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Abstract. Macroscopic transport models derived from Boltzmann’s equation by using the method of moments are
often used to efficiently evaluate the electrical behavior of semiconductor devices. The most commonly used model
is the drift-diffusion model which comprises the first two moments of Boltzmann’s equation. In this model the carrier
gas is assumed to be in equilibrium with the lattice, an assumption severely violated in submicron semiconductor
devices. Hydrodynamic and energy-transport models have therefore been proposed to overcome this limitation.
However, these extended models have never been widely accepted as a viable substitute, because for small devices
they often do not deliver the expected improved accuracy. Here we present a non-parabolic six moments model
which predicts considerably more accurate currents than the energy-transport model down to gate-lengths as small
as 40 nm.
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1. Introduction

Macroscopic transport models based on the first six
moments of Boltzmann’s equation [1] are a natural ex-
tension to the well known drift-diffusion (DD) model
(two moments) and the various hydrodynamic and
energy-transport models (three or four moments) [2].
In addition to the solution variables of the energy-
transport (ET) model, which are the carrier concen-
tration n = 〈1〉 and the average energy w1 = 〈E〉/n,
the six moments (SM) model includes w2 = 〈E2〉/n.
The quantity β = (3/5)w2/w

2
1 is the kurtosis of the

distribution function and indicates the deviation from a
heated Maxwellian distribution for which β = 1 holds
(for parabolic bands). The knowledge of β allows to

model non-equilibrium processes like hot carrier tun-
neling [3] and impact ionization [4] with improved ac-
curacy compared to DD and ET models. Due to numeri-
cal stability problems of the implemention, previously
published results were mainly obtained by applying
these models to Monte Carlo data in post-processing
steps. The closure relation for the highest order moment
w3 = 〈E3〉/n was identified as one of the crucial factors
determining the numerical stability. We summarize our
efforts and propose a refined closure relation. Another
important issue is the modeling of the mobilities, relax-
ation times, and the non-parabolicity corrections to the
streaming terms. To avoid uncertainties related to pos-
sibly inaccurate analytical mobility and relaxation time
models we use tabulated bulk Monte Carlo data [5].
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Finally, we present results of numerical solutions of
consistent DD, ET, and SM models and compare them
to self-consistent Monte Carlo (MC) simulation results,
both with analytic [6] and full-band structures [7].

2. The Non-Parabolic Six Moments Model

The non-parabolic stationary balance and flux equa-
tions of the macroscopic moment models are [8]

∇ · nVi − iF · nVi−1 = −n
wi − wi,eq

τi
, (1)

qnVi = −µi
2

3
Hi+1(∇(nwi+1) + qnEwi hi ), (2)

hi = 3 + 2i Hi

2Hi+1
, (3)

with i = 0, 1, 2. The mobilities µi , the relaxation times
τi , and the non-parabolicity factors Hi were taken from
tabulated bulk data of respective Monte Carlo simula-
tions and modeled as a function of the average energy
w1 only, in analogy to [5].

A critical issue is the modeling of the closure relation
for the highest-order moment w3. In [1] we proposed
to use a generalized Maxwellian closure

w3 = (35/6)w3
1β

c, (4)

with c an integer in the range [0 . . . 3]. Stable imple-
mentations were only obtained for c = 3, the values
c ≤ 2 showed pronounced oscillations in the solution.
However, the results obtained from c = 2, though often
unstable, appeared to better reproduce the Monte Carlo
results. We now take a somewhat different approach:
by requiring consistency with bulk Monte Carlo sim-
ulations we obtain c from a best match of w3 to wMC

3 ,
which gives c = 2.7. Other closure relations derived
from theoretical considerations based on the maximum
entropy principle [9,10] and relations derived from the
cumulants of the distribution function [11] which re-
sults in

w3 = (35/6)w3
1(3β − 2) (5)

have been compared as well (cf. Fig. 1). Note that
Eq. (5) is also obtained from Grad’s method [12]. How-
ever, only the generalized Maxwellian closure delivers
satisfactory results and a numerically stable implemen-
tation (cf. Fig. 2).
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Figure 1. Ratio of the closure relations obtained by a Monte Carlo
post-processing step with the exact result. The top figure shows the
silicon bulk result for a doping concentration of ND = 1018 cm−3

while the bottom figure shows the result for a 100 nm n+-n-n+
structure. The generalized Maxwellian closure with c = 2.7 gives
the best results.
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Figure 2. Comparison of the carrier concentrations obtained from
various closure parameters c for the 50 nm n+-n-n+ structure. The
instabilities arising from c = 2 are clearly visible.

In addition to the SM model we consider the corre-
sponding ET model, where the equation for w2 is kept
but the equation for the energy-flux V1 is closed with
w2 = (5/3)w2

1, corresponding to a heated Maxwellian
distribution. The equation for w2 is therefore decou-
pled from the lower order equations and provides an
estimate for w2 and thus β [1,13].
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It is important to note that since all model parame-
ters are obtained from bulk Monte Carlo simulations
the transport model is fit-parameter free. The model
parameters can therefore not be tuned to obtain a de-
sired result. This approach therefore removes a critical
uncertainty often found in moment based models.

3. Comparison

To investigate the accuracy of the SM model and its
corresponding ET model we consider a series of one-
dimensional n+-n-n+ structures with doping concen-
trations of 5 × 1019 cm−3 and 1017 cm−3. The channel
length was varied from 1000 nm down to 40 nm while
maintaining a maximum electric field of approximately
300 kV/cm. A comparison of the average velocity V0

and the kurtosis β obtained from the macroscopic mod-
els with the analytic-band Monte Carlo simulation is
shown in Figs. 3 and 4 for three devices. The spurious
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Figure 3. Comparison of the average velocity obtained from the
macroscopic models with self-consistent analytic-band Monte Carlo
(ABMC) simulations for three n+-n-n+ structures.
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Figure 4. Comparison of the kurtosis obtained from the macro-
scopic models with self-consistent analytic-band Monte Carlo
(ABMC) simulations for three n+-n-n+ structures.

velocity overshoot is significantly reduced in the SM
model, consistent with previous results [14], while the
kurtosis produced by the decoupled SM (ET) model is
only a poor approximation to the Monte Carlo results
for shorter channel lengths. An accurate kurtosis, how-
ever, is a prerequisite for modeling hot carrier effects.

The terminal currents as a function of the channel
length are shown in Fig. 5, where the ET model shows
the well known overestimation of the currents for Lc ≤
100 nm while the DD model underestimates them for
Lc ≤ 500 nm. The SM model stays close to the Monte
Carlo results down to Lc = 40 nm.

In addition we simulated the 50 nm double-gate
MOSFET from [15] and compared the results to self-
consistent full-band Monte Carlo results. To avoid em-
pirical surface scattering models, where consistency
between all models is difficult to obtain, we omit sur-
face scattering altogether for the present comparative
study. To avoid unrealistic mobility values, the channel
doping was set to NA = 1.25 × 1018 cm−3, electri-
cally compensated by a similarly large donor doping
ND.
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Figure 5. Comparison of the n+-n-n+ structure terminal currents
obtained from the macroscopic models with self-consistent analytic-
band Monte Carlo (ABMC) simulations for various gate lengths.

Even without surface scattering, the full-band chan-
nel mobilities were found to be different from the bulk
case because of the mere presence of the interface not
accounted for in the tabulated models. We introduced
this effect by scaling all channel mobilities with a con-
stant factor (≈0.92) which was determined indepen-
dently for each model from the simulation of a 250 nm
MOSFET biased at VG = 1 V and VD = 100 mV. This
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Figure 6. Comparison of the output characteristics obtained from
the various models with self-consistent full-band Monte Carlo
(FBMC) simulations for the 50 nm and 250 nm DG MOSFET.

effect is regularly calibrated together with the surface
mobility model.

The simulation results in Fig. 6 show the same qual-
itative behavior as found in the n+-n-n+ structures.
The observed differences in the near-equilibrium out-
put conductance, which are in agreement with the re-
sults published in [16], indicate that surface scattering
should not be calibrated using devices with such short
channels, but rather their long-channel counterparts.

4. Conclusion

We have derived a six moments model from
Boltzmann’s transport equation where particular at-
tention was given to the modeling of the highest-
order moment. It was found that the heated-Maxwellian
approximation commonly used to close forth-order
energy-transport models is inaccurate for sub-100 nm
devices. In particular it can be concluded that a fully
self-consistent solution of the six moments model is
important, because the kurtosis cannot be obtained in a
post-processing step. Altogether it was found that the
SM model stays much closer to the Monte Carlo re-
sults than the ET model, which makes the SM model a
worthwhile choice for modeling such small devices.
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