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ABSTRACT

The SIESTA (Simulation Environment for Semiconduc-
tor Technology Analysis) framework is an extensible tool
for optimization and inverse modeling of semiconductor de-
vices including dynamic load balancing for taking advantage
of several, loosely connected workstations. Because of the
increasing computational power available today, the use of
evolutionary computation optimizers which usually require
a large number of evaluations of the objective functions be-
comes feasible even for problems with computationally very
expensive objective functions. After a brief introduction to
the SIESTA framework and its capabilities, we compare the
performance of its optimizers at a real world parameter ex-
traction problem and find that for certain problems genetic
algorithms and simulated annealing perform better than gra-
dient based optimization.

INTRODUCTION

TCAD (Technology Computer Aided Design) is con-
cerned with the simulation of the manufacturing processes
of semiconductor devices and the simulation of device per-
formance. The optimization framework SIESTA (Simula-
tion Environment for Semiconductor Technology Analysis)
(Heitzinger and Selberherr 2000; Plasun et al. 1998; Strasser
1999) is a general purpose tool for the optimization of com-
putationally expensive objective functions that often arise in
TCAD applications. It provides an extension language and
currently four optimizers. This section is a brief introduction
to its design and capabilities.

Optimizer
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Figure 1: Overview of SIESTA

Figure 1 depicts the control and data flow in a typical opti-
mization run. After setting up an experiment, one of four op-
timizers is started by SIESTA and its evaluation requests are
fulfilled in parallel, where each evaluation entails an arbitrary
number of calls of simulation tools on remote machines. In
each run the definition of the experiment and the progress of
the optimization are saved to files and can be examined from
within MATHEMATICA (Wolfram 1991).

SIESTA is written inANSI Common Lisp using multipro-
cessing which enables to take advantage of one of the most
sophisticated programming languages at the implementation
level and at the user level. All language constructs and the
SIESTA specific functions are available to the user and can
even be used interactively, which facilitates setting up new
experiments. The requirements on the software infrastruc-
ture installed on the remote machines has been minimized.
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In addition to the simulation tools to be used, SIESTA de-
mands to have remote access viarsh andrcp (or ssh and
scp ) and needs a couple of standardUNIX commands.

SIESTA continuously monitors the remote machines and
determines available ones and their load averages. Machines
with a load average above a certain threshold are not consid-
ered for remote tasks until their load average has dropped.
Whenever a remote task has to be executed, the machine
with the lightest load per CPU is chosen or, if no machine
is available, the thread waits until a machine becomes avail-
able. Tasks started by SIESTA are accounted for during this
process. Several aspects of this algorithm can be influenced
by variables and the function for choosing machines can be
redefined by the user. Hosts can be disabled temporarily or
for certain times every day. Finally all configuration can hap-
pen while an optimization is running.

The basic building block for parallel evaluation and load
balancing is a macro calledparallel , which extends the
base language transparently and evaluates its arguments in
parallel. Another important macro iswith-retries ,
which is mostly used for retrying the call of simulation tools
which may fail due to software or hardware problems, or be-
cause a simulation tool cannot provide a result for certain in-
puts. This last situation arises more often when applying evo-
lutionary computation optimizers than gradient based ones.

Finally a license management allows users to adjust the
number of licenses of commercial tools to be used by the
framework while an optimization is running. This means that
a certain number of licenses can be reserved for interactive
work.

AVAILABLE OPTIMIZERS

In this section, we shortly describe the optimizers cur-
rently available in SIESTA, namely two gradient based opti-
mizers (Donopt, Lmmin) (Kelley 1999) and two stochastic
global optimizers (Genopt, Siman).

Genopt

The interface to GAlib (Wall 1994), a C++ library for ge-
netic optimization, is called genopt. It provides standard se-
lection, crossover, mutation, scaling, and termination meth-
ods (Michalewicz 1996).

For our experiments we mainly use the following setup,
because it provides good results in an acceptable amount of
computation time. Since all parameters are reals chosen from
intervals, we represent them as floating point numbers, and
not as binary vectors as favoured in early genetic optimiza-
tion. We use a mutation operator which adds a random num-
ber from a normal distribution, more precisely,x ∈ [a, b] is

changed tomin(max(N(x, σ), a), b), whereσ depends on
the length of the interval.

As crossover operators we use two point and uniform
crossover. Most populations consist of about 40 to 50 in-
dividuals. Constraints handling is done using the popular
penalty method, i.e., the scores of states which do not ful-
fill given constraints are increased by prescribed amounts. In
SIESTA, the constraints can be defined as arbitrary functions
using all the functionality of the framework.

Siman

Simulated annealing (Beasley et al. 1993; Rutenbar 1989)
was invented by Kirkpatrick in 1982 and is a modified ver-
sion of the hill climbing algorithm. Starting from a random
point in the search space, a random move is made. If this
move yields a better point, it is accepted. If it yields a worse
point, it is accepted only with a certain probabilityp(t) which
depends on the timet. The functionp(t) is initially close to1,
but gradually reduces towards0 in analogy to the cooling of
a solid. Hence initially any moves are accepted, but as the
temperature reduces, the probability of accepting a negative
move is lowered. Negative moves are essential sometimes
if local extrema are to be escaped, but obviously too many
negative moves will simply lead away from the optimum.
Versions like fast re-annealing, adaptive annealing and par-
allel annealing have been developed. In our framework we
provide an interface to an external implementation (Ingber
1996).

Donopt

This gradient based optimizer (Plasun 1999; Strasser
1999) minimizes a scalar value and supports equality and in-
equality constraints. It is based on donlp2 (Spellucci 1995;
Spellucci 1996).

Lmmin

The Levenberg-Marquardt algorithm (Marquardt 1963) is
an efficient method to solve nonlinear least squares prob-
lems, and is therefore well suited for inverse modeling tasks.
SIESTA provides an interface to the implementation found in
theMINPACK (Moré et al. 1980; Moŕe et al. 1984) project.

The parameter values are chosen from prescribed inter-
vals. However, arbitrary constraints are not supported by this
optimizer. The step size used for the gradient computation
and a tolerance value acting as termination criterion can be
adjusted.

INVERSE MODELING

Many models in TCAD applications contain free param-
eters which depend on properties of the device material and
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have to be calibrated using measurements. Usually vectors of
measured values are fit to characteristic curves of the device
in question.

It is not obvious which goal function should be used in
an inverse modeling experiment where the distance between
two vectors (where one is a measurement) is to be minimized,
and several functions have been used, e.g. (Cartuyvels et al.
1993; Young et al. 1996).

In the followingm ∈ Rn is the measured vector, and
s ∈ Rn is a vector of simulation results. We define the rel-
ative error of two vectors as the vector resulting when ap-
plying the relative error function elementwise, i.e.,rk :=
(sk − mk)/mk for r = RE(s,m) being the vector of rel-
ative errors. The quadratic meanM2 of a vectorx ∈ Rn is
defined as

M2(x) :=

√∑n
k=1 x

2
k

n
,

and the weighted quadratic meanM2,w with weightswk is
defined as

M2,w(x) :=

√∑n
k=1 wkx

2
k∑n

k=1 wk
,

wherewk > 0 for all k. In this regard, the reader is referred
to (Hardy 1952) for properties of mean values. Of course,
‖.‖2 andM2 are equivalent norms. However, the quadratic
mean is easier to interpret since the number of comparison
points does not influence the value.

Forp being a vector of parameters to be fit, minimizing

f1(p) := M2(RE(s(p),m))

or
f2(p) := M2(RE(log s(p), logm))

(here the logarithm is applied elementwise) is a natural and
advantageous formulation of the problem of parameter ex-
traction. Variations ofs(p) or m over many magnitudes do
not have an ill effect as compared to other functions work-
ing with absolute errors, and by using the weight factorsf1

andf2 can be adjusted to individual needs.

INVERSE MODELING OF A STORAGE CELL

The goal of this example is to show that a typical class of
optimization problems, namely inverse modeling or param-
eter extraction problems, can be automatically solved using
evolutionary computation optimizers. In this real world prob-
lem, we extract six parameters from the drain currents of the
select transistor of a storage cell and try to fit two transfer
characteristics (two bulk voltages, two times 27 points) in
the process.

For the purpose of this optimization, we treat the mea-
surements and simulated vectors as one vector with 54 com-
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Figure 3: Logarithmic Plot of Best Result by Optimizer
Donopt, Score0.579942.
Solid Line: Measurement;
Dashed Line: Simulation
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Figure 4: Logarithmic Plot of Overall Best Result after 500
Evalutions, Optimizer Siman, Score0.517803.
Solid Line: Measurement;
Dashed Line: Simulation

ponents and try to minimizef(p) := M2(RE(s(p),m)).
M INIMOS NT (Binder et al. 1998) was used as the device
simulator and Table 1 shows the six parameters, their inter-
vals, and their default values. The default values were used
as starting values for the gradient based optimizer.

The variableew is the work function of the gate material,
and the variablesr is the source resistance. The other vari-
ables pertain to the Shockley–Read–Hall model (Binder et al.
1998, page 71).

Table 2 shows the three optimizers used (cf. Section ) and
their configuration which is the default configuration in all
three cases.

Figure 2 shows the progress of the three optimizers. For
all optimization runs we used a cluster of fifteen workstations
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Figure 2: Optimization Progress

Name Symbol Interval Default Value
et ET [0, 2] 0
ew [−0.6,−0.4] −0.425
nt NT [1012, 1016] 1013

sr [100, 500] 200
srve Sn [10, 10000] 5000
ste σT,n [10−20, 10−17] 10−19

Table 1: Parameters

with twenty CPUs and dynamic load balancing. We note that
the gradient based optimizer does not yield a good result (cf.
also Figure 3), although its initial progress is fast. Further-
more, the evaluations of the genetic algorithm, Genopt, are
better parallelized on the twenty CPUs than those of simu-
lated annealing, Siman, and thus in terms of wall clock time
elapsed, the genetic algorithm is the fastest optimizer.

Figure 3 shows the best fitting simulated transfer charac-
teristics (for two bulk voltages, left and right half) found by
the gradient based optimizer, Donopt, yielding a value of the
objective function of0.58. The agreement in the range of
the points numbered 1–10 and 28–38 is mediocre. The next
figure, Figure 4, shows the best fitting vector found after at
most 500 evaluations with each optimizer. Siman yields good
agreement and a value of0.517803. Both plots are logarith-
mic and the comparison points are numbered from1 to 54.

After performing the inverse modeling step the calibrated
model was used for minimizing the leakage current of the
storage cell and thus improving its performance.

Name of Parameter Value
Optimizer Genopt:
algorithm type steady state
population size 50
probability of replacement 0.7
probability of crossover 0.8
crossover type two point
probability of mutation 0.2
number of best genomes 50
Optimizer Siman:
block 15
block max 30
moving average 3
Optimizer Donopt:
del0 0.5

Table 2: Configuration of the Three Optimizers

CONCLUSION AND OUTLOOK

The real world example shows that global stochastic op-
timizers can be successfully used on a moderate cluster of
workstations even for computationally expensive objective
functions where one evaluation takes several minutes. The
direction of further work includes specializing evolution-
ary computation optimizers for TCAD problems and using
approximations via generalized Bernstein polynomials for
solving optimization problems and design for manufactura-
bility problems.
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