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Abstract

We present a formulation of non-parabolic macroscopic transport models which avoids the

commonly used relaxation time approximation by using an expansion of the scattering integral

into the odd moments of the distribution function. The parameters of this expansion and the

closure relations required in the final transport model are directly calculated via analytical

models of the distribution function. These models are obtained by displacing an isotropic

distribution function with an energy-dependent displacement and expanding the displaced

distribution function up to second-order. This allows, for instance, to investigate the commonly

neglected second-order contributions to the energy tensor in more detail. In addition, new

models for the non-parabolicity corrections of the streaming terms are suggested. In a detailed

discussion non-parabolic macroscopic transport models of order four and six are compared.

r 2004 Elsevier B.V. All rights reserved.

PACS: 72.20.Ht; 85.30.De; 85.30.Fg; 05.60.Cd
1. Introduction

Boltzmann’s transport equation describes the motion of carriers in a solid subject
to external and internal forces and is of fundamental importance for the modeling of
see front matter r 2004 Elsevier B.V. All rights reserved.
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semiconductor devices. Its solution is the microscopic distribution function f ðk; r; tÞ:
Since the distribution function provides information about a particle’s momentum
and position simultaneously, the distribution function is a classical concept
neglecting Heisenberg’s uncertainty principle. Carrier scattering is modeled using
Fermi’s Golden Rule.

From the distribution function macroscopically observable quantities such as the
electrical current density can be calculated. In addition to the current various other
quantities of interest can be obtained from the distribution function such as the
particles’ concentration and average carrier energy. However, direct solution of
Boltzmann’s equation is very time-consuming even with modern computers.
Approximate solutions can be obtained from macroscopic transport models which
determine a certain number of moments of the distribution function. These models
are derived from Boltzmann’s equation by applying the method of moments,
transforming Boltzmann’s equation into an infinite set of equations. To obtain a
tractable equation set, this hierarchy has to be truncated after N equations. When
only the first two moment equations are used, the drift-diffusion model is obtained
[1]. From the first three moment equations one gets the hydrodynamic model [2]
whereas the first four moment equations (and some additional assumptions) give an
energy-balance model [3,4].

Independent of their order N; all macroscopic transport models are based on some
more or less stringent approximations introduced in their derivation. This issue is
fundamentally related to the fact that the truncated equation set contains more
moments than equations. After deciding on a set of unknowns the additional
moments have to be expressed as a function of those unknowns to close the equation
system. Since this is not exactly possible, macroscopic transport models differ
basically in the assumptions used for relating the additional moments to the
unknowns of the equation system.

The most obvious problem is that the highest-order equation determining the Nth
moment contains the ðN þ 1Þth moment. This ðN þ 1Þth moment provides the
coupling to all higher-order equations and thus contains the information missing in
the lower-order equations. Following the argumentation used in gas-dynamics [5],
where for instance Grad’s model assumes that the system is sufficiently described by
the thirteen moments occurring in the first three moment equations, one assumes
that the contribution of the higher-order moments is small. This issue is of
fundamental importance as it justifies the truncation of the equation system. Up to
now it is still not clear how many moments are really required to accurately describe
carrier transport in modern semiconductor devices. We will show in the sequel that
some commonly used assumptions are rather crude.

Another crucial step is the modeling of the moments of the scattering operator,
particularly the odd moments. Conventionally, these moments are expressed using a
macroscopic relaxation time approximation. Written in terms of mobilities this
approach maintains the familiar form of the current relations known from the drift-
diffusion equations. In the relaxation time approximation the mobilities are
normally expressed as a function of the average carrier energy, which is an even
moment of the distribution function. A rigorous treatment reveals, however, that the
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mobilities as odd moments of the scattering integral depend on the odd moments of
the distribution function such as the current and the energy flux [6,7]. By assuming
that the ratios of these fluxes approximately behave as observed under homogeneous
conditions, this flux dependence is commonly transformed into an average energy
dependence. This might impair the quality of the model and we present an
alternative formulation which avoids this assumption.

Finally, there is the issue of the band structure. It is commonly agreed upon that
the assumption of a parabolic band structure is insufficient for the description of
hot-carrier effects. In particular, it has been shown that a non-parabolic band
structure modifies the driving forces [4]. Since these non-parabolicity factors cannot
be exactly expressed as a function of the available moments, various approaches
have been considered. They range from simple constant approximations [8] and
average energy dependent expressions [9] to models based on data extracted from
homogeneous Monte Carlo simulations [10].

All these issues can be rigorously dealt with by using a self-consistent analytical
description of the distribution function. The parameters of this analytical
distribution function model are determined by the unknowns of the transport
model. With this distribution function model the closure relations for the additional
moments can then be calculated in a more or less straightforward manner.
Obviously, the quality of this distribution function model has a strong impact on the
quality of the resulting closure relations and thus on the macroscopic transport
model. Here, we compare six moments descriptions [11] with models based on a
heated Maxwellian distribution.

To quantify the accuracy of macroscopic transport models it is mandatory to
compare their results with more rigorous solutions of Boltzmann’s equation, for
instance with results obtained from Monte Carlo models. It is of course important
not to limit the comparison to the homogeneous case but to also consider realistic
device structures which display non-homogeneity effects which have been the main
motivation for the development of higher-order macroscopic transport models in the
first place. To capture the two-dimensional electrostatics of MOS transistors we use
a one-dimensional cut along the surface through the potential resulting from a two-
dimensional energy-transport [4] solution. This one-dimensional cut is then used for
a non-selfconsistent Monte Carlo simulation to give a one-dimensional approxima-
tion of carrier transport. As an example device we use the 90 nm well-tempered MOS
[12] with the bias conditions VD ¼ VG ¼ 1V: The issue of self-consistency, which is
important for realistic simulations [13], is neglected here since it further complicates
the comparison. It is assumed that when a non-selfconsistent solution of a
macroscopic transport model agrees better with a non-selfconsistent Monte Carlo
simulation than another macroscopic transport model, that this improved accuracy
is preserved in the self-consistent simulation. Of primary importance is the velocity
profile which determines the carrier concentration in a one-dimensional simulation
and is thus the primary coupling parameter to Poisson’s equation.

In the Monte Carlo code we use a single equivalent isotropic but non-parabolic
band described by Kane’s dispersion relation to capture the main contribution of
non-parabolicity. We assume a linear scattering operator and consider phonon and
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impurity scattering based on Fermi’s Golden Rule. The expressions derived for the
distribution function and the relations derived therefrom are evaluated with the
moments obtained from the Monte Carlo simulation and not in a self-consistent
way. However, we only take the moments /EiS and /EiuS which would be
obtained from a corresponding macroscopic transport model. Such an evaluation
can, therefore, be considered a consistency test and leaves some uncertainty as to the
quality of the actual implementation. However, since from these consistency tests
many characteristic properties of the relations can be identified, we consider them a
useful tool to supplement any theoretical derivation.

The main purpose of this article is to investigate how the wealth of information
provided by Boltzmann’s equation can be approximated by higher-order moment
equation systems. Particular emphasis will be put on the derivation of the closure
relations which significantly determine the accuracy of the final macroscopic
transport model. Therefore, the discussion will be limited to a single equivalent band
which is expected to serve as a realistic example. If several bands are of importance
and the equivalent band approximation is not justified, the theory has to be extended
to multiple coupled moment equation systems [2].
2. Boltzmann’s equation

We start our derivation from the single particle Boltzmann transport equation [14]

qt f þ u � rr f þ F � rp f ¼ Q½f � : (1)

Boltzmann’s equation is a semi-classical kinetic equation, which assumes that the
motion of carriers follows the classical Newton laws. The scattering operator Q

represents the rate of change of f due to collisions and is modeled via Fermi’s
Golden Rule. We limit the discussion to the non-degenerate case and neglect
electron–electron scattering which results in a linear scattering operator. The
solution of Boltzmann’s equation is the time dependent carrier distribution function
f ðk; r; tÞ in the six-dimensional phase space. The group velocity u appearing in (1) can
be obtained from perturbation theory as [15]

uðk; rÞ ¼ rpEðk; rÞ ; (2)

where E ¼ Eðk; rÞ represents the kinetic carrier energy which is given by the band
structure. The force F exerted on the electrons in the presence of electric and
magnetic fields and inhomogeneous material properties is for electrons generally
given as

Fðk; r; tÞ ¼ 	rrðEc;0ðrÞ þ Eðk; rÞÞ 	 qðEðr; tÞ þ uðk; rÞ 
 Bðr; tÞÞ (3)

and depends on k, r, and the time t: The two spatial gradients ðrrÞ account for
changes in the bottom of the conduction band edge Ec;0 and the shape of the band
structure. Here, we only consider materials with position-independent band
structures E ¼ EðkÞ and omit the influence of magnetic fields which reduces the
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external force F to the electrostatic force Fðr; tÞ ¼ 	qEðr; tÞ and the group velocity to
u ¼ uðkÞ:

2.1. Band structure model

In the following we will restrict ourselves to isotropic band structures with the
dispersion relation EðkÞ defined implicitly through the bandform function gðEÞ

gðEÞ ¼
_2k2

2m�
: (4)

Here, m� is the effective isotropic carrier mass and gðEÞ ¼ E for an isotropic
parabolic band. The extension of the model to anisotropic band structures of the
form

gðEÞ ¼
_2

2

k2
x

m�
x

þ
k2

y

m�
y

þ
k2

z

m�
z

 !
(5)

by means of the Herring–Vogt transformation [16] is straightforward.
To bring the final model into as much a compact form as possible, the dispersion

relation and the relations derived from it will be separated into their parabolic and
non-parabolic contributions by introducing non-parabolicity correction functions
HxðEÞ: This gives

gðEÞ ¼ EHEðEÞ (6)

for the dispersion relation

gðEÞ ¼ g0

ffiffiffiffi
E

p
HgðEÞ (7)

for the density-of-states and

uðkÞ ¼ rpEðjkjÞ ¼
_k

m�
HuðEÞ (8)

for the group velocity. Note that only for isotropic bands the group velocity is
parallel to the crystal momentum _k and allows for a definition of HuðEÞ as in (8).
The functions HEðEÞ; HgðEÞ; and HuðEÞ equal unity for the simplest case of a
parabolic band structure. An alternative way of expressing the relationship between
the group velocity and the crystal momentum is via an energy-dependent mass [17] as

uðkÞ ¼
_k

mðEÞ
; (9)

with mðEÞ ¼ m�=HuðEÞ; which is of course equivalent to (8).
In this article Kane’s first-order correction [18] will be used where the bandform

function is given as

gðEÞ ¼ Eð1 þ aEÞ : (10)

We are perfectly aware that Kane’s relation is only valid for energies smaller than
1 eV [19]. However, for the sake of demonstrating the basic correction terms that
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appear in the flux relations as a result of non-parabolicity this approximation is
sufficient. In addition, it allows us to use the same band structure and parameters in
both the microscopic Monte Carlo model and the macroscopic transport model.
Thus, any differences observed between the two must result from the approximation
of the distribution function through its moments and the closure relations derived
therefrom.

For Kane’s model we get the following relationships:

HEðEÞ ¼ 1 þ aE ; (11)

HgðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aE

p
ð1 þ 2aEÞ ; (12)

HuðEÞ ¼
1

1 þ 2aE
¼ 1 þ

2a_2k2

m�

� �	1=2

(13)

with a being the non-parabolicity factor. We will also need the inverse effective mass
tensor, which is the second-order term of the expansion of the dispersion relation
and is defined as [15]

m̂	1
ðkÞ ¼ rp � uðkÞ ¼ rp �rpEðkÞ ; (14)

where � denotes the tensor product [20]. For Kane’s relation one obtains

m̂	1
ðkÞ ¼

HuðEÞ

m�
Î 	

2a_2

m�
H2

uðEÞk� k

� �
: (15)

More accurate analytic band structures and full-band structures can be used in a
similar manner as it is done for models based on a spherical-harmonic expansion of
the distribution function [21–23]. The band structures are, however, subject to the
same limitations, most notably, they have to be isotropic. In particular, isotropic
numerical ‘full-band’ structures can be introduced via numerically tabulating the
functions HEðEÞ; HgðEÞ; and HuðEÞ at the expense of replacing the analytical
expressions derived in this article by results based on numerical integration.

2.2. Moments of the distribution function

As Boltzmann’s equation is difficult to solve directly, simplifications are
commonly sought. A common simplification is to investigate only a few moments
of the distribution function, such as the carrier concentration and the average carrier
energy. A moment is obtained by multiplying the distribution function with a
suitable weight function f ¼ fðkÞ and integrating over k-space as

/fSðr; tÞ ¼
1

nðr; tÞ

Z
fðkÞf ðk; r; tÞd3k ; (16)

which is normalized with the carrier concentration nðr; tÞ given by

nðr; tÞ ¼

Z
f ðk; r; tÞd3k : (17)
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Thus, the three k-coordinates are eliminated at the expense of information loss
concerning the details of the distribution function. In the following, the explicit space
and time dependence of the moments is omitted for notational convenience.

In the simplest case these weight functions are chosen to be ascending powers of k.
However, to obtain macroscopic quantities such as the average velocity and the
average energy, commonly used weight functions are powers of the carrier energy Ei

and the fluxes pEi and uEi: Recall that only for parabolic bands the moments
resulting from the latter two are related via the effective mass as /pEiS ¼ m�/uEiS:
In general, a more complicated relationship exists between the two, which depends
on higher-order moments of the distribution function. For Kane’s relation we obtain

/pEiS ¼ m�/uEiSþ 2am�/uEiþ1S ; (18)

/uEiS ¼
1

m�
/

pEi

1 þ 2aE
S ¼

1

m�

X1
j¼0

ð	2aÞj /pEiþjS : (19)

In the following we consider the first N moment equations for the macroscopic
transport models. These equations will be derived from the even weight functions Ei

and the odd weight functions pEi:

f ¼
Ei; i ¼ 0; 1; . . . ;MS ;

pEi; i ¼ 0; 1; . . . ;MA :

(
(20)

The order of the expansion is thus given as N ¼ ðMS þ 1Þ þ ðMA þ 1Þ: Unless
otherwise noted, however, MA will be equal MS with

MA ¼ MS ¼ M ¼ N=2 	 1 : (21)

Thus, for a four moments model with N ¼ 4; MS ¼ 1; and MA ¼ 1 we use the
weight functions 1, p, E; and pE: Cases where MS and MA differ are a three moments
model with N ¼ 3; MS ¼ 1 and MA ¼ 0 or a five moments model with N ¼ 5;
MS ¼ 2 and MA ¼ 1:

2.3. Diffusion scaling

To isolate dominant effects, Boltzmann’s equation is commonly considered in a
scaled dimensionless form. Various scalings have been considered to investigate
limiting cases such as high- and low-field transport. Here we will use the by now
classic diffusion scaling [24–26]. The scaling parameters x0 that relate a quantity x to
its scaled forms xs as x ¼ x0xs are x0; the characteristic device dimension, k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�kBTL

p
=_; the scaling parameter for the wave vector t0; a characteristic scattering

rate which can be pulled out of the scattering operator Q ¼ Qs=t0; the velocity scale
for the group velocity u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTL=m�

p
; and the scale for the electrostatic potential

c0 ¼ _k0u0=q

x0

u0t0
qts f þ u � rrs f þ F � rks

f ¼
x0

u0t0
Qs½f � : (22)
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Diffusion scaling assumes the time scale of the system to be

t0 ¼
t0

k2
; (23)

i.e., we assume the scattering frequency to be high compared to the considered time
scale [25]. We obtain

kqts f þ u � rrs f þ F � rks
f ¼ 1

kQs½f � ; (24)

where the Knudsen number

k ¼
t0u0

x0
(25)

appears as a scaling parameter which represents the mean free path t0u0 relative to
the device dimension. Since the Knudsen number is small in collision-dominated
systems it will be interpreted as the order of the term it appears with. To allow a
simple comparison of the relations derived in the following with expressions from
literature we continue with the unscaled variables but keep the Knudsen number as
an indicator for the order of each term. Of course, the unscaled Knudsen number
equals unity.

For both the macroscopic transport models and the distribution function model it
is advantageous to formally split the distribution function into its symmetric and
anti-symmetric parts as

f ðk; r; tÞ ¼ f Sðk; r; tÞ þ kf Aðk; r; tÞ : (26)

The Knudsen number that multiplies the anti-symmetric part in (26) is motivated as
follows: For small electric fields the distribution function can be approximated by a
displaced Maxwellian distribution f ðu	 VÞ; where V is the average velocity of the
electron gas [19]. The average velocity is related to the macroscopic length scale x0

and the time scale of the system t0 and thus scales with V0 ¼ x0=t0: We therefore
obtain for the scaled form of the displaced Maxwellian distribution

f ðu	 VÞ ¼ f u0 us 	
x0

u0t0
Vs

� �� �
¼ f sðus 	 kVsÞ ; (27)

where x0=ðu0t0Þ evaluates to k: For a small displacement the distribution function
(27) can be expanded to obtain

f sðus 	 kVsÞ � f sðusÞ 	 kVs �
qf sðusÞ

qus
: (28)

The Maxwellian distribution f ðuÞ is symmetric and therefore the second term in (28)
constitutes the anti-symmetric part of the distribution function.

Since k is small in collision dominated systems, expansion (26) indicates that the
anti-symmetric part is smaller than the symmetric part. Such a splitting is
advantageous because only the symmetric part f Sðk; r; tÞ contributes to averages
with the even weight functions whereas only the anti-symmetric part f Aðk; r; tÞ
contributes to the averages related to odd weight functions. Without loss of
generality, the symmetric and anti-symmetric parts of the distribution function
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f ðk; r; tÞ with respect to k are obtained via the relations

f Sðk; r; tÞ ¼
1
2
ðf ðk; r; tÞ þ f ð	k; r; tÞÞ ; (29)

kf Aðk; r; tÞ ¼
1
2
ðf ðk; r; tÞ 	 f ð	k; r; tÞÞ : (30)

By inserting (26) into (24) and equating symmetric and anti-symmetric terms
Boltzmann’s equation splits into two equations

qt f S þ u � rr f A þ F � rp f A ¼ 1
k2QS½f S� ; (31)

k2qt f A þ u � rr f S þ F � rp f S ¼ QA½f A� : (32)

So far no simplifications have been introduced and (31) and (32) are equivalent to
(24). In the diffusion limit, however, we neglect terms of second-order in k; resulting
in a simpler equation system [27–29]. Recall that by this assumption the
hydrodynamic equation system [2] can be transfered into the energy-transport
system [4]. In the following, however, we will be concerned with the derivation of the
full equation system to deepen our understanding of the influence of the second-
order terms. Only in Section 6.2.1 such a simplified model will be presented and
discussed.

When (31) and (32) are multiplied by the weight functions Ei and pEi and
integrated over k-space we obtain the characteristic equations for the moments /EiS
and /pEiS: Due to the structure of Boltzmann’s equation additional moments
appear in these characteristic equations. It is a non-trivial task to express these
additional moments by the moments /EiS and /uEiS which are taken as the
unknowns of the equation system. This is referred to as closure of the equation
system. Since this is a complicated problem, mostly empirical relations are used [4].
The closure issue can be tackled in a systematic way by using an analytic distribution
function model [7]. In such an approach the distribution function which is the
original unknown of Boltzmann’s equation, is reconstructed using the available
moments, which are the unknowns of the moment system. This is done by assuming
an analytical description of the distribution function

f Analyticðk; r; tÞ ¼ f Analyticðk; a0ðr; tÞ; . . . ; aLðr; tÞÞ ; (33)

which depends on L position-dependent parameters ai: The parameters ai are then
determined by requiring that the moments of (33) exactly reproduce the given set of
moments /1S; . . . ;/EMSS;/uS; . . . ;/uEMAS; and possibly some additional
constraints [11]. Finally, the additional moments can be calculated from (33) in a
more or less straightforward way. It is then hoped that (33) is an accurate model for
the real distribution function and gives good results for the missing additional
moments. We shall see in the sequel, that this is not necessarily the case. Naturally,
the accuracy of this approach relies heavily on the quality of this distribution
function model. The derivation of a suitable distribution function model is the
subject of the next section.
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3. Distribution function model

For the derivation of the closure relations we will make use of an analytic
distribution function model. This model should have the following properties: For
zero bias, it must reduce to the Maxwellian distribution function, which is the
equilibrium solution of Boltzmann’s equation for non-degenerate semiconductors.
In addition and more importantly, when some bias is applied, several effects become
visible in the distribution function. First, the shape of the distribution function
changes to account for the heating of the carrier gas. This effect is assumed to be the
most dominant one. Second, the distribution function is slightly displaced in the
direction of the current flow. And finally, the distribution function will display some
anisotropy around the displaced origin, i.e., it becomes elongated in the direction of
the current flow.

All these effects can be accounted for by displacing the distribution function with a
small energy-dependent displacement kKðE; r; tÞ: Note that in the frequently used
approximation of a displaced and heated Maxwellian distribution the displacement
is assumed to be energy-independent and proportional to the average velocity
/uSðr; tÞ: In unscaled variables we have

KðE; r; tÞ ¼ K0ðr; tÞ ¼ m�

_ /uSðr; tÞ : (34)

Based on results obtained from Monte Carlo simulations we know that the energy
distribution function begins to deviate from the equilibrium distribution before this
displacement becomes visible. We therefore first model an isotropic and thus purely
energy-dependent distribution function f Iðk; r; tÞ and assume that the final
distribution function can be obtained by displacing f Iðk; r; tÞ by a small amount
kKðE; r; tÞ and expand the shifted distribution function up to second-order

f ðkÞ ¼ f Iðk	 kKÞ ¼ f IðEÞ 	 k
qf IðEÞ

qk
� Kþ

k2

2
KT q

2 f IðEÞ

qk2
Kþ Oðk3Þ : (35)

Since the following considerations will be concerned with the calculation of the
moments, the explicit space and time dependence of the distribution function has
been dropped and is understood. Expansion (35) defines the zero-, first-, and second-
order term of the distribution function as

f ðkÞ ¼ f
ð0Þ
S ðEÞ þ kf

ð1Þ
A ðkÞ þ k2 f

ð2Þ
S ðkÞ þ Oðk3Þ : (36)

Note that the zero- and second-order terms contribute to the symmetric part of the
distribution function, whereas the first-order term constitutes the anti-symmetric
part of the distribution function.

To bring f
ð1Þ
A ðkÞ and f

ð2Þ
S ðkÞ into the form f IðEÞhðkÞ we express the energy-

derivatives of the distribution function as

qf IðEÞ

qE
¼ g1ðEÞf IðEÞ and

q2 f IðEÞ

qE2
¼ g2ðEÞf IðEÞ : (37)
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Since the distribution function models normally depend exponentially on the energy,
we obtain compact results of the form

f
ð1Þ
A ðkÞ ¼ f IðEÞFAðEÞK

Tk ; (38)

f
ð2Þ
S ðkÞ ¼ f IðEÞ

1
2
KTF̂ðkÞK (39)

with the auxiliary functions in unscaled variables

FAðEÞ ¼ 	
_2HuðEÞ

m�
g1ðEÞ ; (40)

F̂ðEÞ ¼
1

f I

q2 f I

qkiqkj


 �
¼ FAIðEÞk� kþ F IðEÞÎ ; (41)

FAIðEÞ ¼
_2HuðEÞ

m�

� �2

ðg2ðEÞ 	 2ag1ðEÞHuðEÞÞ ; (42)

F IðEÞ ¼
_2HuðEÞ

m�
g1ðEÞ : (43)

The function FAIðEÞ describes the second-order k-dependence of the symmetric part
of the distribution function, whereas F IðEÞ gives the second-order isotropic
contribution.

3.1. Superposition of two distribution functions

From Monte Carlo simulations we know that for instance in the drain region of
MOS transistors a mixture of a hot and a cold carrier gas exists which is clearly
visible in the distribution function [11,30,31]. To reconstruct such a distribution
function it has been found advantageous [11,32] to model these contributions
separately by describing the total carrier gas as a superposition of two isotropic
distribution functions f hðEÞ and f cðEÞ as f IðkÞ ¼ f hðEÞ þ f cðEÞ: However, when such
a distribution function is displaced we have to consider that the gases flow with
different velocities. We therefore have to use two different displacements Kh and Kc:
Attempts have been made to describe such a mixture of two carrier gases by two
coupled macroscopic transport models [33]. Unfortunately, the coupling of these
transport models is very difficult to model, particularly from a numerical point of
view. In previous investigations it has been observed, that a simple heuristic
relationship between the two displacements is quite accurate [34] and we will restrict
ourselves to such a description. For the total distribution function we thus obtain

f ðkÞ ¼ f hðk	 kKhÞ þ f cðk	 kKcÞ (44)

which can be expanded in the same manner resulting in

f SðkÞ ¼ f hðEÞ þ f cðEÞ þ
k2

2
ðf hðEÞK

T
h F̂hKh þ f cðEÞK

T
c F̂cKcÞ (45)
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for the symmetric part and

f AðkÞ ¼ f hðkÞFA;hK
T
hKþ f cðkÞFA;cK

T
c k (46)

for the anti-symmetric part of the distribution function. With the approximation
Kc � cAKh; where cA is assumed to depend only on the moments, we get

f SðkÞ ¼ f hðEÞ þ f cðEÞ þ
k2

2
KT

h ðf hðEÞF̂hðkÞ þ c2
A f cðEÞF̂cðkÞÞKh (47)

and

f AðkÞ ¼ ðf hðEÞFA;hðEÞ þ cA f cðEÞFA;cðEÞÞK
T
hk : (48)

In the following it will be assumed that the ratio of the displacements is roughly
proportional to the ratio of the reference energies a as cA ¼ ac=a: This empirical
relation is motivated by the diffusion law for ideal gases and the Einstein relation,
which predicts a diffusion velocity proportional to the temperature of the gas. It has
been chosen due to its simplicity and delivered reasonable results [34]. Additional
research on this topic might be in order.

3.2. Definition of the moments

We define a general moment of the distribution function based on the weight
function f as

//fSS ¼ //fSSð0Þ
þ k//fSSð1Þ

þ k2//fSSð2Þ (49)

where the jth-order partial moment is given by

//fSSðjÞ
¼

Z
ff ðjÞ

ðkÞd3k (50)

and the normalized moment by

/fS ¼
//fSS
//1SS

: (51)

Since the zero-order moment required for the normalization contains second-order
terms itself

//1SS ¼ //1SSð0Þ
þ k2//1SSð2Þ (52)

we make use of the approximation

1

//1SS
¼

1

//1SSð0Þ
þ k2//1SSð2Þ

�
1

//1SSð0Þ
1 	 k2 //1SSð2Þ

//1SSð0Þ

 !
(53)

or, in terms of the carrier concentration n ¼ //1SS;

1

n
¼

1

nð0Þ
1 	 k2 nð2Þ

nð0Þ

� �
: (54)
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Keeping only terms up to second-order gives for the general normalized moment

/fS ¼
//fSSð0Þ

nð0Þ
þ k

//fSSð1Þ

nð0Þ
þ k2 //fSSð2Þ

nð0Þ
	

//fSSð0Þ

nð0Þ

nð2Þ

nð0Þ

 !

¼ /fSð0Þ
þ k/fSð1Þ

þ k2/fSð2Þ : ð55Þ

As examples we obtain for the even moments wi ¼ /EiS ¼ w
ð0Þ
i þ k2w

ð2Þ
i

wi ¼
//EiSSð0Þ

nð0Þ
þ k2 //EiSSð2Þ

nð0Þ
	

//EiSSð0Þ

nð0Þ

nð2Þ

nð0Þ

 !
ð56Þ

¼ w
ð0Þ
i þ k2 //EiSSð2Þ

nð0Þ
	 w

ð0Þ
i

nð2Þ

nð0Þ

 !
ð57Þ

and for the odd moments, which represent the fluxes of the system

kVi ¼ k
//uEiSSð1Þ

nð0Þ
¼ k/uEiSð1Þ : (58)

Note how the second-order contribution to the normalized even moment is modified
by the second-order contribution to the carrier concentration and therefore in
general w

ð2Þ
i a//EiSSð2Þ=nð0Þ: The odd moments, on the other hand, depend in this

approximation only on the zero-order term of the carrier concentration since the
second-order term would result in a third-order contribution to the fluxes.

When two distribution functions are superposed we get for the moments of the
weight function f

//fSS ¼ //fSSh þ//fSSc ð59Þ

¼ //fSSð0Þ
h þ//fSSð0Þ

c þ kð//fSSð1Þ
h þ cA//fSSð1Þ

c Þ

þ k2ð//fSSð2Þ
h þ c2

A//fSSð2Þ
c Þ : ð60Þ

This gives for the jth-order partial moment

//fSSðjÞ
¼ //fSSðjÞ

h þ c
j
A//fSSðjÞ

c : (61)

3.3. Isotropic model

To capture the non-Maxwellian shape of the distribution function, we model its
isotropic part following our previous work [11] as

f hðEÞ ¼ A exp 	
E

a

� �b
" #

¼ Af EðE; a; bÞ : (62)

Evaluating the moments of the expansion (35), we obtain general expressions of the
form Z

Erþð1=2Þ f EðE; a; bÞH
x
EðEÞH

y
uðEÞHgðEÞdE : (63)
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Some integer powers x and y of the non-parabolicity correction factors appear in
(63), depending on the moment under consideration. We now define a combined
non-parabolicity function

Hx;yðEÞ¼
:

Hx
EðEÞH

y
uðEÞHgðEÞ (64)

to capture the non-parabolicity effects for each moment. Since Hx;yðEÞ contains
terms of the form ð1 þ aEÞz; where in general z is not an integer, the solution of (63)
cannot be obtained analytically and we have to resort to some approximation. A
Taylor expansion of Hx;yðEÞ delivers an alternating series and thus requires a
relatively large number of terms to deliver satisfactory results [11,35]. We therefore
use polynomials with non-integer powers similarly to our previous work [11]. Two
cases have to be considered: When qEHx;yðEÞjE¼040 the functions Hx;yðEÞ are nearly
linear and a two-parameter polynomial approximation

Hx;yðEÞ � 1 þ gx;yðaEÞ
lx;y (65)

can be used. When qEHx;yðEÞjE¼0o0; however, the functions Hx;yðEÞ can only be
roughly resolved by (65). We, therefore, use a second term in the polynomial
approximation

Hx;yðEÞ � 1 þ gð1Þx;yðaEÞ
lð1Þx;y þ gð2Þx;yðaEÞ

lð2Þx;y : (66)

In an actual implementation, however, the simple expression (65) might be accurate
enough for both cases. The parameters were determined by a least square fit in the
interval aE 2 ½0; 0:25�: It is important to obtain an accurate fit in the low-energy
region because the distribution function decays exponentially at higher energies.
Note that the fit expressions are formulated in a way that preserves the non-
parabolicity factor a in the final result. In particular, the parabolic result is retained
by setting a ¼ 0:

Moments of the form (63) can now be expressed through gamma functions. With
the auxiliary functions

Gði; a; bÞ ¼

Z
Eiþð1=2Þ exp 	

E

a

� �b
" #

dE ¼
aiþð3=2Þ

b
G

i þ 3
2

b

� �
; (67)

Ix;yði; a; bÞ ¼

Z
Hx;yðEÞE

iþð1=2Þ exp 	
E

a

� �b
" #

dE ð68Þ

¼ Gði; a; bÞ þ gx;ya
lx;yGði þ lx;y; a; bÞ ð69Þ

we obtain for the moments of the distribution function (62)Z
Erþð1=2Þ f EðE; a; bÞHx;yðEÞ ¼ Ix;yðr; a; bÞ : (70)

We model the superposition of a hot and a cold distribution function following our
previous work [11] as

f IðEÞ ¼ f hðEÞ þ f cðEÞ ¼ Ahðf EðE; a; bÞ þ cf EðE; ac; 1ÞÞ ; (71)
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where c ¼ Ac=Ah: The jth-order partial moments of (71) are then obtained by
expressions of the form

Ix;yðr; a; bÞ þ cc
j
AIx;yðr; ac; 1Þ : (72)
4. Calculation of the moments

We will now calculate the moments of the combined distribution function (71).
The parameters of the distribution function will then be determined by requiring the
analytic moments to reproduce a given set of moments /EiS and /uEiS: The odd
moments are determined by the fluxes Vi and thus the displacement K. Through (39)
the displacement influences the second-order contribution to the even moments.
Therefore, the odd moments are calculated first.
4.1. Odd moments

For the calculation of the odd moments we expand the energy-dependent
displacement vector KðEÞ into powers of the energy as

KðEÞ ¼
XMA

j¼0

EjKj : (73)

Note that in this way MA þ 1 vector-valued parameters Ki are introduced. To
determine the coefficients Ki we calculate the moments of the anti-symmetric part of
the distribution function using the weight functions

uEi ¼
_k

m�
EiHuðEÞ i ¼ 0; 1; . . . ;MA (74)

and require that they exactly reproduce the MA þ 1 fluxes occurring in the N

moments model. The fluxes Vi of the system are calculated from (58). For the
analytic distribution function (62) we obtain

/uEiSð1Þ
h ¼

2_

3m�

b

ab

g0

nð0Þ

X2

j¼0

Kj

Z
H1;2ðEÞE

iþjþbþð1=2Þ f IðEÞdE ð75Þ

¼
XM
j¼0

Cij;hKj ; ð76Þ

with

Cij;h ¼ CM
b
abI1;2ði þ j þ bÞ ; (77)

CM ¼
2_

3m�

Ag0

nð0Þ
: (78)
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The elements Cij;h form a matrix Ĉh: From the superposition (71) we obtain Ĉ ¼

Ĉh þ ccAĈc: Note that the quantity nð0Þ in (78) contains the contributions of both
distribution functions since the normalization requires the total carrier concentra-
tion. As can be seen from (77), the components of the matrix Ĉ have the property
Cij ¼ Ckl for i þ j ¼ k þ l: Introducing the flux matrix V̂ ¼ ðV0;V1;V2Þ and the
displacement matrix K̂ ¼ ðK0;K1;K2Þ we obtain the linear equation system

V̂ ¼ K̂Ĉ
T

(79)

which has the solution

K̂ ¼ V̂D̂
T

(80)

with D̂ ¼ Ĉ
	1
: This linearity is of course a consequence of the expansion (35) and as

such only a first-order approximation for the displaced distribution function. Note
that the matrices and tensors given before are written explicitly for the case MA ¼ 2:
Simpler cases are obtained accordingly. Introducing the energy vector E ¼

ð1;E;E2Þ
T we can express the displacement as KðEÞ ¼ K̂E and finally write the

anti-symmetric part of the distribution function as

f AðkÞ ¼ ðf hFA;h þ cA f cFA;cÞE
TD̂V̂

T
k : (81)

4.2. Even moments

We calculate the even moments of the distribution function using the weight
functions Ei following (57) to obtain a zero- and second-order contribution as

wi ¼ w
ð0Þ
i þ k2 //EiSSð2Þ

nð0Þ
	 w

ð0Þ
i

nð2Þ

nð0Þ

 !
: (82)

The zero-order contribution to the carrier concentration nð0Þ is calculated as

nð0Þ ¼ g0

Z
f IðEÞE

1=2HgðEÞdE ¼ Cmm0;0ð0Þ ; (83)

mx;yðiÞ ¼ Ix;yði; a; bÞ þ cIx;yði; ac; 1Þ (84)

with Cm ¼ Ag0: The higher-order moments are obtained as

/EiSð0Þ
¼

m0;0ðiÞ

m0;0ð0Þ
: (85)

The calculation of the second-order contribution is more involved. After some
calculus we find

//EiSSð2Þ
¼ 1

2
trðK̂ŴiK̂

T
Þ ; (86)

where the components of the tensors Ŵi are given by

W i;lm ¼ W i;lm;h þ cc2
AW i;lm;c : (87)
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The individual contributions of the two distribution functions are obtained as

W i;lm;x ¼ Ag0

2_2

3m�

b

ab

b

ab
I1;2ði þ l þ m þ 2b 	 1; a; bÞ

�
þ ð1 	 bÞI1;2ði þ l þ m þ b 	 1; a; bÞ þ 2aI1;3ði þ l þ m þ b; a; bÞ

	 3
2
I1;1ði þ l þ m þ b 	 1; a; bÞ

�
ð88Þ

with x ¼ h or c. The second term gives a non-Maxwellian correction, which is zero
for the cold distribution ðb ¼ 1Þ; and the third term gives a non-parabolicity
contribution.

Substituting the previous result (80), K̂ ¼ V̂D̂
T
; into (86) gives

//EiSSð2Þ
¼ 1

2 trðV̂R̂iV̂
T
Þ : (89)

The tensor R̂i is given by R̂i ¼ D̂
T
ŴiD̂: The carrier concentration thus results in

n ¼ nð0Þ þ k2nð2Þ ¼ Cmm0;0ð0Þ þ k2 1
2 trðV̂R̂iV̂

T
Þ ; (90)

whereas the normalized statistical averages of Ei equal

wi ¼
m0;0ðiÞ

m0;0ð0Þ
þ k2 1

2
trðV̂ŵiV̂

T
Þ (91)

with

ŵi ¼
R̂i 	 R̂0w

ð0Þ
i

m0;0ð0Þ
: (92)

Eq. (90) appears unusual at a first glance because the carrier concentration now
depends on the fluxes of the system. Conventionally, with the displaced and heated
Maxwellian distribution, the carrier concentration is independent of the fluxes. For
this particular distribution function and parabolic bands it can be easily shown that
the second-order term in (90) disappears. The reason why the fluxes appear in this
generalized expression is that the displacement serves two purposes: First, the
distribution function has to be displaced to reproduce the average velocity, and
second, the shape of the anti-symmetric part of the distribution function has to be
modified to make the higher-order fluxes independent of the average velocity. To
obtain the latter effect the displacement has to be energy dependent. As a
consequence the shape of the distribution function changes and thus the carrier
concentration.

4.2.1. Calculation of the parameters

The solution of macroscopic transport models based on N moments, for instance
the class of models derived in Section 6, determines the N unknowns, normally
n;w1; . . . ;wM ;V0; . . . ;VM : These values can then be used to determine N parameters
of the distribution function model. In general we can use N=2 moments for the odd
part to satisfy the linear equation system K̂ ¼ V̂D̂

T
: Determination of the

parameters of the isotropic part is more complicated because (91) is non-linear in
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the parameters A; a; b; c; and ac; and a Newton algorithm has to be used. Since the
highest order moments model we consider is of order six, we have two more
parameters than moments provided by the transport model. Therefore, the
additional conditions ac ¼ kBTL and /E2Sh ¼ hð/EShÞ are assumed, where
hð/ESÞ is the relationship between /E2S and /ES in bulk, and / �Sh is the
moment of f h only. Note that the cold population only exists inside the drain regions
and that therefore c vanishes inside channel regions [11]. The issue of finding suitable
additional relations is discussed in detail in [11]. Monte Carlo fits for these relations,
which have been extracted from a set of nþ 	 n 	 nþ structures, have been published
in [36]. Whether these expressions are valid for a broader range of devices and bias
conditions, however, remains to be seen.

4.2.2. Energy-like tensors

In the moment equations energy-like tensors Ûi will appear which are defined as

nÛi ¼ //Ei	1u� pSS : (93)

We call them energy-like tensors since their unit is energy to the power i: They will be
calculated in a similar manner as the statistical averages of the carrier energy. The
zero-order contribution evaluates to

//Ei	1u� pSSð0Þ
¼

Z
f IE

i	1 _2

m�
Huk� kd3k ð94Þ

¼
2

3
g0

Z
f IðEÞE

iþð1=2ÞH1;1ðEÞÎ dE ð95Þ

¼
2

3
Ag0m1;1ðiÞÎ : ð96Þ

Following (55) we thus obtain for the zero-order component of the energy-like tensor

Û
ð0Þ

i ¼
//Ei	1u� pSSð0Þ

nð0Þ
¼

2

3

m1;1ðiÞ

m0;0ð0Þ
Î ¼ Ui Î : (97)

It is convenient to introduce the zero-order parabolic contribution to the energy-like
tensors as

Û
Pð0Þ

i ¼
2

3
/EiSð0ÞÎ ¼

2

3

m0;0ðiÞ

m0;0ð0Þ
Î ¼ UP

i Î : (98)

The term parabolic contribution was chosen because in standard parabolic models
Ui is modeled as Ui ¼ 2wi=3: Actually, as can be seen from (98), UP

i contains non-
parabolicity information as well, but the relations between the average energies wi

and UP
i do not depend on the band structure. The zero-order energy-like tensors can

then be written as

Û
ð0Þ

i ¼
2

3

m0;0ðiÞ

m0;0ð0Þ

m1;1ðiÞ

m0;0ðiÞ
Î ¼ UP

i Hi Î ; (99)

which introduces the non-parabolicity functions Hi as a generalization of the
concept used in [9]. The functions Hi depend on the distribution function and are
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Fig. 1. The non-parabolicity factors Hi required for the zero-order contribution to the energy-like tensors

Û
ð0Þ

i : The top figure shows the results obtained by the six moments model ðM ¼ 2Þ; the middle figure the

results obtained by the four-moments model ðM ¼ 1Þ; and the bottom figure the expression proposed by

Bordelon et al. [9].
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shown in Fig. 1 as a function of the average energy for the six moments model
ðM ¼ 2Þ; the four-moments model ðM ¼ 1Þ; and for the expression proposed by
Bordelon et al. [9]

H1ðw1Þ ¼
1 þ aw1

1 þ 2aw1
: (100)

Clearly, the coefficients Hi are not single valued functions of the average energy w1

and only the six moments distribution function provides sufficient information to
accurately model the coefficients Hi:

The calculation of the second-order contribution to the energy-like tensors is more
involved due to the occurrence of tensors of the form ðk� kÞðKT

l ðk� kÞKmÞ: Since
only the even components of these tensors can contribute to the final result we can
drop the odd components. By eliminating the angle dependency through integrating
in polar-coordinates we finally arrive at

ðk� kÞðKT
l ðk� kÞKmÞ ¼

1
15

K̂lmk4 ; (101)

where the auxiliary tensors K̂lm are given by

K̂lm ¼ Kl � KmÎ þ Kl � Km þ Km � Kl : (102)

The second-order contribution is then obtained as

//Ei	1u� pSSð2Þ
¼

_2

2m�
L̂i ; (103)

where

L̂i ¼ L̂i;00 þ L̂i;11 þ L̂i;22 þ 2ðL̂i;01 þ L̂i;02 þ L̂i;12Þ (104)

with the tensors L̂i;lm consisting of a contribution due to the hot and the cold
distribution function as

L̂i;lm ¼ L̂i;lm;h þ cc2
AL̂i;lm;c : (105)

The individual contributions are obtained via

L̂i;lm;x ¼
4

15
K̂lm

b

ab
Ag0

b

ab
I2;3ði þ l þ m þ 2b 	 1; a; bÞ

�
þ ð1 	 bÞI2;3ði þ l þ m þ b 	 1; a; bÞ

þ 2aI2;4ði þ l þ m þ b; a; bÞ

�

	 Kl � KmÎ
b

ab
Ag0

2

3
I1;2ði þ l þ m þ b 	 1; a; bÞ : ð106Þ

For the energy-like tensor we thus get

Ûi ¼ Ui Î þ k2 _2

2m�nð0Þ
L̂i 	 Ui

nð2Þ

nð0Þ
Î

� �
: (107)
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4.3. Discussion

For the expansions of the distribution to be useful it is required that terms of order
higher than two are negligible. This, however, cannot be guaranteed when the kinetic
energy becomes large in quasi-ballistic religions. At a first glance, the non-expanded
distribution function seems to be the ideal choice and the expansion is only
introduced to facilitate closed form analytical expressions for the odd moments. We
pay for this by obtaining a distribution function that may become negative. Looking
at this issue more closely, however, reveals some surprising facts. As pointed out by
Dreyer et al. [37] for moment equations based on the Fokker–Planck and Boltzmann
equation, the non-expanded distribution functions based on the maximum entropy
principle can develop a second peak, which is unphysical. This happens whenever the
polynomial in the exponent has a minimum or equals zero. Dreyer et al. compared
this to Grad’s method [5,7,38], which they interpreted as linearization of the
exponential term, and showed that this additional peak is absent there. As a
conclusion they proposed that Grad’s method is preferable over models based on the
maximum entropy principle. Unfortunately, in the particular case of semiconductor
devices, Grad’s method does not properly resolve the exponential nature of the
symmetric part and is as such unsuitable, unless a very large number of
moments is used. The approach of Anile et al. [39] and the approach followed
here, where only the anti-symmetric components are linearized, avoids this issue. For
the maximum entropy models this issue of course re-arises when higher-order
polynomials are required for the symmetric part. The model presented here, on the
other hand, allows to use six moments without introducing additional peaks in the
symmetric part.

This issue is demonstrated in Figs. 2 and 3 for a heated Maxwellian distribution
which is displaced by polynomials of order MA ¼ 0; 1; and 2. The parameters of the
expanded distribution function are determined to match Monte Carlo bulk
simulation results, once for low bias and once for intermediate bias conditions,
and then inserted into the non-expanded distribution function. As can be seen in Fig.
2, for the low bias condition the five moments model ðMS ¼ 1;MA ¼ 2Þ shows a
second peak at 5.2 nm	1 which is absent in the expanded distribution. For the
intermediate bias region a second peak already begins to form for the four moments
model ðMS ¼ 1;MA ¼ 1Þ as shown in Fig. 3. This issue is even more crucial for the
inhomogeneous situation in devices. In Figs. 4 and 5 the energy tensor Û1 calculated
by six different distribution functions is shown. For the six moments model, the first
three terms of the expansion are not sufficient inside the channel for MAX1; whereas
for the displaced heated Maxwellian distribution this occurs only for MAX2: For the
two critical points (or regions) where this phenomenon is observed the displacement
K is shown in Fig. 6 in comparison with corresponding (convergent) bulk results.
The bulk values were selected from a Monte Carlo simulation with the same average
energy and the same doping levels. In the inhomogeneous case the displacement has
to vary much stronger to reproduce the correct fluxes.

What may seem slightly disconcerting at first is probably of little practical
relevance since the expressions for the second-order contributions cause a
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Fig. 2. Validity of the expansion (35) for higher-order energy-dependent displacements ðMA ¼ 0; 1; 2Þ of a

heated Maxwellian distribution. The results are from a bulk Monte Carlo simulation with ND ¼ 1018 cm	3

and E ¼ 22 kV/cm which resulted in an average carrier energy of 75meV.

T. Grasser / Physica A 349 (2005) 221–258242



ARTICLE IN PRESS

Fig. 3. Validity of expansion (35) for higher-order energy-dependent displacements ðMA ¼ 0; 1; 2Þ of a

heated Maxwellian distribution. The results are from a bulk Monte Carlo simulation with ND ¼ 1018 cm	3

and E ¼ 90 kV/cm which resulted in an average carrier energy of 323meV.
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Fig. 4. Components of the energy tensor Û1 for the example device for the six moments model ðMS ¼

2;MA ¼ 0; 1; 2Þ: The critical point A around which the first three terms of expansion (35) are not sufficient

is shown.
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Fig. 5. Components of the energy tensor Û1 for the example device for the heated Maxwellian distribution

ðMS ¼ 1;MA ¼ 0; 1; 2Þ: The critical point B around which the first three terms of expansion (35) are not

sufficient is shown.
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Fig. 6. Comparison of the displacement K for the two critical points A and B with a corresponding bulk

result. The bulk values were selected from a Monte Carlo simulation with the same average energy and the

same doping levels (Point A: w1 ¼ 9kBTL; ND ¼ 3 
 1017 cm	3; Point B: w1 ¼ 3kBTL; ND ¼ 1019 cm	3).

In the inhomogeneous case the displacement has to vary much stronger to reproduce the correct fluxes.
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considerable complication compared to models of the form

Û
ð2Þ

i ¼ Vi	1 � P : (108)

These terms cause additional coupling between the individual flux relations (see
Section 6). In addition, the second-order terms introduce hyperbolic modes into the
equation system [40] which makes the transport model difficult to solve. Even though
Baccarani and Wordeman [41] pointed out the importance of these convective terms
in the 1980s, not even transport models based on the much simpler Eq. (108) have
been used outside ‘laboratory conditions’.

The new expressions are, however, very useful for studying the influence of the
second-order contributions on the energy-like tensors. The highest-order moment
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gives best results for small average carrier energies but cannot be used at higher
energies. Even though the information about the kinetic energy is distributed over all
fluxes in a higher-order expansion, Figs. 4 and 5, suggest that this is not that
important for the calculation of the energy-like tensors. A feasible approximation
might therefore be to calculate the second-order contributions to the energy-like
tensors with the distribution function model MS ¼ 2 and MA ¼ 0; i.e., an energy-
independently displaced six moments model. Expanded distribution functions based
on an energy-independent displacement converge sufficiently throughout the whole
device-structure.

It is important to realize that this issue is not a particular feature of this model, but
rather common to all distribution function models employing exponential functions
of polynomials. Other arguments of the exponential function may be found which do
not exhibit these features but then the moments could probably not be calculated
analytically anymore.
5. Modeling of the scattering integral

By introducing a microscopic relaxation time tfðEÞ for each weight function f the
scattering integral can be formally rearranged as [19]Z

fðkÞQ½f ðkÞ�d3k ¼ 	n/
fðkÞ
tfðEÞ

S : (109)

For even weight functions the relaxation time is obtained as

1

tfðEÞ
¼

Z
1 	

fðk0Þ
fðkÞ

� �
Sðk;k0Þd3k0 : (110)

Special care has to be taken if the weight function f is a vector, since division as
performed in (110) is not possible. Considering f ¼ k; the momentum relaxation
time tpðkÞ is obtained as [42]

1

tpðkÞ
¼

Z
1 	

k0

k
cos W

� �
Sðk; k0 cos WÞd3k0 : (111)

In the following we will evaluate the scattering integral considering acoustic
deformation potential scattering (ADP), intravalley scattering (IVS), and
impurity scattering (IMP) [42]. For IMP the Brooks–Herring model is used for
simplicity, although more accurate models can be treated in the same manner.
These scattering rates have in common that they are linear functionals of the
distribution function. This property will be exploited in some of the following
sections. Scattering processes such as short-range carrier–carrier scattering are non-
linear in the distribution function and can be evaluated in the same manner.
However, the resulting moments of the scattering operator will be of a more
complicated form.
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The momentum relaxation times for the three scattering processes considered
read [42]

ADP :
1

tpðEÞ
¼ KadpgðEÞ ; (112)

IVS :
1

t�p ðEÞ
¼ K�

ivssðE� E0ÞgðE� E0Þ ; (113)

IMP :
1

tpðEÞ
¼ K impTðtÞH impðEÞE

	3=2 ; (114)

with the auxiliary definitions for IMP

TðtÞ ¼ lnð1 þ tÞ 	
t

1 þ t

� �
with t ¼

4

Eb
Eð1 þ aEÞ ; (115)

H impðEÞ ¼
1 þ 2aE

ð1 þ aEÞ3=2
: (116)

The coefficients Kadp;K
�
ivs;E0 ¼ _o0;K imp; and Eb are energy-independent. Their

definitions can be found, for example, in [19].
It is convenient to express the moments of the scattering operator in terms of the

deviation of the associated moment /fS from its equilibrium value /fSeq;
calculated with a cold Maxwellian distribution function. We then get [19]Z

fðkÞQ½f ðkÞ�d3k ¼ 	n
/fS	/fSeq

tf½f �
: (117)

The macroscopic relaxation time tf½f � associated with the weight function f is a
functional of the distribution function and could be calculated if the distribution
function was known. As such, (117) is exact and implies no approximation. Since the
distribution function is in general not known, the so-called macroscopic relaxation
time approximation is employed which assumes that the relaxation time depends
only on the average energy tf½f � ¼ tfðw1Þ:

The relaxation time tfðw1Þ is then frequently modeled in an ad hoc manner, either
by fits to bulk Monte Carlo data or by empirical models. Particularly for the odd
weight functions the influence of this assumption on observable quantities is not yet
fully understood [4].

In the following we will calculate macroscopic relaxation times and mobilities by
directly evaluating the scattering integral using the microscopic relaxation times and
the analytic distribution function model.

5.1. Even moments of the scattering integral

For the balance equations we need the even moments of the scattering integral
obtained from the weight functions Ei: With neglected generation/recombination
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processes the microscopic relaxation times evaluate to

1

tiðkÞ
¼

Z
1 	

Eðk0Þ

EðkÞ

� �i
" #

Sðk;k0Þd3k0 : (118)

Since the modeling of these relaxation times has never been considered too critical
and mostly constant approximations have been employed we only consider the zero-
order term of the distribution function. The moments of the scattering integral can
then be written for the distribution function (62) as

qi;x ¼ 	/
Ei

tiðEÞ
S ¼

1

m0;0ð0Þ

Z
Eiþ1=2HgðEÞ

f EðE; ax; bxÞ

tiðEÞ
dE : (119)

For the combined distribution function (71) we obtain qi ¼ qi;h þ ccAqi;c: Finally we
can express the relaxation times required in the macroscopic transport equations as

ti ¼
/EiS	/EiSeq

qi

: (120)

Since ADP and IMP are assumed to be elastic, EðkÞ ¼ Eðk0Þ; they do not contribute
to these relaxation times. IVS is assumed to be isotropic with Eðk0Þ ¼ E� E0 which
gives

1

t1ðEÞ
¼ �

E0

E

Z
Sðk;k0Þd3k0 ¼ �

E0

E

1

t�p ðEÞ
; (121)

1

t2ðEÞ
¼ �

2E0

E
	

E2
0

E2

� � Z
Sðk;k0Þd3k0 ¼ �

2E0

E
	

E2
0

E2

� �
1

t�p ðEÞ
: (122)

The moments of the scattering integral are then obtained as

q1;x ¼
E0

m0;0ð0Þ

Z
f EðE; ax; bxÞE

1=2HgðEÞ
1

t	p ðEÞ
	

1

tþp ðEÞ

" #
dE ; (123)

q2;x ¼
E0

m0;0ð0Þ

Z
f EðE; ax; bxÞE

1=2HgðEÞ


 ð2E	 E0Þ
1

t	p ðEÞ
	 ð2Eþ E0Þ

1

tþp ðEÞ

" #
dE : ð124Þ

Because generation/recombination processes are neglected, q0 evaluates to q0 ¼ 0:
5.2. Odd moments of the scattering integral

For the flux equations we need the odd moments of the scattering integral
obtained from the weight functions pEi: The relaxation times associated with the
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weight function pEi are defined as

1

t
pE

i ðkÞ
¼

Z
d cos W

Z
k02 dk0 1 	

k0

k
cos W

Eiðk0Þ

EiðkÞ

� �
Sðk; k0; cos WÞ : (125)

Since ADP and IMP are elastic, that is, EðkÞ ¼ Eðk0Þ; (125) simplifies to

1

t
pE

i ðkÞ
¼

Z
1 	

k0

k
cos W

� �
Sðk; k0; cos WÞd3k0 ¼

1

tpðkÞ
(126)

which is the definition of the momentum relaxation time tp: Since IVS is assumed to
be isotropic, S ¼ Sðk; k0

Þ; the integration of cos W vanishes and we obtain

1

t
pE

i ðkÞ
¼

Z
Sðk;k0Þd3k0 ¼

1

tðkÞ
¼

1

tpðkÞ
: (127)

We can now evaluate the scattering integral using the analytic distribution function
to obtain

Qi ¼ 	/
pEi

tp
S ¼

1

nð0Þ

Z
pEi f A

tp
d3k ¼

X2

j¼0

KjSij (128)

with Sij ¼ Sij;h þ ccASij;c for the combined distribution function, where

Sij;x ¼ CS
b

ab

Z
Eiþjþbþ1=2H1;1

f EðE; ax; bxÞ

tp
dE (129)

with the definition CS ¼ m�CM: Since the odd part of the distribution function is of
first-order in k; so are the odd moments of the scattering integral. Using the symbolic
notation we can write

Q̂ ¼ K̂Ŝ
T
¼ V̂D̂

T
Ŝ

T
¼ V̂Ẑ

T
(130)

with the scattering matrix Ẑ ¼ ŜD̂: The scattering integral for the odd weight
functions can thus be expressed as a linear combination of the fluxes with the
coefficients Zij which only depend on the even moments. This is in accordance with
the results obtained by Hänsch [6] and Anile [7]. The coefficients Zij contain the
information about the scattering rates via the coefficients Sij;x which are given as
follows:

S
adp
ij;x ¼ CS

b

ab
Kadpg0

Z
Eiþjþ2Hadp f EðE; ax; bxÞdE ; (131)

Sivs
ij;x ¼ CS

b

ab
K�

ivsg0

Z
Eiþjþ3=2H�

ivs f EðE; ax; bxÞdE ; (132)

S
imp
ij;x ¼ CS

b

ab
K imp

Z
EiþjH1;1H imp f EðE; ax; bxÞdE (133)
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with the auxiliary non-parabolicity functions

HadpðEÞ ¼ H1;1ðEÞHgðEÞ ; (134)

H�
ivsðEÞ ¼ H1;1ðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E0

p
HgðE� E0Þ : (135)

Good approximations for the functions H�
ivsðEÞ and H impðg2Þ are more difficult to

obtain than for the non-parabolicity functions Hx;yðEÞ: For the evaluation of the
examples, the scattering integrals (131)–(133) have been evaluated numerically. To
obtain analytic approximations, the approach proposed in [43] can be transfered to
the non-Maxwellian distribution functions used here.
Fig. 7. Comparison of the relaxation times as a function of the average energy for two different models.

At the top the non-Maxwellian six moments distribution function ðM ¼ 2Þ and at the bottom the heated

Maxwellian model ðM ¼ 1Þ:
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Fig. 8. Comparison of the first row of the scattering matrix Ẑ for three different models. At the top the

non-Maxwellian six moments model ðM ¼ 2Þ; in the middle the heated Maxwellian model ðM ¼ 1Þ; and at

the bottom Hänsch’s model.
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5.3. Comparison

A comparison of the calculated relaxation times ti to Monte Carlo results based on
the same band structure and scattering models is shown in Fig. 7. The relaxation times
are plotted as a function of the average energy because they are commonly modeled as
either constant or energy dependent [4]. As can be seen, this is only approximately true
and we find two branches, one inside the channel region and the other for the drain
region. This hysteresis in the relaxation times is only properly reproduced by the non-
Maxwellian six moments distribution function model. The hysteresis in t2 obtained by
the heated Maxwellian distribution is explained as follows: the moment of the
scattering integral q2 is of course a single valued function of w1; because the
parameters of the distribution function depend only on w1: The relaxation time t2; on
the other hand, is defined via (120) and thus depends on w2 which cannot be expressed
as a single valued function of w1 and therefore introduces the hysteresis.

The moments of the scattering integral Qi are compared to Monte Carlo results in
Fig. 8. Inside the channel the heated Maxwellian approximation ðM ¼ 1Þ delivers
fairly accurate results as long as the average carrier energy is not too high
(w1o0:25 eV). For higher energies the scattering rates are overestimated. Inside the
drain region, the heated Maxwellian approximation fails completely and even
delivers a different sign for Q0: This is a consequence of the linearization of the anti-
symmetric part of the distribution function which is fatal in this case. The six
moments description ðM ¼ 2Þ; however, delivers highly accurate results throughout
the whole device. Also shown in Fig. 8 is the scattering moment Q0 predicted by the
popular Hänsch model [6] which overestimates scattering inside the channel.
6. General macroscopic moment models

In the following the transport equations determining the first six moments will be
derived. The macroscopic transport equations are obtained by multiplying Boltzmann’s
equation with the appropriate weight functions and integrating the product over k space.
As usual, we assume that the Brillouin zone extends towards infinity, which is justified
because the distribution function declines exponentially [17]. We apply the weight
functions Ei and pEi with i ¼ 0; 1; . . . ;M to the Boltzmann equation given by (31) and
(32) to obtain N ¼ 2ðM þ 1Þ moment equations. The general transport model will be
formulated in terms of the unknowns wi ¼ /EiS and Vi ¼ /uEiS: The required closure
relations for the moments Ûi; qi; and Qi have been calculated in the previous sections.

6.1. Balance equations

The balance equations are obtained as the moments of (31) with the even weight
functions Ei as

qtn/EiSþ rr � n/uEiS	 nF �/rpE
iS ¼

1

k2

Z
EiQS½f S�d

3k : (136)
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The calculation of the gradients of Ei is straightforward and gives

rpE
i ¼ iEi	1rpE ¼ iEi	1u : (137)

The balance equations can thus be rewritten as

qtnwi þrr � nVi 	 iF � nVi	1 ¼ 	
n

k2

wi 	 wi;eq

ti

; (138)

where the definitions (120) of the relaxation times ti have been used. Note that due to
the choice of solution variables the structure of the balance equations is independent
of the band structure model.
6.2. Flux equations

To formulate the flux equations we apply the odd weight functions pEi to (32) and
obtain

k2qtn/pEiSð1Þ
þ rr � n/u� pEiS	 nF �/rp � pEiS ¼

Z
pEiQA½ f A�d

3k ;

(139)

or in compact form Wi ¼ Qi: Eq. (139) contains gradients of several scalar and
tensor-valued functions. The gradients of the weight functions pEi are

rp � pEi ¼ Eirp � pþ p�rpE
i ¼ Ei Î þ u� piEi	1 (140)

which gives for the averages

/rp � pEiS ¼ wi Î þ iÛi : (141)

For the term qt/pEiSð1Þ we get Pi ¼ /pEiSð1Þ
¼ m�ðVi þ 2aViþ1Þ and the fluxes Wi

can finally be written as

Wi ¼ k2qtnPi þ Ûiþ1rr log n þ rr � Ûiþ1 	 F � ðwi Î þ iÛiÞ : (142)

Since there is no k-space dependence in the macroscopic equations the subscript r of
the nabla operator will be dropped for the remainder of this article.

Conventionally, inverse mobility tensors m̂	1
i are introduced [4] to establish a

relation between Qi and Vi analogously to the drift-diffusion model. This procedure,
which is almost exclusively used in today’s available device simulators, has several
shortcomings. We therefore propose a different approach: In matrix form we have
the linear equation system Ĉ ¼ V̂Ẑ

T
which has the solution V̂ ¼ ĈŶ

T
with Ŷ ¼ Ẑ

	1
:

We can thus obtain explicit relations for the fluxes Vi as

Vi ¼
XM
j¼0

Y ijWj ¼ k2
XM
j¼0

qtnPi þ m̂i

F

q
	 D̂ir log n 	

XM
j¼0

Y ijr � Ûjþ1 ; (143)
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where we introduced the mobility tensors m̂i and the diffusion tensors D̂i as

m̂i ¼ 	q
XM
j¼0

Y ijðwj Î þ jÛjÞ; and D̂i ¼ 	
XM
j¼0

Y ijÛjþ1 : (144)

By defining Vi ¼ V
ð0Þ
i þ k2V

ð2Þ
i ; m̂i ¼ mi Î þ k2m̂ð2Þi ; and D̂i ¼ Di Î þ k2D̂

ð2Þ

i we can split
(143) into a zero- and second-order term

V
ð0Þ
i ¼ mi

F

q
	 Dir log n 	

XM
j¼0

Y ijrUjþ1 ; (145)

V
ð2Þ
i ¼

XM
j¼0

qtnPi þ m̂ð2Þi

F

q
	 D̂

ð2Þ

i r log n 	
XM
j¼0

Y ijr � Û
ð2Þ

jþ1 ; (146)

where the zero-order contribution to the mobility and diffusion tensors reduce to
scalars

mi ¼ 	q
XM
j¼0

Y ijðwj þ jUjÞ; m̂ð2Þi ¼ 	q
XM
j¼0

jY ijÛ
ð2Þ

j ; (147)

Di ¼ 	
XM
j¼0

Y ijUjþ1; D̂
ð2Þ

i ¼ 	
XM
j¼0

Y ijÛ
ð2Þ

jþ1 : (148)

Formulation (145)–(146) has several interesting properties. First, the zero-order
contributions to the mobilities m̂i depend only on the even moments rather than on
the fluxes. In addition, the fact that the mobilities are functionals of the distribution
function is well reproduced since the mobilities depend on all available even
moments wj rather than on w1 alone. Second, as a result, the zero-order contribution
to the explicit flux relations (145) are linear in Vi: Furthermore, all fluxes depend on
all even moments, most notably on the closure relation for ÛMþ1: Note that this is
not the case with models based on the relaxation time approximation, where the
matrix Ẑ is of diagonal form and thus only the highest order equation for the flux
VM depends directly on the closure relation.

6.2.1. Diffusion approximation

Although the flux relations given by (143) are straightforward to evaluate with a
given set n; wi; and Vi; the solution of the transport model is challenging. This is
because the second-order terms introduce hyperbolic modes into the equation system
which require discretization techniques known from computational fluid-dynamics
[40,44–47]. The diffusion approximation can be applied when the Knudsen number k
is small. As a consequence the second-order terms (146) are neglected. The remaining
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relation (145) results in a parabolic partial differential equation system which is
simpler to solve.

Preliminary results indicate, however, that such an approach, as was for instance
followed in [7] is problematic. For the simple bulk case with E ¼ Eex we find from
the full representation (143) that the current is proportional to E and m0;00: The
mobility tensor component m0;00 depends on the second-order contribution to the
energy-like tensors which can be substantial. In particular, we observed a deviation
from the zero-order value U1 of 7–25% in the bulk case, depending on the doping
and bias conditions, and more than 40% inside the example device. This can lead to
a considerable error even in the bulk mobility. We might therefore not even be able
to reproduce the correct bulk mobility when applying the diffusion approximation,
regardless of the fact that the moments of the scattering integral are modeled with a
high accuracy. Note that this issue is not that severe for models based on the
relaxation time approximation.
7. Conclusions

We present a rigorous derivation of non-parabolic macroscopic transport models
of different order from Boltzmann’s equation. The closure relations are derived from
analytical distribution function models, most notably a non-Maxwellian six
moments description. Instead of applying the relaxation time approximation we
reformulate the moments of the scattering integral in terms of the fluxes of the
equation system. In the diffusion limit, where only the zero- and first-order terms are
kept, we thereby avoid any flux dependence of the mobilities and thus the non-
linearities resulting therefrom. As a result, all fluxes occurring in the final equation
system depend on all even moments and in particular on the closure relation. We
show that in contrast to standard energy-transport and hydrodynamic models,
which are based on a heated Maxwellian distribution function, a non-Maxwellian six
moments description accurately models all closure relations. However, for the
particular case when the scattering integral is systematically evaluated with an
analytic distribution function model, the second-order convective terms seem to be
too important to be neglected.
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electron transport at high energies, Solid-State Electron. 32 (12) (1989) 1663–1667.

[22] K. Hennacy, Y.-J. Wu, N. Goldsman, I. Mayergoyz, Deterministic MOSFET simulation using a

generalized spherical harmonic expansion of the Boltzmann equation, Solid-State Electron. 38 (8)

(1995) 1489–1495.

[23] M. Vecchi, M. Rudan, Modeling electron and hole transport with full-band structure effects

by means of the spherical-harmonics expansion of the BTE, IEEE Trans. Electron. Dev. 45 (1) (1998)

230–238.

[24] P. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, Wien, NY, 1990.

[25] A. Anile, W. Allegretto, C. Ringhofer, Mathematical Problems in Semiconductor Physics, Springer,

Wien, NY, 1988.

[26] C. Ringhofer, C. Schmeiser, A. Zwirchmayer, Moment methods for the semiconductor Boltzmann

equation in bounded position domains, SIAM J. Numer. Anal. 39 (3) (2001) 1078–1095.

[27] T. Grasser, H. Kosina, M. Gritsch, S. Selberherr, Using six moments of Boltzmann’s transport

equation for device simulation, J. Appl. Phys. 90 (5) (2001) 2389–2396.

[28] T. Grasser, H. Kosina, S. Selberherr, Reformulation of macroscopic transport models based on the

moments of the scattering integral, in: Proceedings of Simulation of Semiconductor Processes and

Devices, Boston, USA, September 2003, pp. 63–66.

http://www-mtl.mit.edu/Well/
http://www-mtl.mit.edu/Well/


ARTICLE IN PRESS

T. Grasser / Physica A 349 (2005) 221–258258
[29] T. Grasser, H. Kosina, S. Selberherr, Hot carrier effects within macroscopic transport models, in: T.

Grasser (Ed.), Advanced Device Modeling and Simulation, World Scientific, Singapore, September

2003, pp. 173–201.

[30] G. Wolokin, J. Frey, Overshoot effects in the relaxation time approximation, in: Proceedings of

NASECODE VIII, Vienna, 1992, pp. 107–108.

[31] S. Laux, M. Fischetti, Transport models for advanced device simulation-truth or consequences?, in:

Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting, October 1995, pp. 27–34.

[32] K. Sonoda, S. Dunham, M. Yamaji, K. Taniguchi, C. Hamaguchi, Impact ionization model using

average energy and average square energy of distribution function, Jpn. J. Appl. Phys. 35 (2B) (1996)

818–825.

[33] J.-G. Ahn, C.-S. Yao, Y.-J. Park, H.-S. Min, R. Dutton, Impact ionization modeling using simulation

of high energy tail distributions, IEEE Electron. Dev. Lett. 15 (9) (1994) 348–350.

[34] T. Grasser, H. Kosina, S. Selberherr, Rigorous modeling of mobilities and relaxation times using six

moments of the distribution function, in: Proceedings of 4th European Workshop on Ultimate

Integration of Silicon, Udine, Italy, March 2003, pp. 105–108.

[35] A. Smith, K. Brennan, Comparison of non-parabolic hydrodynamic simulations for semiconductor

devices, Solid-State Electron. 39 (7) (1996) 1055–1063.

[36] T. Tang, Q. Cao, J. Nam, Impact ionization model using first three moments of energy distribution

function, Jpn. J. Appl. Phys. 42 (4B) (2003) 2137–2143.

[37] W. Dreyer, M. Junk, M. Kunik, On the approximation of the Fokker–Planck equation by moment

systems, Nonlinearity 14 (4) (2001) 881–906.

[38] H. Grad, On the kinetic theory of rarified gases, Commun. Pure Appl. Math. 2 (1949) 311–407.

[39] A. Anile, V. Romano, Hydrodynamical modeling of charge carrier transport in semiconductors,

Summer School on Industrial Mathematics, 1ST Lisboa, Portugal, http://www.dipmat.unict.it/
�anile/preprint.html, 1999.

[40] C. Gardner, Numerical simulation of a steady-state electron shock wave in a submicrometer

semiconductor device, IEEE Trans. Electron. Dev. 38 (2) (1991) 392–398.

[41] G. Baccarani, M. Wordeman, An investigation of steady-state velocity overshoot in silicon, Solid-

State Electron. 28 (4) (1985) 407–416.

[42] C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer,

Wien, NY, 1989.

[43] A. Schenk, Unified bulk mobility model for low- and high-field transport in silicon, J. Appl. Phys. 79

(2) (1996) 814–831.

[44] E. Thomann, F. Odeh, On the well-posedness of the two-dimensional hydrodynamic model for

semiconductor devices, COMPEL 9 (1) (1990) 45–57.

[45] L.-M. Yeh, Well-posedness of the hydrodynamic model for semiconductors, Math. Methods Appl.

Sci. 19 (18) (1996) 1489–1507.

[46] A. Anile, C. Maccora, R. Pidatella, Simulation of nþ-n-nþ devices by a hydrodynamic model:

subsonic and supersonic flows, COMPEL 14 (1) (1995) 1–18.

[47] D. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with

increasingly high order of accuracy, J. Comput. Phys. 160 (2) (2000) 405–452.

http://www.dipmat.unict.it/~anile/preprint.html
http://www.dipmat.unict.it/~anile/preprint.html

	Non-parabolic macroscopic transport models for semiconductor device simulation
	Introduction
	Boltzmannaposs equation
	Band structure model
	Moments of the distribution function
	Diffusion scaling

	Distribution function model
	Superposition of two distribution functions
	Definition of the moments
	Isotropic model

	Calculation of the moments
	Odd moments
	Even moments
	Calculation of the parameters
	Energy-like tensors

	Discussion

	Modeling of the scattering integral
	Even moments of the scattering integral
	Odd moments of the scattering integral
	Comparison

	General macroscopic moment models
	Balance equations
	Flux equations
	Diffusion approximation


	Conclusions
	Acknowledgements
	References


