PERFORMANCE ANALYSIS FOR HIGH-PRECISION
INTERCONNECT SIMULATION

R. Heinzl®, M. Spevak®, P. Schwaha®, T. Grasser® and S. Selberherr®

4 Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics

°Institute for Microelectronics, Technical University Vienna,
GuBhausstrafie 27-29/E360, A-1040 Vienna, Austria
E-mail: {heinzl|schwaha|spevak|grasser|selberherr}@iue.tuwien.ac.at

KEYWORDS
Mesh generation, error estimation, mesh quality, high per-
formance computing, programming paradigms

ABSTRACT

This work analyzes the performance of high-precision inter-
connect simulation tools on refined meshes with guaranted
accuracy. On the one hand, the integrated circuits are sub-
ject to an ongoing miniaturization which results in ever in-
creasing computing power. On the other hand, the simula-
tion of these integrated circuits demands more sophisticated
simulation methodologies such as better resolution of geo-
metrical features or more complex surface topography. We
show that modern microprocessor architectures and mem-
ory hierarchies impose performance limits on the simulation
time.

INTRODUCTION

Down-scaling of integrated circuits to the deep sub-micron
regime and beyond increases the influence of interconnects
on circuit behavior drastically. Parasitic effects are becom-
ing more and more important as devices get faster and line
widths smaller. These effects become the limiting factor for
further improvements of circuit speed. An essential step in
technology computer aided design (TCAD) is the optimiza-
tion of these parameters, which demands vast amounts of
computer resources, CPU-time and memory. Therefore the
performance of current computer systems is essential for an
optimal simulation flow. The overall performance of com-
puter systems with a given set of applications depends on nu-
merous factors and can not be attributed to only the speed of
the central processing unit (CPU). Among the most impor-
tant factors is the connection of the CPU to the computers
main memory [6]. In the early days of computers the em-
ployed memories were faster or at least comparable in speed
to the CPU. Naturally the focus of the evolution of CPUs
was to increase their processing speed. This goal was greatly
aided and in fact only made possible by continuous downscal-
ing of the dimensions of the devices which they components
are built on. This downscaling of the densely packed logic
found in CPUs made it possible to attain ever higher clock
speeds thereby increasing their maximum performance. The
main effect on random access memory (RAM) modules, on

113

the other hand, was to increase their sizes, again by an ever
growing level of integration. While speed was also an impor-
tant concern, it quickly lagged behind, as the signal to noise
ratios in the highly integrated structures worsen, which leads
to increased latencies due to the necessity of appropriate sig-
nal handling to insure proper operation.

The reduction of feature size and therefore the increase of op-
erating frequencies is not going to continue without bounds
and different strategies have to be used to increase the per-
formance of the processing cores. Nevertheless this trend of
increasing clock speeds, especially of CPUs, has already led
to the problem that CPUs require data at a faster rate than
memories are able to supply. This has resulted in the de-
velopment of memory hierarchies introducing several levels
of caches and instruction pipelines, thereby increasing the
overall performance of the systems. The additional com-
plexity induced by these measures makes it more and more
important to employ appropriate compilers and techniques
to obtain optimal performance [5,12]. This is even more
so, as the increase of computing power of future computer
hardware is primarily obtained by multiplying the processor
cores.

Not only the hardware of computers and the compilers have
evolved and now provide a myriad of features, but new
methodologies of software development and programming
paradigms have also surfaced. Different approaches have fo-
cused on the development of high performance libraries for
the area of scientific computing such as PETSc [3], CCA [14],
or MTL [17].

MODERN PROGRAMMING PARADIGMS

From a software point of view, numerous new paradigms
have evolved recently, which allow the synthesis of highly
efficient code on modern hardware. It is now the aim to
combine the newly provided possibilities in such a way, that
an optimal result not only in terms of run-time efficiency, but
also maintainability, extendability, portability, and orthogo-
nality of code is attained. While run-time efficiency, main-
tainability and extendability of code have classically been
contradicting goals, with code tuned for high performance
often becoming an unreadable maintenance nightmare, the
advent of new compilers deploying new optimizers and fea-
ture sets supports the design of high performance code which
no longer needs to be unreadable [1, 9, 16]. Especially generic

reneheinzl
Rectangle

programming accomplishes both, a general solution for most
of the application scenarios and highly specialized code parts
for minor, but also important, scenarios without sacrificing
performance [2,11]. This has already been demonstrated in
the field of numerics and yields figures comparable to Fortran
[13, 18], the previously undisputed candidate for this kind of
calculations.

Based on these techniques we developed a high performance
simulation engine based on the SAP tools [15]. With tem-
plate meta-programming [1], the functional specification can
be used very similarly to the original mathematical formula-
tion, as can be seen in this work. Due to this new program-
ming technique and the corresponding evaluation at compile
time the calculation associated with the specified equations
is highly optimized by the compiler and thereby ensures ex-
cellent run-time performance often superior to highly hand-
optimized code. In our case C++ was the language of choice,
because currently no other language offers sufficient support
for all the necessary programming techniques to enable the
required level of abstraction.

Our own investigations in the field of compiler optimization
and compiler comparison has shown significant differences in
optimization behavior and run-time performance of modern
programming techniques [8].

INTERCONNECT MODEL

Our interconnect simulation tools use the finite element
method to discretize the partial differential equations re-
sulting in a system of equations that eventually has to be
linearized, and thereafter solved with a preconditioned con-
jugate gradient algorithm [10]. To give a glimpse on details
we consider a typical problem of forming the equation sys-
tem.

The problem we consider is posed in the following way:

LY :=div(—egrad(¥)) —o=0
vV—-—¥p=0

in Q
on 0f2 ,

(1)
(2)

where e denotes the (isotropic) permittivity of the considered
domain, which is assumed to be constant in an element of the
tessellation. Due to the weak formulation using Galerkin fi-
nite elements [19] weighting coefficients for the local element
matrices have to be derived for tetrahedra:

e K + K31 + K3

9= detJ (3)

there, K is the adjoint matrix of the Jacobian J which is
derived by the affine transformation of the mesh elements to
the standard element. Due to operator overloading different
mathematical structures such as scalars, vectors, and even
matrices can be handled using identical notation. Therewith
the transformation into code results in the following code
snippet:

double gl = epsilon*(K11*K11 + K21%K21 + K31xK31)/detJ;

To assemble the system matrix, a local element matrix
has to be assembled: S¢ stands for the local element
stiffness matrix which is derived by:

S = 9181 + 9582 + 9553 + 9454 + 9555 + g5

(4)

The corresponding C++ code reads:

114

Se = gl*S1 + g2%S2 + g3*S3 + g4*S4 + gb*S5 + gb6+*S6;

S1-S6 means the linear form function matrices and gi-
g6 are calculated at the nodes of the tetrahedra in the
global coordinate system [4].

PERFORMANCE ANALYSIS

It should be noted that for high precision simulations it
is essential to model the simulation domain as exactly
as possible. The accuracy and efficiency of a finite ele-
ment and finite volume simulation strongly depends on
the quality of the tessellation of the domain. As a con-
sequence we introduced a comprehensive solid modeling
and mesh generation and adaptation approach [7].
Figure 1 presents the example structure under investi-
gation with a coarse mesh for the following performance
analysis. In order to obtain sufficiently accurate results,
the mesh size typically has to be in the order of 10* to
some 10° nodes.

Interconnect line

P) = Contact2

300K

==

% :

Ve,

Contact1

400K

Figure 1: Temperature distribution due to self-heating in a
tapered interconnect line with cylindrical vias.

For a rigorous analysis we evaluate three different im-
plementations in C++ and compare them to a hand-
optimized Fortran 77 implementation on different com-
puter architectures. The first implementation is based
on the GNU GCC valarray data-type which is a stan-
dardized data-structure representing a mathematical
vector. This data-type has shown excellent performance
on different computer architectures with recent compil-
ers. Secondly, we utilize the Blitz++ [18] library, which
introduced high performance calculation comparable to
Fortran 77 directly in C++. Lastly, a naive C++ imple-
mentation is used that creates two temporary objects,
one for the addition and one for the assignment. As
a consequence all elements have to be accessed three
times. The tests were performed on four different com-
puter systems:

CPU type Clock speed RAM Compiler MFLOPS
Pentium 4 2.8 GHz 2 GB GCC 4.0.2 2310.9
AMDG64 2.2 GHz 2 GB GCC 3.4.4 3543.0
IBM P655 8x1.5 GHz 64 GB GCC 4.0.2 16361.7
G5 4x2.5 GHz 8 GB GCC 4.0.0 24434.0

Figures 2-5 compare these different approaches on differ-
ent hardware architectures. The y-axes is labeled with
million operations per second. The vector addition con-
sists of 3 operations, two additions and one assignment.

For vector lengths smaller than 10%, cache hits reveal
the full computation power of the CPU, longer vectors
show the limits imposed by memory bandwidth. The
poor performance of naive C++ code is indeed remark-
able.

xs00f e T
o—e \alarray
= -mBlitz++
2000 - —eF77
4— —ANaive C++| 4
«» 1500
2
o
=
10001
500
k‘_‘_"—‘—-‘\\
N
0 el) A A A
10° 10° 10" 10°

Vector length

Figure 2: Comparison of different functional specification on
the Pentium4.

2500 T T T T .
o—e\Valarray
= u Blitz++
20001 A ——eFT7
/ \ A+ -ANaive C++| |
, T
» 1500F +—¢ % .
2 \
o
s
1000 .
500} .
N A
N B:I*\.‘T.—'.‘T..‘f'_.h.".‘-
0 2 3 4 5
10 10 10 10

Vector length

Figure 3: Comparison of different functional specification on
the AMDG64.

Based on these observations of restrictions due to the
limited bandwidth, we illustrate the influence of a prob-
lem’s size on the overall finite element. We therefore
investigate our test structure with different levels of re-
finement. By resolving a three-dimensional simulation
domain, the number of points easily exceeds the critical
threshold and thereby leads to severe problems caused
by memory bandwidth restrictions (Figure 6).

Investigations of parallelization attempts on multi-
processor machines (G5) show that the inner loop of
the finite element assembly cannot be parallelized easily.
On the one side, the update mechanisms of the element

115

2500
_A— A o—e Vaaray
I's N)
2000} N— A —A_, |E--EBlitz++ |
\ Naive C++
‘\ A -AFT7
15001
w
2
(e}
=
10001
500
0 sl PR | PR |
10° 10° 10" 10°
Vector length

Figure 4: Comparison of different functional specification on
the IBM.

x00F m]
o—e\Valarray
-t ;
TN _ = - mBlitz++
2000 - - "Q\ — —oF77
'~-\ 4— —ANaive C++|
A
« 1500 :
2
o
=
1000
500
N IR o sube = e S Y Y
2 3 4 5
10 10 10 10
Vector length

Figure 5: Comparison of different functional specification on
the G5.

200

150 1

Equations/ ms
B
8
T
1

" il " il PR
10° 10* 10° 10°

Number of vertices

Figure 6: Comparison of the finite element assembly times.

matrices may require access to the same part of mem-
ory simultaneously, which could be avoided by a differ-
ent assembly scheme, e.g. node-based assembly. On the

other hand, the inner loops are compiled very efficiently
and only bounded by memory bandwidth. Tests with
four CPUs have shown, that parallel assembly does not
speed up the total assembly process at all. Restrictions
resulting from memory bandwidth completly negate any
benefit due to parallelization.

CONCLUSION

Although the observed performance issues are presented
for the field of interconnect simulation, the main findings
are certainly transferable to other areas, such as process
and device simulation. Memory bandwidth is the limit-
ing factor as we have seen from our benchmarks.

In summary, highly expressive code in C++ on differ-
ent platforms and computer architectures does not show
any abstraction penalty, where naive C4++ code does not
perform well. Regarding parallelization, current mem-
ory links hardly provide enough bandwidth to accom-
modate the throughput required to satisfy the compu-
tational performance of multiple cores.

REFERENCES

(1] D. Abrahams and A. Gurtovoy. C++ Template Metapro-
gramming: Concepts, Tools, and Techniques from Boost and
Beyond (C++ in Depth Series). Addison-Wesley Profes-
sional, 2004.

[2] A. Alexandrescu. Modern C++ Design: Generic Program-
ming and Design Patterns Applied. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. Curfman McIlnnes, B. F.
Smith, and H. Zhang. PETSc Web page, 2005.

[4] R. Bauer. Numerische Berechnung von Kapazititen in drei-
dimensionalen Verdrahtungsstrukturen. PhD thesis, Technis-
che Universitat Wien, 1994.

[5] K. Beyls and E. H. D’Hollander. Generating Cache Hints for
Improved Program Efficiency. J. Syst. Archit., 51(4):223—
250, 2005.

(6] Boost. Stream - Sustainable Memory Bandwidth in High
Performance Computers. http://wuw.cs.virginia.edu/
stream/.

[7] R. Heinzl and T. Grasser. Generalized Comprehensive Ap-
proach for Robust Three-Dimensional Mesh Generation for
TCAD. In Proc. Conf. in Sim. of Semiconductor Processes
and Devices, pages 211-214, Tokio, September 2005.

(8] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser. Per-
formance Aspects of a DSEL for Scientific Computing with
C++. In Proc. of the POOSC Conf., Nantes, France, July
2006.

[9] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. A High
Performance Generic Scientific Simulation Environment. In
Proc. of the PARA Conf., page 61, Umea, Sweden, June
2006.

M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps,
A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
and A. Williams. An Overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories, 2003.

J. Jarvi, J. Willcock, and A. Lumsdaine. Concept-Controlled
Polymorphism. In GPCE ’03: Proc. of the 2nd Conf. on

(10]

11]

116

Generative Prog. and Comp. Eng., pages 228-244, New York,
NY, USA, 2003. Springer-Verlag New York, Inc.

D. Lacey, N. Jones, E. Van Wyk, and C.C. Frederiksen. Com-
piler Optimization Correctness by Temporal Logic. Higher
Order and Symbolic Computation, 17(3):173-206, 2004.

L. Lee and A. Lumsdaine. Generic Programming for High
Performance Scientific Applications. In JGI ’02: Proc. of
the 2002 joint ACM-ISCOPE Conf. on Java Grande, pages
112-121, New York, NY, USA, 2002. ACM Press.

S. Lefantzi, J. Ray, and H. N. Najm. Using the Common
Component Architecture to Design High Performance Sci-
entific Simulation Codes. In IPDPS ’03: Proc. of the 17th
Symp. on Parallel and Distributed Proc., page 52, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

Rainer Sabelka and Siegfried Selberherr. A Finite Element
Simulator for Three-Dimensional Analysis of Interconnect
Structures. Microelectronics Journal, 32(2):163-171, 2001.
P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser. Advanced
Equation Processing for TCAD. In Proc. of the PARA Conf.,
page 64, Umea, Sweden, June 2006.

J. G. Siek and A. Lumsdaine. The Matrix Template Library:
A Unifying Framework for Numerical Linear Algebra. In
ECOOP Workshop, pages 466—467, 1998.

T. L. Veldhuizen. Arrays in Blitz++. In Proc. Symp.
on Comp. in Obj.-Oriented Parallel Env., Lecture Notes in
Computer Science. Springer-Verlag, 1998.

O. C. Zienkiewicz and R. L. Taylor. The Finite Element
Method. McGraw-Hill, Berkshire, England, 1987.

(12]

13]

[14]

(15]

[16]

(17]

(18]

(19]

BIOGRAPHIES

RENE HEINZL studied electrical engineering at the Technische
Universitdt Wien. He joined the Institute for Microelectronics in
November 2003, where he is currently working on his doctoral
degree. In April 2005 he achieved first place at the doctoral com-
petition at the EEICT in Brno. His research interests include
process simulation, solid modeling, and adaptive mesh generation
for TCAD with special emphasis on three-dimensional applica-
tions.

PHILIPP SCHWAHA studied electrical engineering at the
Technische Universitdt Wien. He joined the Institute for Micro-
electronics in June 2004, where he is currently working on his
doctoral degree. His research activities include circuit and device
simulation, device modeling, and software development.
MICHAEL SPEVAK studied electrical engineering at the
Technische Universitdt Wien. He joined the Institute for Micro-
electronics in December 2004, where he is currently working on
his doctoral degree.

TIBOR GRASSER received the Ph.D. degree in technical sci-
ences, and the “venia docendi” in microelectronics from the Tech-
nische Universitdt Wien in 1999, and 2002, respectively. He is
currently employed as an Associate Professor at the Institute for
Microelectronics. Since 1997 he has headed the Minimos-NT de-
velopment group, working on the successor of the highly success-
ful MiniMOS program. In 2003 he was appointed head of the
Christian Doppler Laboratory for TCAD in Microelectronics, an
industry-funded research group embedded in the Institute for Mi-
croelectronics. His current scientific interests include circuit and
device simulation and device modeling.

SIEGFRIED SELBERHERR received the Ph.D. degree in
technical sciences from the Technische Universitdt Wien in 1981.
Since that time he has been with the Technische Universitat Wien
as professor. Dr. Selberherr has been holding the “venia docendi”
on “Computer-Aided Design” since 1984. As of 1988 he has been
chair professor of the Institut fiir Mikroelektronik. From 1998 to
2005 he served as Dean of the “Fakultat fiir Elektrotechnik und
Informationstechnik” at the Technische Universitdt Wien. His
current topics of interest are modeling and simulation of prob-
lems for microelectronics engineering.

