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Carrier scattering by ionized impurities is strongly anisotropic, and events with small scattering
angles are highly preferred. On the Monte Carlo technique applied to semiconductor device model-
ing this behavior imposes several problems which are discussed. We present a method which reduces
the amount of low-angle scattering very effectively. Instead of the anisotropic scattering mechanism
an equivalent isotropic mechanism is defined which gives the same momentum relaxation time. De-
pending on doping concentration and carrier energy the equivalent scattering rate is up to four
orders of magnitude lower. By analyzing the Boltzmann transport equation a condition is derived
on which the use of the equivalent scattering model is justified. The equivalence of the anisotropic
and the isotropic scattering models is also demonstrated empirically by means of Monte Carlo cal-
culations. The plain Brooks-Herring model is employed as well as an improved model including
momentum-dependent screening and coherent multi-potential scattering. An empirical correction to
attenuate the peak of the scattering rate at low energies is presented, and the statistical screening
model of Ridley is critically discussed.

1. Introduction

To simulate carrier transport in submicrometer-scale semiconductor devices the Monte
Carlo technique has found widespread application [1 to 4]. Because of high doping con-
centrations in such devices carrier mobilities are considerably reduced by scattering off
ionized impurities.

The large range of Coulomb forces makes the scattering cross section of a single ion
very large, or even infinite if no screening is assumed. Therefore, Coulomb scattering is a
strongly anisotropic process with a high probability for small-angle scattering events.
While scattering events changing the momentum very little are predicted to occur fre-
quently their effect on momentum relaxation is small. This property of Coulomb scatter-
ing, though being physically sound, poses some problems on the Monte Carlo technique.
A great many of low-angle scattering events have to be processed thus consuming com-
putation time. Very short free-flight times are obtained which further degrade the effi-
ciency of the Monte Carlo procedure.

Fig. 1 illustrates this problem. As an example, the low-field mobility as a function of
the ionized-impurity concentration, Vi, has been calculated by the Monte Carlo method.
The standard Brooks-Herring model was employed (see, e.g. [5][6]). One can observe
that at low impurity concentrations about 93% of all scattering events are of Coulomb
type. Phonon scattering constitutes the rest. The curve in Fig. 1 then decreases slightly
with increasing N and at about 10%° cm™ starts to increase. The latter effect is due to

degeneracy when the power law of the screening parameter [, changes from NI1 2 to
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Fig. 1. Relative frequency of Coulomb scattering as a function of doping concentration. Because of
the large range of Coulomb forces the frequency is very high even at low concentrations

NI1 /5. At low impurity concentrations we observe the paradoxical situation that on the
one hand ionized-impurity scattering is the most frequent process, and that on the other
hand it has nearly no effect on the mobility. This discrepancy occurs because the colli-
sional and the momentum cross sections for the considered process can differ by several
orders of magnitude.

We present a method which allows to reduce the amount of low-angle scattering very
efficiently without altering the underlying transport problem. Instead of using the highly
anisotropic scattering cross section of screened Coulomb interaction we use an equiva-
lent cross section, which is isotropic, and which yields the same the momentum relaxa-
tion rate as the anisotropic cross section. A condition is derived on which the use of the
equivalent cross section is justified.

Another advantage of the new scattering model is that it is well suited for full-band
Monte Carlo calculations. In these calculations it is problematic to randomly select a
momentum transfer ¢ according to a non-constant probability density function. This
specific problem does not arise if an equivalent isotropic model is used instead of the
original anisotropic one.

2. Mobility Definition

The transport properties of carriers in semiconductors can be well described by the
Boltzmann transport equation [7]. In the following we consider the scattering integral at
the right-hand side of the Boltzmann equation which takes for the non-degenerate case
the form

0 %
(%) = s [erea000) ~ P iy a )
o). (27)

k
Here, V) denotes the volume of the crystal, f is the electron distribution function and k

the electron wave vector. Scattering of charge carriers is a quantum mechanical process
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which is frequently treated by quantum mechanical perturbation theory. P(k,k’) in (1)
represents the transition probability from an initial state k to a final state k'.

A macroscopic momentum balance equation is obtained by multiplying both sides of
the Boltzmann equation by the electron momentum, p = fk, and integrating over k. By
applying this procedure to (1) one obtains the average rate of loss of electron momen-
tum due to scattering

() - [
k

(2‘7/:)3 J(k —K)P(X,k)dk' | dk 3)

o\
!

= —h| ) k7o (k) dk. (4)

In order to proceed from (3) to (4) one has to assume that P depends only on 6, the
angle between k and k’, and not on the azimuthal angle ¢,

Pk, k)= P(k, K ,cos6) . (5)

This assumption is fulfilled for any isotropic scattering potential. The condition (5) en-
sures that the vector-valued integral over k' in (3) is parallel to k, and the proportional-
ity factor between these two vectors is given by the microscopic momentum relaxation
time, 7.

Now we introduce as defining relation for the mobility (see, e.g. [8][9])

J=u (%P) (6)

In this general form, u is a tensor quantity. Due to an anisotropic band structure and an
arbitrarily distorted off-equilibrium distribution function the current density and the
momentum loss rate are not necessarily parallel vectors. The electron current density is
defined as

3 —erg(k) £(k) dk. ™)

k

A scalar mobility can finally be extracted from (6) by using the magnitudes of the
involved vectors,

= evali) 7(k) di
[[hk 7l (k) fk) dk|

®)

In the following we adopt this mobility definition because its derivation involves only
very few approximations. Other mobility definitions found in the literature rely on much
more stringent assumptions, such as the relaxation time approximation, constant effec-
tive mass, and/or a perturbative solution of the Boltzmann equation at very low electric
fields.
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3. The Equivalent Scattering Cross Section

Anisotropic and elastic scattering can be discussed in terms of the differential scattering
cross section, o(k,cos@). For a given wave number k, the differential scattering cross
section can be interpreted as a probability density function of the scattering angle 6. In
the following the notation notation z = cos 6 will be adopted. For ionized-impurity scat-
tering the differential scattering cross section ¢ and the quantum mechanical transition
probability P are related by (see, e.g. [5])

R D (T ORI
o) = N T !P(k,k,z)k aK | ()

Np denotes the concentration of the impurity centers, and v, is assumed to be derived
from an isotropic band structure, v, = OE/0hk. The total scattering rate A and the mo-
mentum relaxation time, which was introduced in (4), can be expressed in terms of the
differential scattering as follows:

Ak) = 27 Ny (k) J a(k,2) dz, (10)
— 2 Ny v, (k) J(1 ) o(k, 2) ds. (11)

-1

T (k)

To tackle the problem of small-angle scattering we construct an equivalent scattering
cross section ¢ that fulfills two requirements:
1. The equivalent cross section is isotropic:

9o (k, z)
0z

=0; (12)

2. The equivalent and the original cross section yield identical momentum relaxation
times:

T (k) = T (k) . (13)

With (13) it is ensured that the main transport parameter, namely the non-equilibrium
mobility (6), is not altered as long as the distribution function remains unchanged.

The scattering cross section ¢ and the total scattering rate A of the equivalent model
can readily be obtained by combining (10), (11) and (12), (13)

1

G(k, 2) = (k) = % J (1—2) o(k,7) 47, (14)
~ 1 o
Ak) = =00 (15)

In a Monte Carlo procedure ionized-impurity scattering can now be treated as an elastic
and isotropic process. The scattering rate for this process is given by (15). The computa-
tion of after-scattering state, k’, is considerably simplified due to the isotropicity of the
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process
K=k, ¢ =2mr, cost =2ry — 1,

where r; and ry are two random numbers evenly distributed between 0 and 1, and sphe-
rical polar coordinates are assumed.

For an anisotropic scattering process with a high preference for forward scattering the
momentum relaxation rate 7! is always smaller than the total scattering rate A. There-
fore, using the equivalent scattering rate (15) in a Monte Carlo procedure has the advan-
tage that ionized-impurity scattering becomes a less frequent scattering process. The
effect, that the equivalent scattering model requires a considerably lower number of
Coulomb scattering events to be processed, can be interpreted as a gathering of many
scattering events each with small momentum transfer to one scattering event with large
momentum transfer.

Now the question arises to what extent the transport problem is altered when the
equivalent scattering model is used. We assume that the transport problem is described
by a Boltzmann equation. Because any change of the scattering cross section will not
change the left-hand side of this equation, we only have to investigate how the right-
hand side is affected. In the Appendix we show that the scattering integrals are identi-
cal,

0.~

if two prerequisites are fulfilled. First, the transition probability P has to account for
exact energy conservation as it is stated by the d—function in the golden rule of Fermi.
Second, the distribution function has to be of the following form which is usually re-
ferred to as diffusion approximation

f(k,cos8) = fs(k) + fi(k)cosb. (17)

The impact of this restriction is supposed to be practically negligible for the here consid-
ered problems. One should be aware of the fact that 4 and P in the scattering integral
(1) comprise contributions of many scattering processes, and that only the contribution
of Coulomb scattering is eventually modified but not those of the dominant phonon
processes. Furthermore, Coulomb scattering plays an important role especially at low
electric fields, where the approximation (17) is certainly very accurate. At high fields,
however, where it might become necessary to include higher powers of cos8 in (17) the
influence of Coulomb scattering diminishes rapidly. For instance, the saturation velocity
does not depend on the doping concentration and hence not on impurity scattering.

For the reasons discussed so far it can be expected that replacing a particular aniso-
tropic Coulomb scattering model by the corresponding isotropic one will introduce an
error which is virtually negligible in most practical cases.

4. Ridley’s Statistical Screening Model

One subject to be discussed in the context of the problems related to small-angle scatter-
ing is the statistical screening model introduced by Ridley [10]. In a form suited for
Monte Carlo calculations [11] this model has become very popular, and many authors
have employed it in their Monte Carlo codes.
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Formally, the statistical screening model is obtained by modifying the scattering cross
section of the Brooks-Herring model as follows:

Omod(k, 2) = opu(k, 2) exp(—RNyb? (2)) , (18)

R denotes the average distance between the ions, and b is the impact parameter as func-
tion of the scattering angle, z = cos 8. This model can be interpreted to cut off the long-
range part of the screened Coulomb interaction. As a consequence the amount of low-
angle scattering is effectively reduced, which is probably the main reason for the popu-
larity of this model. However, it is to note that according to (11) and (6) such modifica-
tion of the cross section inevitably results in a modified mobility.

The original intention was to get an impurity scattering model that is applicable over
a wide range of conditions. However, in a semiconductor at finite temperature we have a
more specific condition in that free carriers responsible for screening are always avail-
able. Therefore, in the case of semiconductors it is not necessary to bridge the gap be-
tween the Conwell-Weisskopf (see, e.g. [5][6]) and the Brooks-Herring models, and the
latter model can always be used without facing any divergence problems.

We now shall briefly discuss the basic assumptions of the Brooks-Herring model and
the additional assumption introduced by the concept of statistical screening. For the
Brooks-Herring model the transition probability is derived for one screened impurity
center in the Born approximation. Then the situation in a doped semiconductor is de-
scribed by simply multiplying the single-center transition probability by the total num-
ber of impurities, NiVj.

Especially this procedure of weighting all centers equally is not adopted in Ridley’s
model. Ridley argues that the random location of the impurities leads to some extent to
statistical cancellation of the many impurity potentials. With the scattering cross sec-
tion a weight has to be assigned which decreases exponentially with the distance of the
electron from the impurity center ((18)). A measure for this distance is the impact para-
meter.

However, the introduction of such an exponential weight function appears somewhat
artificial, and we think of two indications that suggest that all the impurity centers
should be weighted equally. First, it seems that, instead of leading to weaker scattering
due to statistical screening, the random location of the centers is a prerequisite to have
effective Coulomb interaction. In [12] experimental evidence is reported that scattering
becomes weaker if part of the ionized centers are correlated. If all impurities formed
some regular pattern there would be no impurity scattering at all. Therefore, assuming
that non-correlated impurities lead to weaker scattering seems not logical.

Second, one can consider the potential caused by all impurities. Within the linear
screening theory the screened Coulomb potentials V; of the single centers can be super-
imposed in a straightforward manner,

Vir) =Vir —r1) + Vi(r —r2) + ... (19)

Using the Born approximation the Fourier transform of the potential has to be calcu-
lated and the absolute value of the squared potential. The linear translations of the
potentials only change the phase.

V(q) = Vi(q) exp(—iq - r1) + Vi(q) exp(—iq-r2) + ..., (20)
V(@)® = [V2(g)| + [VE(q)l ... +2[V2(q)| cos(q - (r2 — 1)) + ... . (21)
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Obviously, the single-ion contributions in (21) do not depend on any spatial coordinate.
Only the interference terms containing the cosine function depend on the spatial loca-
tions of the ions. These terms describe coherent two-ion scattering. Both the Brooks-
Herring model and Ridley’s model explicitly treat scattering as two-body interactions.
Therefore, when discussing these models we have to consider only the single-ion terms in
(21) and can exclude the two-ion terms from the discussion. We conclude from (21) that
for any single-ion scattering model the single-ion potentials have to be superimposed
with unity weight.

5. Ionized Impurity Scattering

We start with the Brooks-Herring model and then discuss some physical refinements of
this model. For the Brooks-Herring model the Fourier transform of the scattering poten-
tial is of the form

V(o) = (2 )% (22)

E0Er ¢ _,_ﬁ?)Q ’

where & denotes the relative permittivity of the semiconductor, and f, is the inverse
Fermi-Thomas screening length,

ﬁ2 e’n 7:71/2(’7)

= 23
* eoecksT, Fipa(n) (23)

Here, n represents the electron concentration, 7;, the electron temperature, F; the Fermi
integral of order j, and # is the reduced Fermi energy. Employing the potential (22) in
Fermi’s golden rule and performing the integration over the final states one ends up
with a scattering rate A and a momentum relaxation rate, which defines the equiva-
lent scattering rate Ay,

Apn(k) = C(k) %ﬁgl%b , (24)
dpn(k) = C(k) é <ln(1 +0b)— 131;) . (25)

In these equations we have set b = 4k> /ﬁf, and the energy-dependent prefactor C' is of
the form

Ny Z2%et

k) = 272 (0e:)2ug (k)

(26)

Fig. 2 shows the ratio ABH /Apn as a function of the doping concentration for a low-
energetic electron (E = 0.1kgT), a thermal electron (E = kpT) and a hot electron
(E = 10kgT). Depending on the doping concentration and the electron energy the
scattering rate of the isotropic model can be several orders of magnitude lower than
that of the anisotropic model. This results in a considerable saving of time expended
at the processing of Coulomb scattering events in the course of a Monte Carlo calcula-
tion.
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Fig. 2. Ratio of the isotropic scattering rate, which is equal to the momentum relaxation rate, and
the anisotropic scattering rate as it results from the Brooks-Herring model (Egs. (24) and (25)).
The parameter denotes the electron energy normalized by kg7, with T'= 300 K

The Brooks-Herring model is well suited to demonstrate the peculiarities of ionized-
impurity scattering. To get quantitative agreement with measured mobility curves, how-
ever, the model needs to be extended to include additional physical effects. We found
that momentum-dependent screening and a correction term for coherent multi-ion scat-
tering have a strong impact on the mobility. How these effects can be accounted for in
an uncomplicated fashion will be published elsewhere. The resulting scattering potential
is given by

Vg = (Z) e /; P (1 " Sizf) . (27)

~1/3

Here, R denotes the average distance between ions which is defined as R = (27Ny)
The screening function G is approximated by a rational function [13].

The model of ionized-impurity scattering defined by (27) can be employed in a Monte
Carlo procedure very efficiently by resorting to internal self-scattering. Within this fra-
mework scattering is treated as if it were a Brooks-Herring problem. The Brooks-Herring
scattering rate is multiplied by some amplification factor B, which is chosen such that
the following inequality is fulfilled in the interval g € [0, 2k]:

B|Veu(g)|* = [V(9)I*. (28)

In this way we get a Brooks-Herring type scattering rate which is larger than the scat-
tering rate A resulting from the potential (27),

Blon(k) > (k). (29)

Note that both Agy and A are rates of isotropic scattering processes. Now there is a well-
defined probability P of accepting the selected scattering event: P = 1/BAgy. This prob-
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ability can also be expressed as

2k
I V(@) ¢*dq
0

P= (30)

2k '
B[ |Vau(q)l’¢*dg
0
Instead of solving these integrals directly one can think of solving them by means of

Monte Carlo integration. Keeping this in mind the internal self-scattering algorithm can
be defined as follows. A random number ¢, € [0, 2k] is chosen according to the probabil-
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Fig. 3 Comparison of the a) relative frequencies and b) low-field mobilities obtained from the an-
isotropic Brooks-Herring model and the equivalent isotropic model; T'= 300 K and F = 700 V/cm
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ity density function \VBH(q)|2q3. Then a random number p, is chosen evenly distributed
between 0 and B|Viu(g)|*. If p. < [V(g)|* then the scattering event is accepted, other-
wise it is rejected and self-scattering is performed instead.

By means of the described method explicit integration of the potential (27) can be
avoided, a task which can be very time-consuming depending on the complexity of the
used screening function.

6. Results and Discussion

The low-field mobility in uncompensated silicon will be discussed. In addition to ionized-
impurity scattering the transport model comprises acoustic intra-valley scattering, six
different types of phonon inter-valley scattering [6] and plasmon scattering. We adopt a
non-parabolic and isotropic band structure using an effective mass of m* — (.32 and a
non-parabolicity coefficient of a = 0.5 eV~!. Room temperature is assumed.

A single-particle Monte Carlo program is employed, and steady-state averages are
computed by sampling the quantities of interest at the before-scattering states [6]. Due
to the high carrier concentrations considered the Pauli exclusion principle has to be
accounted for. A rejection technique [6] is used assuming equilibrium Fermi-Dirac statis-
tics for the occupation probabilities of the final states. The electron mobility presented
in the following is given by u = vq/E, where the drift velocity, vq = (vg), is obtained by
averaging the electron group velocity, and the assumed magnitude of the electric field
was 700 V/cm. It should be noted that (6), which was used to theoretically justify the
new approach, will consistently simplify to 4 = vq/FE if a spatially uniform condition is
assumed.

In Fig. 3 the anisotropic Brooks-Herring model (24) and the equivalent isotropic mod-
el (25) are compared. Fig. 3a shows that the isotropic scattering model considerably
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Fig. 4. Results of the Brooks-Herring model and the extended Coulomb scattering model compared
with experimental data [14]. The extended model agrees better with the experimental data than the
plain Brooks-Herring model. Both, the anisotropic version and the isotropic version of the extended
model yield the same results
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reduces the amount of Coulomb scattering events, especially at low doping concentra-
tions. Despite the large difference in the frequency of Coulomb scattering Fig. 3b demon-
strates that the resulting concentration-dependent mobilities are virtually identical. This
result confirms the theoretical investigations in Section 3.

The mobilities resulting from the scattering potential (27) are plotted in Fig. 4. This
potential gives significantly better agreement with experimental data [14] than the plain
Brooks-Herring model, which considerably overestimates the mobility at intermediate
and high doping concentrations. Scattering caused by the potential (27) has been imple-
mented both as an anisotropic model and as an equivalent isotropic model. The algo-
rithm for the isotropic model was further simplified by using internal self-scattering as
reported in the previous section. Fig. 4 shows that both ways of implementing the scat-
tering model yields identical results.

Finally, we shall discuss the peculiar energy dependence of Coulomb scattering and
how to overcome the related problems. In Fig. 5 the Brooks-Herring scattering rate is
plotted as a function of the energy. Characteristic of Coulomb scattering is the peak at
low energies which is located around Eg/4 and increases with decreasing doping concen-
tration. Ej defined as Eg = h’B2/2m™ is on the order of 0.02 meV at Ny = 10'6 cm~2.
This energy is by more than four orders of magnitude smaller than the thermal energy
(kgT = 25.8 meV at room temperature). According to the thermal distribution there
will be only few electrons that are affected by this peak of the scattering rate. Unfortu-
nately, not only the scattering rate but also the momentum relaxation rate shows such a
peak at low energies (Fig. 5).

We introduce an empirical correction to attenuate this peak and hence to remove the
necessity of dealing with extraordinarily high scattering frequencies in Monte Carlo si-
mulations. We start with the statistical screening model of Ridley. The modified cross
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Fig. 5 Scattering rate according to the Brooks-Herring model and the corresponding momentum
relaxation rate at Ny = 10'® cm™3 and 7' = 300 K. An empirical correction is used to attenuate the
peak at low energies
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section (18) results in the following modified scattering rate [11]:

() =5 (1 = exp (~am (1) fk))) | (31)

This rate does not show the problematic behavior at low energies. One can think that
the expression vg(k)/R defines some maximum rate Ama and that (31) is a rule that
ensures that Ayeq is always smaller than Anax. Eq. (31) satisfies the following inequality:

Amod (k) < Min{Amax (), Asu(k)} . (32)

We now chose some maximum rate Ay, to artificially limit the physically correct scat-
tering rate 4. A simple rule which fulfills condition (32), and which is symmetric with
respect 4 and Ay, is the harmonic mean

1 + (33)
Amod - lmax A .

—_

Obviously, the larger A is taken the more Ay,,q resembles the physically correct rate A.
Amax 18 an artificial quantity which has to be chosen such that the effect on measured
quantities such as the mobility is negligible. Purely empirically we assume

Amax (k) = Wy (K)B . (34)

Monte Carlo simulations revealed that relative to the plain Brooks-Herring model the
increase in low-field mobility due to the modification (33) is less than 1.5% for W = 10
and less than 2.3% for W =5. For comparison, Ridley’s statistical screening model
yields low-field mobility enhancements up to 9%, depending on the doping concentra-
tion. Therefore, to keep any empirical modification of the mobility as low as possible one
should use the modified rate (33) with an appropriate choice for W instead of the rate
(31).

7. Conclusion

A method has been presented which effectively reduces the amount of low-angle scatter-
ing events that have to be processed during a Monte Carlo transport calculation. The
inverse momentum relaxation time serves as scattering rate for an equivalent scattering
model. The equivalent model, which is isotropic, exhibits an up to four orders of magni-
tude lower scattering rate, depending on doping concentration and carrier energy. An
analysis of the scattering integral of the Boltzmann transport equation indicates that
using the equivalent isotropic model instead of the anisotropic one has negligible influ-
ence on the transport problem of charge carriers in semiconductors. Monte Carlo calcula-
tions demonstrated the equivalence of both types of scattering models empirically. The
assumptions of the statistical screening model of Ridley are critically examined, and we
found that the predictions regarding mobility made by this model go into the wrong
direction. To deal with the peak of the scattering rate at low energies we presented an
empirical correction whose effect on the mobility can be controlled by a free parameter.
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Appendix

The scattering integral (1) can be rewritten for a @-independent transition probability.

00 1 2
0 \%
(—f> = —A(k)f(k) + —03 J K?dK J d P(k,K,72) J de'f(K, 2, ¢'). (35)
at). (27)
0 -1 0
Furthermore, for the transition probability P Fermi’s golden rule shall hold
2
P(K.k) = =X [M(q)|* 8(E— E). (36)

The isotropic cross section: Asafirst step we evaluate (35) for the equivalent scatter-
ing model which is isotropic. From (9), (14) and the golden rule (36) one can derive some
artificial matrix element M which can be assigned to the equivalent scattering model.

1
~ 1
320 = [0 2 Mtk 2) d. (37)
-1
For an elastic scattering mechanism as considered here the momentum transfer is given

by ¢*(k,z) = 2k*(1 — z). Keeping in mind that the transition probability P is indepen-
dent of z the scattering integral (35) can be written as

— 00 1 21
(g> = —i(k)f(k) + Vo 3 J P(K k) K?dK J d7 J d¢' f(K,7,¢) . (38)
i), (2)
0 -1 0
The integral of f over the unit sphere yields the spherically symmetric part of f,
1 1 27
#s0) = 3 | 2 | do 20 (39)
100
The d-function within P allows one to put fs(k') in front of the integral,
(ﬂ) = —Ak) - f(Kk) + 47 fs(k) Lg J P(K k) K*dK . (40)
at). (27) )
The remaining integral evaluates to 2 so that we end up with
ofy _
(%) =m0 - (i (1)

Without loss of generality the distribution function can be decomposed
into a spherically symmetrical and an anisotropic part,

f(k) = fs(k) + fa(k) (42)
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With (15) and (42) we get the following scattering integral for the equivalent model:

(%).= 2 (=

The anisotropic cross section: To be able to evaluate the scattering integral (35)
for the anisotropic cross section we have to make the assumption (17) on the shape of
the distribution function.

We shall now introduce a spherical polar coordinate system with the polar axis paral-
lel to k. The solid angle of the electric field is denoted by Q = (6, ¢), and that of k' by
Q' = (0',¢'). The angle between the electric field and k' can then be expressed as

cosy = cosBcos @ — cos(¢p — ¢')sinfsinf’ . (44)

Setting z = cos @ and 2 = cos @ we obtain
(5) =06 7652

21

o] 1
G . J K2 dK’ J d¢’ J d2’ (fs(K') + fu(K) cosy) P(k, K, 2) (45)
0 —1

(27) )

After integration over ¢’ and after putting fs and f; in front of the integral by employ-
ing the 8-function in P one arrives at

(5r) = -06) £6:.2

00 1
Yo K*dk | dZ P(k K, 2)
(27)? J

+ fs(k)
el
1

+fi(k) cos6 (2‘/0)2 J K? dK J d? 7 P(k,K,72) . (46)
7

-1

The first integral on the right-hand side evaluates to A(k), and the second one to
A(k) — 7} (k). In the final result only the anisotropic part of f appears,

@)z

This results coincides with (43) if the anisotropic part of the distribution function is of
the form fa(k) = f1(k) cos6.
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