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Abstract

An approach for analysis of the small signal response of the carriers in semicon-

ductors is presented. The response to an impulse signal is explained in terms

of a relaxation process, governed by a Boltzmann equation. The approach as-

sists the understanding of the phenomenon and allows development of novel
" stochastic algorithms.

1. Introduction
The knowledge of the small signal response characteristics of the carriers system as

depending on the frequency and the DC electric field E;, is of relevant importance
to forecast modern device performance. Linked by the Fourier transform, analyses

~ in the time and the frequency domains provide equivalent information. Furthermore,

the response to a signal of a general time dependence E; (t) can be calculated from the
knowledge of the response to an impulse, E;(t) = 6(¢)E;. The advantages of Monte-
Carlo simulations of response phenomena in the time domain have been utilized for
more than two decades [1]. Within the Monte-Carlo method single-particle simula-
tions are popular, supported by the well established theory of correlation functions
of the physical characteristics over a steady state trajectory [2],[3]. Another alterna-
tive is in a transient description, given by the following derivate of the Boltzmann
equation:
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QlA(k, t)] = [ S, k) f1(K,t)dk — A(k) f1(k, t) is the common Boltzmann scattering
term and f; is the correction to the distribution function f around a steady-state
value fs: f(k,t) = fs(k)+ fi(k,t). Accordingly, the mean of a physical characteristic
A(k) is given by (A)(t) = (A); + (A)1(¢). With an impulse E;(t) on the right hand
side (1) cannot be treated numerically. The used stochastic or deterministic methods
[2] solve (1) for the case of a step-like signal: Ege,(t) = 8(t)E;. Then an impulse
response characteristic (A);(t) is obtained by taking the time derivative of the step
response {(A)step(t). :

In this work we utilize an integral formulation of (1) for an impulse signal. It suggests
a physical model of the response phenomena. The model allows to develop a new
Monte-Carlo method.
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2. The Physical Model

We introduce a phase space trajectory K(t') = k — £E,(t — t') which is initialized by
k at.time ¢, so that K(t) = k. The left hand side of (1) becomes a total derivative

and the equation can be formally written as & f(t) = —A(t)f(t) + g(t). The latter

t £ .
has a solution f(t) = f(ty)e Jig M0y + Ji g(t)e ™ Je MYt with f(to) given at some

initial time #o. This result allows to reformulate (1) as an integral equation. For the
case of an impulse at the time origin we obtain: .
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Here we have used that f; is zero for negative time, and accounted for the delta
function by the time integration. Equation (2) is equivalent to the integral form of
the Boltzmann equation [4],[5], with the only difference that the initial distribution
function is now replaced by the function G;(k) = —£E;-(Vf,)(k). Since [ G;(k)dk =
0, G; takes also negative values, obstructing a direct physical interpretation of (2).
- To continue, we decompose G; into positive and negative parts G; = GF — G;, and
consider the following set of integral equations:
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These are two Boltzmann equations with initial conditions given by G > 0. Equation
(2) is obtained by a subtraction of the two equations such that f;(k,t) = f;"(k,t) —
fi (k,t) holds. Thus we can assign to the impulse response equation (1) the following
-physical model. The impulse at time zero creates instantaneously an initial condition
G, corresponding to two carrier ensembles P and M, which are initially distributed
according to G} and G;. The ensembles are of equal number of particles which
evolve in time under the action of the DC field. The response (A);(t) of any physical
quantity at evolution time ¢ is given by the difference of the two ensemble mean values
of A at that time. Since for long evolution times the two ensembles relax to the same
steady state, it holds (A);(t) = (A)p(t) — (A)m(t) = 0 when ¢ — oo .

3. The Monte-Carlo method

The Monte-Carlo method consists of algorithms providing in a different way the initial
condition G. For a general direction of E;, one possibility is to approximate the gra-
dient of f; by a finite difference quotient. The wave vector increment has to be taken
colinear to E;. Then the task is to apply algorithms, simulating f,. If the Ensemble
Monte-Carlo is used, the algorithm of Price [1] is particularly obtained. Alternatively,
one can sample f; by a single-particle trajectory. In the important case of colinear
DC and perturbation vectors it holds: G(k) = ﬁo (Ak)fs(k) — f fs(K)S(K', k)dk').
This leads to a natural. splitting into Gt and G~ terms. We give two algorithms
using different factors of the terms as probability densities. In general, G* and G~
are sampled over a main steady state trajectory. N evolution trajectories are started
from G, and the same number of trajectories are started from G~. The chosen prob-
ability densities, generating the initial trajectory points, are enclosed below in curly
brackets. We note that it is possible to merge the main and the evolution trajectories
and to collect the whole information over one trajectory.
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Algorithm 1. G*(ko) = B A(ko){f,(ko)}, G~ (K') = £ [{f,(ko)} { A’E;L(S } Ako)dko
Forl =1 to N do: 1) Choose k, with density fs, e.g., by sampling the main trajectory
at constant time steps. 2) Realize a scattering event from ko to k'. a) Start a
trajectory from ko and give it the weight w = N—F;;)\(ko). b) Start a trajectory from
k' and give it the negative weight w= = —w™*. 3) Follow each trajectory in an interval
[0, T] and sample with constant time step. Add w+A(K+( ;) and w™ A(K~(¢;)) to a
histogram which estimates (A);(¢;).

Algoritum 2. (k) = B0, (3] -1 = i, (209) (550}
dko where (\), = [ f,(k)A(k)dk is the inverse of the mean free flight time. The algo-
rithm modifies the first step of Algorithm 1'to: 1) Choose k, with density \fs, e.g.,
by taking a before-scattering state. The weight is now w* = §L< )s- Step 2 and 3
remain unchanged. ‘

The second algorithm has been applied to obtain simulation results. For Si electrons
at 300K, Fig. 1 and Fig. 2 show the time response of the differential energy 9(e);/0F,
and differential velocity along the electric field 8(v);/0E1, at different DC field values.
After 3 ps the two ensembles reach the steady state and the response characteristics
_become zero. Fig. 3 and Fig. 4 show the spectral dependence of the differential velocity
obtained by a Fourier transform of the data shown in Fig. 2. The low frequency limits
of the real parts tend to the corresponding differential mobility values 8(v),/dE;.

For GaAs electrons at 10K and E; = 120V /cm, Fig. 5 and Fig. 6 show time oscilla-
tions in the evolution of the P and M energy distribution functions. The oscillation
is observed in all response characteristics (A);(¢) and is explained by the model as
follows. The initial distributions G~ and G show two peaks placed near zero energy
and slightly above the polar optical phonon threshold (0.036 eV) respectively. The
M ensemble gains energy by the field and looses it when reaching the phonon energy,
giving rise to oscillations between the zero energy and the phonon threshold. The
initial peak broadens towards the steady state, reached after 80 ps. The P ensemble
is initially transferred by the phonon scattering to low energy for few ps and follows
the M ensemble with such a delay. The delay is finally responsible for the oscillations

in (A):(t).
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Figure 1: Impulse response of the differ- Figure 2: Impulse response of the differ-
ential energy ’ ential velocity
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Figure 5: Evolution of the distribution
function of the P ensemble.
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