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ABSTRACT

This work analyzes the performance of high-precision inter-
connect simulation tools on refined meshes with guaranted
accuracy. On the one hand, the integrated circuits are sub-
ject to an ongoing miniaturization which results in ever in-
creasing computing power. On the other hand, the simula-
tion of these integrated circuits demands more sophisticated
simulation methodologies such as better resolution of geo-
metrical features or more complex surface topography. We
show that modern microprocessor architectures and mem-
ory hierarchies impose performance limits on the simulation
time.

INTRODUCTION

Down-scaling of integrated circuits to the deep sub-micron
regime and beyond increases the influence of interconnects
on circuit behavior drastically. Parasitic effects are becom-
ing more and more important as devices get faster and line
widths smaller. These effects become the limiting factor for
further improvements of circuit speed. An essential step in
technology computer aided design (TCAD) is the optimiza-
tion of these parameters, which demands vast amounts of
computer resources, CPU-time and memory. Therefore the
performance of current computer systems is essential for an
optimal simulation flow. The overall performance of com-
puter systems with a given set of applications depends on nu-
merous factors and can not be attributed to only the speed of
the central processing unit (CPU). Among the most impor-
tant factors is the connection of the CPU to the computers
main memory [6]. In the early days of computers the em-
ployed memories were faster or at least comparable in speed
to the CPU. Naturally the focus of the evolution of CPUs
was to increase their processing speed. This goal was greatly
aided and in fact only made possible by continuous downscal-
ing of the dimensions of the devices which they components
are built on. This downscaling of the densely packed logic
found in CPUs made it possible to attain ever higher clock
speeds thereby increasing their maximum performance. The
main effect on random access memory (RAM) modules, on
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the other hand, was to increase their sizes, again by an ever
growing level of integration. While speed was also an impor-
tant concern, it quickly lagged behind, as the signal to noise
ratios in the highly integrated structures worsen, which leads
to increased latencies due to the necessity of appropriate sig-
nal handling to insure proper operation.

The reduction of feature size and therefore the increase of op-
erating frequencies is not going to continue without bounds
and different strategies have to be used to increase the per-
formance of the processing cores. Nevertheless this trend of
increasing clock speeds, especially of CPUs, has already led
to the problem that CPUs require data at a faster rate than
memories are able to supply. This has resulted in the de-
velopment of memory hierarchies introducing several levels
of caches and instruction pipelines, thereby increasing the
overall performance of the systems. The additional com-
plexity induced by these measures makes it more and more
important to employ appropriate compilers and techniques
to obtain optimal performance [5,12]. This is even more
so, as the increase of computing power of future computer
hardware is primarily obtained by multiplying the processor
cores.

Not only the hardware of computers and the compilers have
evolved and now provide a myriad of features, but new
methodologies of software development and programming
paradigms have also surfaced. Different approaches have fo-
cused on the development of high performance libraries for
the area of scientific computing such as PETSc [3], CCA [14],
or MTL [17].

MODERN PROGRAMMING PARADIGMS

From a software point of view, numerous new paradigms
have evolved recently, which allow the synthesis of highly
efficient code on modern hardware. It is now the aim to
combine the newly provided possibilities in such a way, that
an optimal result not only in terms of run-time efficiency, but
also maintainability, extendability, portability, and orthogo-
nality of code is attained. While run-time efficiency, main-
tainability and extendability of code have classically been
contradicting goals, with code tuned for high performance
often becoming an unreadable maintenance nightmare, the
advent of new compilers deploying new optimizers and fea-
ture sets supports the design of high performance code which
no longer needs to be unreadable [1, 9, 16]. Especially generic
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programming accomplishes both, a general solution for most
of the application scenarios and highly specialized code parts
for minor, but also important, scenarios without sacrificing
performance [2,11]. This has already been demonstrated in
the field of numerics and yields figures comparable to Fortran
[13, 18], the previously undisputed candidate for this kind of
calculations.

Based on these techniques we developed a high performance
simulation engine based on the SAP tools [15]. With tem-
plate meta-programming [1], the functional specification can
be used very similarly to the original mathematical formula-
tion, as can be seen in this work. Due to this new program-
ming technique and the corresponding evaluation at compile
time the calculation associated with the specified equations
is highly optimized by the compiler and thereby ensures ex-
cellent run-time performance often superior to highly hand-
optimized code. In our case C++ was the language of choice,
because currently no other language offers sufficient support
for all the necessary programming techniques to enable the
required level of abstraction.

Our own investigations in the field of compiler optimization
and compiler comparison has shown significant differences in
optimization behavior and run-time performance of modern
programming techniques [8].

INTERCONNECT MODEL

Our interconnect simulation tools use the finite element
method to discretize the partial differential equations re-
sulting in a system of equations that eventually has to be
linearized, and thereafter solved with a preconditioned con-
jugate gradient algorithm [10]. To give a glimpse on details
we consider a typical problem of forming the equation sys-
tem.

The problem we consider is posed in the following way:
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where e denotes the (isotropic) permittivity of the considered
domain, which is assumed to be constant in an element of the
tessellation. Due to the weak formulation using Galerkin fi-
nite elements [19] weighting coefficients for the local element
matrices have to be derived for tetrahedra:

e K + K31 + K3

9= detJ (3)

there, K is the adjoint matrix of the Jacobian J which is
derived by the affine transformation of the mesh elements to
the standard element. Due to operator overloading different
mathematical structures such as scalars, vectors, and even
matrices can be handled using identical notation. Therewith
the transformation into code results in the following code
snippet:

double gl = epsilon*(K11*K11 + K21%K21 + K31xK31)/detJ;

To assemble the system matrix, a local element matrix
has to be assembled: S¢ stands for the local element
stiffness matrix which is derived by:

S = 9181 + 9582 + 9553 + 9454 + 9555 + g5

(4)

The corresponding C++ code reads:
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Se = gl*S1 + g2%S2 + g3*S3 + g4*S4 + gb*S5 + gb6+*S6;

S1-S6 means the linear form function matrices and gi-
g6 are calculated at the nodes of the tetrahedra in the
global coordinate system [4].

PERFORMANCE ANALYSIS

It should be noted that for high precision simulations it
is essential to model the simulation domain as exactly
as possible. The accuracy and efficiency of a finite ele-
ment and finite volume simulation strongly depends on
the quality of the tessellation of the domain. As a con-
sequence we introduced a comprehensive solid modeling
and mesh generation and adaptation approach [7].
Figure 1 presents the example structure under investi-
gation with a coarse mesh for the following performance
analysis. In order to obtain sufficiently accurate results,
the mesh size typically has to be in the order of 10* to
some 10° nodes.
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Figure 1: Temperature distribution due to self-heating in a
tapered interconnect line with cylindrical vias.

For a rigorous analysis we evaluate three different im-
plementations in C++ and compare them to a hand-
optimized Fortran 77 implementation on different com-
puter architectures. The first implementation is based
on the GNU GCC valarray data-type which is a stan-
dardized data-structure representing a mathematical
vector. This data-type has shown excellent performance
on different computer architectures with recent compil-
ers. Secondly, we utilize the Blitz++ [18] library, which
introduced high performance calculation comparable to
Fortran 77 directly in C++. Lastly, a naive C++ imple-
mentation is used that creates two temporary objects,
one for the addition and one for the assignment. As
a consequence all elements have to be accessed three
times. The tests were performed on four different com-
puter systems:

CPU type Clock speed RAM Compiler MFLOPS
Pentium 4 2.8 GHz 2 GB GCC 4.0.2 2310.9
AMDG64 2.2 GHz 2 GB GCC 3.4.4 3543.0
IBM P655 8x1.5 GHz 64 GB GCC 4.0.2 16361.7
G5 4x2.5 GHz 8 GB GCC 4.0.0 24434.0

Figures 2-5 compare these different approaches on differ-
ent hardware architectures. The y-axes is labeled with
million operations per second. The vector addition con-
sists of 3 operations, two additions and one assignment.



For vector lengths smaller than 10%, cache hits reveal
the full computation power of the CPU, longer vectors
show the limits imposed by memory bandwidth. The
poor performance of naive C++ code is indeed remark-
able.
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Figure 2: Comparison of different functional specification on
the Pentium4.
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Figure 3: Comparison of different functional specification on
the AMDG64.

Based on these observations of restrictions due to the
limited bandwidth, we illustrate the influence of a prob-
lem’s size on the overall finite element. We therefore
investigate our test structure with different levels of re-
finement. By resolving a three-dimensional simulation
domain, the number of points easily exceeds the critical
threshold and thereby leads to severe problems caused
by memory bandwidth restrictions (Figure 6).

Investigations of parallelization attempts on multi-
processor machines (G5) show that the inner loop of
the finite element assembly cannot be parallelized easily.
On the one side, the update mechanisms of the element
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Figure 4: Comparison of different functional specification on
the IBM.
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Figure 5: Comparison of different functional specification on
the G5.
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Figure 6: Comparison of the finite element assembly times.

matrices may require access to the same part of mem-
ory simultaneously, which could be avoided by a differ-
ent assembly scheme, e.g. node-based assembly. On the



other hand, the inner loops are compiled very efficiently
and only bounded by memory bandwidth. Tests with
four CPUs have shown, that parallel assembly does not
speed up the total assembly process at all. Restrictions
resulting from memory bandwidth completly negate any
benefit due to parallelization.

CONCLUSION

Although the observed performance issues are presented
for the field of interconnect simulation, the main findings
are certainly transferable to other areas, such as process
and device simulation. Memory bandwidth is the limit-
ing factor as we have seen from our benchmarks.

In summary, highly expressive code in C++ on differ-
ent platforms and computer architectures does not show
any abstraction penalty, where naive C4++ code does not
perform well. Regarding parallelization, current mem-
ory links hardly provide enough bandwidth to accom-
modate the throughput required to satisfy the compu-
tational performance of multiple cores.
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