
Advanced Equation Processing for TCAD

Philipp Schwaha1, René Heinzl1, Michael Spevak2, and Tibor Grasser1

1 Christian Doppler Laboratory at the Institute for Microelectronics, TU Wien
schwaha@iue.tuwien.ac.at,

2 Institute for Microelectronics, TU Wien, spevak@iue.tuwien.ac.at,

Abstract. The need for an advanced equation processing frame work
offering high performance as well as high expressiveness is presented. A
system of coupled non-linear equations from the field of TCAD is used
to demonstrate the approach and results for the investigated equations
are presented.

1 Introduction

Semiconductor devices have become an ubiquitous commodity and users have
come to expect a constant increase of device performance at higher integra-
tion densities and falling prices. To most efficiently eliminate the technological
obstacles encountered the international technology roadmap for semiconductors
(ITRS)[1] has been jointly developed by the semiconductor industry. Technology
computer aided design (TCAD), which is a specialised branch of scientific com-
puting, is a crucial tool for achieving the set goals as simulations help to greatly
reduce the costs in development of new devices as well as manufacturing equip-
ment. It is this quest for ever decreasing device dimensions and faster switching
speeds that results in ever growing requirements on the employed simulation
methodology. New, more detailed and more sophisticated models are required
to simulate not only the operation but also the manufacture of the devices.
While computer performance is steadily increasing the additional complexity of
these simulation models easily outgrows this gain in computational power. It is
therefore of utmost importance to employ the latest techniques of software de-
velopment techniques to obtain high performance and thereby ensure adequate
simulation times even for complex problems.

The great diversity of physical phenomena present in semiconductor devices
themselves and in the processes involved in their manufacture make the field
of TCAD extremely challenging. Each of the phenomena can be described by
differential equations of varying complexity. The development of several different
discretisation schemes has been necessary in order to best model the underlying
physics and to accommodate the mathematical peculiarities of each of these
equations while transferring them to the discrete world of digital computing.

This non trivial and highly complex scenario yields itself exceptionally well
for the application of the functional programming paradigm. It is capable of pro-
viding a fast, flexible and extensible means to treat even very complex equations
with unsurpassed elegance and ease.

2

2 The Problem

To demonstrate the importance of a method that is both easy and efficient a
few examples for the equations encountered in the field of TCAD are presented
in this section.

Boltzmann’s equation for electron transport in semiconductors, as given in
Equation 1, is the base for many calculations for device simulations.

∂

∂t
f + v · gradrf + F · gradkf =

∂

∂t
f |collisions (1)

Here f is the distribution function and v the velocity of the charge carriers, while
F denotes the force of an electric field on these particles.

Due to the complexity of Boltzmann’s equation several techniques have been
developed which result in different simpler models. One of these is the drift
diffusion model, that can be derived from Equation 1 by applying the method
of moments [2]. This results in current relations as shown in Equation 2. These
equations are solved self consistently with Poisson’s equation, given in Equation
3.

Jp = q p µp grad Ψ − qDp grad p Jn = qnµn grad Ψ + qDn grad n (2)

div (grad ε Ψ) = −ρ (3)

To this end the equations are discretised using the Scharfetter-Gummel [3]
scheme resulting in a non-linear equation system of the form

Jn,ij =
q µn Uth

dij

(
njB(Λij)− niB(−Λij)

)
(4)

Λij =
Ψj − Ψi
Uth

B(x) =
x

ex − 1
(5)

The discretisation of the differential operators using finite volumes yields:

div x ≈
∑

v→e
x
A

V
grad x ≈ 1

d
∆
e→v

x (6)

The formulation so obtained can be implemented using virtually any program-
ming language but as has been explained previously a solution offering high
performance is greatly desirable. In order to make maintenance of the code as
easy as possible and to achieve a maximum of flexibility it is important to keep
the code expressive. The great question is how to achieve both of these seemingly
contradicting goals at the same time.

3 The Solution

The transformation of the presented equations into highly expressive C++ code
under highest performance requirements is presented in the following. The source
code of the discretised equations is shown in the accompanying code snipped.

3

// Poisson equation
equat ion pot = (sum<vertex edge >()
[

d i f f<edge vertex>(ZERO) [pot quan] ∗ area / d i s t
] + (n − p + nA − nD) ∗ (vo l ∗ q / (eps0 ∗ epsr))) (vertex) ;

// Continuity equation for e l e c t r o n s
equat ion n = (sum<vertex edge >()
[

d i f f<edge vertex>(−n quan∗Bern (d i f f<edge vertex >() [pot quan]/ U th) ,
−n quan∗Bern (d i f f<edge vertex >()[−pot quan]/ U th))
∗ q ∗ mu n ∗ U th ∗ area / d i s t

]) (vertex) ;

The concept of the mathematical equations is modelled by directly mapping
the mathematical expressions to function objects. The Bernoulli function, given
in Equation 5, is mapped to Bern, while pot quan is a functional object providing
access to a quantity. The discretised differential operators are easily recognised as
the diff and sum constructs. This whole expression is then examined at compile
time to construct an optimised means to obtain the needed data. The complex
resulting from this mapping is completed by specifying the evaluation locality,
a vertex in this case, and thereby establishing the crossing of the compile-time
run-time border. Thereby a link between the still continuous formulation of the
equation and a specific tessellation of the simulation domain is formed. As a
consequence the implementation makes no assumptions about the dimension or
topology of the problem and is therefore suitable for any dimension and any
topology. This dimension independent formulation is only made possible by the
combination of the separation of algorithms from data sources by the use of
iterators and the employment of functional objects.

By introducing the requirement that all functional objects have to provide
their derivative, it is possible to reap an additional benefit from this implemen-
tation because the tedious and error prone calculation of the Jacobian, outlined
in Equation 7, as needed for the solution of the nonlinear equation system, can
be automated.

J =
∂f

∂xi
(7)

The combination of high expressiveness at such performance levels is only
possible by using all the facilities provided by C++. Currently no other language
offers sufficient support for all the necessary programming paradigms to enable
this high level abstraction at this runtime speed.

Fig. 1. Potential of a pn diode during different stages of the newton iteration. From
initial (left) to the final result(right).

4

The linear solver needed for the solution of the equation system described by
the thusly assembled matrix is provided by the Trilinos project [4].

Fig. 2. Potential within a MOS FET.

To demonstrate that the proposed
scheme is indeed operational we pro-
vide figures made showing calculation
results. Figure 1 shows the potential
within a pn diode at different stages of
calculation. The leftmost figure shows
the initial potential, while the right-
most depicts the final solution. The
centre image shows an intermediate
result that has not yet fully converged.
The visualisation of the calculation is
available in real time, making it pos-
sible to observe the evolution of the solution. It is realised by an extension to
OpenDX [5] and proves to be invaluable for the adjustment of simulation pa-
rameters. Figure 2 shows the results for a two dimensional MOS FET transistor.

We created the infrastructure enabling the formulation of this problem in
such a highly expressive way that does not impose an overly high abstraction
penalty but retains excellent runtime performance.

4 Conclusion

The importance of being able to cope with a varying number of dimensions be-
comes apparent when reconsidering Equation 1. In contrast to the drift diffusion
model represented by Equations 2 it not only contains spacial dimensions but
also includes a set of dimensions describing the impulses of the charge carriers
forming a six dimensional phase space. So when turning to solve Equation 1 more
accurately additional dimensions have to be considered. The described approach
is capable to provide all the necessary infrastructure to accomplish this. An im-
plementation, utilising the presented facilities, of such a method using spherical
harmonics expansion of arbitrary order is currently under development. Due to
the increased number of dimensions the matter of performance gains additional
importance to maintain reasonable simulation times.

References

1. International Technology Roadmap for Semiconductors, 2005.
2. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien–

New York, 1984).
3. D. Scharfetter and H. Gummel, IEEE Trans.Electron Devices 16, 64 (1969).
4. M. A. Heroux et al., ACM Transactions on Mathematical Software , for TOMS

special issue on the ACTS Collection.
5. IBM Visualization Data Explorer, 3rd ed., IBM Corporation, Yorktown Heights,

NY, USA, 1993.

