV/cm. We emphasize, however, that
the various models have been developed for certain purposes
and to be used in specific energy ranges. The models may give
“correct” results for the energy range for which they have been
constructed but fail to agree for the average energy.
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Fig. 11. Analytic fit band model [4] (Scrobohaci, Tang).

In summary, we can say that there is significant, often
vast, difference even between models which would at first
appear to be similar. This result indicates that our collective
understanding of, and ability to simulate, electronic transport
in silicon calls for a more unified approach and for a clear
understanding of one’s goals before a simplified model is used.

APPENDIX A
SUMMARY OF ELECTRON-PHONON SCATTERING
MODELS AND BAND MODELS IN SILICON

Here we summarize the formulas for the nonpolar electron-
phonon scattering rates typically used in semiclassical Monte
Carlo simulations of electronic transport in silicon. As general
references we refer the reader to the books by Conwell [31]
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and Ridley [32], and the work of Seitz [33] and Harrison
[34], which although not strictly applicable to intervalley
scattering in silicon, have nonetheless formed the theoretical
basis for most of the models which are currently in use. The
coupling to the long wavelength acoustic phonons (intravalley
scattering) via the deformation potential interaction was given
by Shockley and Bardeen [35]. In this Appendix we attempt
to review the subject with sufficient generality to explain the
scattering rates used in virtually all of the silicon transport
simulations in use today [36].

One usually starts with Fermi’s Golden rule, (see, for
example, [37]) for the quantum mechanical probabilities per
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Fig. 15. Analytic fit band model [20]. (Mizuno, Taniguchi, Hamaguchi).

unit time of scattering from a state |k > to |k’ > (the vectors
k are wavevectors in the first Brillouin zone, and the states
labeled by these wavevectors are Bloch states)

T—(lk—) = 2% > 1My (k. K)PS(E(K') — E(k) + hwg.n)
o

% (Nqn +1/2£1/2). (A1)

This is the rate at which electrons scatter out of state |k > to
all possible final states [k’> £ is the reduced Planck constant,
the upper signs are for emission and the lower signs are
for absorption, Awg, is the energy of the phonon of branch
n, with wavevector q. M, (k. k') = (k|He—pnlk') is the
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matrix element of the perturbing electron-phonon interaction
potential. Ng,, is the average phonon occupation given by the
Bose—Einstein distribution. Crystal momentum is conserved
through the additional relation q = k — k' + G,,, where q is
the phonon wavevector confined to the first Brillouin zone, and
G, is a reciprocal lattice vector which is by definition zero for
Normal processes and nonzero for Umklapp processes. In the
case of scattering between any of the six equivalent conduction
band minima in silicon, G, is nonzero. In order to simplify the
notation we assume a single conduction band, and the many
band derivation would require only additional band labels on
the electronic states. In the final result (A7) we indicate how
one generalizes to a many-band model.
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Fig. 18. Full band model [13], [14]. (Fischetti, Laux).

fraction of electrons above

Flkviem) _t.tev___  18eV_  3.0ev
— 5
——- 30 3.79x10° 2.58x10"
—-— 150 .55 22 7.9x10°
—— 300 .66 35 3.7x10"
10° 5m
-3
7 <(DK)> <2x10° eVicm g
= <]
= : <hw>=39.39 meV | 3
3 10 8,.=10.1eV 4 3
-g m,=.903 8
~ r =143
g 10° U™\ ™ a3
= ' 8
3 ’ = =
8 / AN ~2 g
g 10" \ \_" {123
- \ N 2
\
£ 1o \ =
] 10° | \ 11 2
w “\:‘ m:
10° — 0
0 1 2 3 4 5
Energy (eV)

Fig. 19. Full band model [6]; no adjustable electron-phonon parameters in
this model. (Yoder, Higman, Hess).

The general electron-phonon coupling strength is defined as
20V wq .+ H
A,k k) = {%} | M, (k, k)| (A2)

where p is the mass density of the crystal and V is the macro-
scopic volume of the crystal. The scattering models which
are in common use may be obtained by making the critical
assumption that the coupling strength A, is independent of
both k and k’, and depends only on the energy of the initial
state. This is assumed in nearly all Monte Carlo models, and
implies that the strength of the coupling of the electrons to
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Fig. 20. Full band model [23]; no adjustable electron-phonon parameters in
this model. (Kunikiyo, Mizuno, Kamakura, Takenaka, Taniguchi, Hamaguchi).
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Fig. 21. Full band model [26]; no adjustable eletron-phonon parameters in
this model. (Yoder, Hess).

the phonons is constant on equi-energy surfaces. We can then
write the scattering rate in the form

1 _ 27 h 9 ‘ ,
T(E) B ; [ZPqu,n} S ;é(E(k )~ B £ hwgy)

X (Ngy+1/2£1/2). (A3)

Let us first consider intervalley scattering. This process
is frequently referred to as “nonpolar optical” intervalley
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Fig. 22. The average electron energy corresponding to the electron distribu-
tions shown in the previous figures.

scattering, although in principle acoustic phonons contribute as
well. Indeed this is the model used by nearly all silicon Monte
Carlo codes, with the exceptions being those represenfed
in Figs. 19-21. A significant assumption is that the optical
phonon dispersion is flat (i.e., w is independent of q), which
allows a simplification of (A3), by removing the q subscripts:

1 2r h 2/ a7
=i ; {2PV%JA"(A7,+1/2$1/2)

x Y S(E(K') — B £ hwy).
"

(A4)

We will retain the general notation A, for the coupling
strength, although it is common to denote the intervalley
coupling constant by (D K) for historical reasons dating back
to the work of Seitz {33]. The sum over k' of the energy
conserving delta function gives simply the density of final
(after scattering) states, so with the approximations made so
far the energy dependence of the scattering rate at a given
energy is proportional to the density of final states.

At this point we have simplified the scattering rate as far as
we can without making critical assumptions about the energy-
momentum relation, i.e., the band model. There are a variety
of methods by which one can calculate the bandstructure,
with varying degrees of accuracy, and these calculations are
far beyond the scope of this summary. Given a theory and
computational model for calculating E(k) throughout the
Brillouin zone (some examples of these theories are given
in [32]), one can evaluate the scattering rates based on this
bandstructure directly using (A4). A newer class of band
models are “fit band models” which are essentially a set of
analytic functions which contain free parameters which can
be adjusted to agree with, for example, the density of states
calculated with a physical model. Again, the details of these
models are complicated and it is not appropriate to discuss
them here. Near the conduction band minima, however, it
is possible to express the bands as simple analytic functions
with physically meaningful, and derivable, parameters. These
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models allow us to perform the sum over final states (k) in
(A4) analytically, and for clarity this is the route we shall
follow below.

A common model is the so-called “nonparabolic model,”
which can be derived from k-p theory of the bandstructure (see
[32]). For silicon the equi-energy surfaces near the conduction
band minima are ellipsoids of revolution and the theory yields
an energy-momentum relation given by

2 _ 9 L 9
E(1+aF) = % (k1 m’:m) n (k2 m]lfoz)
ka — kna)2
+ LM) 5)
ms

where we have taken the major axis of the ellipsoid in this
case along the k; direction (the longitudinal effective mass,
my is larger than the transverse effective mass m.), and
ko = (ko1, ko2, ko3) is the position of the conduction band
minimum. Further simplification can be made by setting the
parameter « to zero, which gives a parabolic, or free-electron-
like energy-momentum relation. If we set m; = m, the
surfaces of constant energy are spheres. The most simplified
band model, “spherical, parabolic bands” then have E = ——J—Iz.
One would use an effective mass for m here, but tl’llS is
essentially the dispersion relation of a free particle. These last
two approximations could be carried through below, but we
shall maintain some generality and use (A5) in what follows.

In silicon there are six equivalent minima as described by
(AS5), ellipsoids oriented along each of the equivalent (100)
axes in k space. With this assumption we can perform the
sum over final states analytically, which yields

E l’ D (
\/_

wphs
(N,, +1/2+1/2)

(A6)

where E' = E F hw,, 1 labels a set of equivalent final valleys
all oriented similarly with respect to the initial valley, Z; is
the degeneracy of the final valleys, and mp is the density-of-
states effective mass given by (m?m;)'/3. If we consider the
conduction band of silicon with six equivalent minima each
with its principal axis oriented along one of the (100) axes,
we can categorize the intervalley scattering events into two
sets of final valleys. Intervalley scattering to the valley on the
opposite side of the Brillouin zone (e.g., {1,0,0) to {(—1,0,0))
1s referred to as “g-type” scattering, Z, = 1; scattering to
one of the perpendicular valleys (e.g., {1,0,0) to (0,1,0)) is
“f-type” with Z; = 4. (The notation *f-type” and “g-type”
appears to have originated with the work of Morin et al. [38]
and the labels f and g have no particular significance).

In the case of a multi-band model the total scattering rate

E) can be evaluated by averaging over all bands v

DW(E) 1
D(E) 7,(E)

(A7)

where D(E) is the total density of states and D, (F) is the
density of states in band v. 1/7,(£) is the rate for out-
scattering from band v into all other allowed bands.
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The long wavelength acoustic modes present a more difficult
problem since we cannot assume that the phonon energy is
independent of the wavevector q. Therefore the integration
over the energy-conserving delta function, multiplied by the
Bose-Einstein factor Ny, requires more effort. Different
approaches to acoustic phonon scattering can be found in
[13], [39], but in general the material properties which control
the scattering rate for intravalley acoustic scattering are again
the bandstructure, which can be represented by the effective
mass(es) as above, and a coupling constant referred to as the
acoustic deformation potential. For long wavelength acoustic
scattering the first nonvanishing term in powers of g is the
linear term, and so the acoustic deformation potential appears
in the product A,.q, where ¢ is the magnitude of the phonon
wave vector. The product appears in place of the constant A,
above.

To condense the sometimes complicated scattering mod-
els to a few representative numbers we use the “effective
intervalley deformation potential”

1

2

(DK);; = ZM (A8)
and the “effective intervalley phonon energy”
- 1 A2
hw)l = — — A9
7

which were introduced in [14]. The subscripts ¢7 indicate a pair
of states, e.g., initial and final valleys in the conduction band.
The product (DK ) (hw) ]1 is proportional to the strength
of the intervalley scattermg from valley ¢ to valley j at zero
temperature. In the case of the conduction band minima of
silicon then, to get the total effective quantities one must
average over four f-type processes, and 1 g-type process.
For example, for both f- and g-type cases there may be a
number of phonon branches 7 included in a particular model,
and averaging over these branches is done first according to
(AB) and (A9), and the averaging over f- and g-type processes

is performed according to ((DK)) w

where (DK); and (DK), are calculated from (A8). These
constants are listed in the figures for each model as some
indication of the strength of the electron-phonon interaction at
the conduction band minimum.
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