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Abstract We present the Vienna Schrödinger-Poisson

Solver (VSP), a multi-purpose quantum mechanical solver

for investigations on nano-scaled device structures. VSP in-

cludes a quantum mechanical solver for closed as well as

open boundary problems on fairly arbitrary one-dimensional

cross sections within the effective mass framework. For in-

vestigations on novel gate dielectrics VSP holds models for

bulk and interface trap charges, and direct and trap assisted

tunneling. Hetero-structured semiconductor devices, like res-

onant tunneling diodes (RTD), can be treated within the

closed boundary model for quick estimation of resonant en-

ergy levels. The open boundary model allows evaluation of

current voltage characteristics.
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1 Introduction

Numerous technological innovations, including material and

process changes such as high-k gate dielectrics and metal gate

electrodes, are investigated to meet the upcoming scaling re-

quirements. Furthermore, novel structures such as ultra-thin

body and multiple-gate MOSFETs are expected to be intro-

duced to suppress short-channel effects [1]. To overcome the

technological problems, further theoretical and experimen-

tal research has to be performed which requires an exten-

sive use of computer simulation. We developed the Vienna

Schrödinger Poisson solver (VSP), a multi-purpose quantum

mechanical solver with the aim to aid theoretical as well as

experimental research on nano-scale electronic devices.

2 The models

This section briefly describes the models implemented in the

Schrödinger Poisson (S/P) solver. The chosen software archi-

tecture allows to add new models easily. VSP is a quantum

mechanical solver for closed as well as open boundary prob-

lems. The thereby calculated carrier concentration is used in

the Poisson equation in a self consistent manner.

2.1 The Poisson model

The Poisson equation describes the relation between the elec-

trostatic potential ϕ and the space charge ρ.

∇ · (ε ∇ϕ) + ρ(ϕ) = 0
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Fig. 1 Equi-energy surfaces of the first conduction band of unstrained
Silicon. VSP treats the conduction band as three valleys having the same
minimum energy but different orientations of the effective mass tensor
as shown in the lower part of the figure

Hence, for S/P calculations a system of coupled partial dif-

ferential equations (PDE) has to be solved self-consistently.

We use an iterative predictor corrector scheme [2] in or-

der to achieve a fast and stable convergence behavior. For

each iteration step i , a linearized Poisson equation has to be

solved:

∇ · (ε∇ϕi ) + ϕi ∂ρ

∂ϕ

⏐⏐⏐
ϕi−1

= −ρ(ϕi−1).

2.2 Effective mass approach

The band structure for electrons and holes is given by an

arbitrary number of valley sorts, defined by an anisotropic

effective mass and a band edge energy [3] (see Fig. 1). In

this way a wide range of materials can be treated. Also, the

effects of substrate orientation as well as strain on the band

structure are taken into account.

Assuming a three-dimensional electron gas, effective

mass approximation, and Fermi statistics, the carrier con-

centration is determined by the distance of Fermi energy and

conduction band:

n3D(x) = NC,3D FC,1/2

(EF − Ec

kBT

)
.

HereFC,1/2 denotes the complete Fermi Function of the order

1/2 and NC,3D the effective density of states (DOS).

2.3 Closed system S/P

The energy levels En as well the wave functions �n of bound

states within a quantum well follows from the effective mass

Schrödinger equation:(
− h̄2

2m

∂2

∂x2
+ V (x)

)
�(x) = E �(x) .

For a well with a finite height Elim (e.g. MOS inversion layer),

the occupation of the subband states is considered up to this

energy Elim. The electron density is given by the effective

DOS of a two-dimensional electron gas NC,2D and the in-

complete Fermi Function:

n2D(x) = NC,2D

∑
n

|�n(x)|2 ×
(
FI,0

(EF − En

kBT
, 0

)

−FI,0

(Ec − EF

kBT
,
En − Elim

kBT

))
.

Starting at Elim, a continuum of states is assumed, which gives

rise to an electron density

n3D(x) = NC,3D FI,1/2

(
− Ec − EF

kBT
, −Elim − Ec

kBT

)
.

The total electron density n writes as the sum of the two

contributions: n = n2D + n3D.

2.4 Bulk and interface trap charges

VSP includes models for interface traps and bulk traps in

arbitrarily stacked gate dielectrics. The occupation of the

interface states gint is calculated using Fermi statistics and

gives rise to a surface charge given by

ρint = q

∫ Emax

Emin

gint(E) f (E) dE .

2.5 Direct tunneling current

Following [4], the direct tunneling current components from

both, continuum J3D and quasi bound states (QBS) J2D, can
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be estimated by

Jd,2D = q
∑

j

ni

τi
,

Jd,3D = q

∫ Emax

Elim

T C(Ex , mdiel)N (Ex , mD) dEx .

2.6 Trap assisted tunneling current

Trap assisted tunneling (TAT), which is a major issue regard-

ing reliability in novel gate stacks [6], is taken into account

in terms of an inelastic single step tunneling process [7]. The

current density reads:

Jtat = q

∫ d2

d1

Ntat(x)

τc(x) + τe(x)
dx .

2.7 Open system S/P

For systems dominated by quantum ballistic transport, like

resonant tunneling diodes (RTD), an open boundary solver

using the non equilibrium Green’s function formalism [8] is

available.

G R
r,r′ (E) = [E I − Hr,r′ − �R

r,r′ (E)]−1

G<,>
r,r′ (E) = G R

r,r′ (E)�<,>
r,r′ (E)G A

r,r′ (E)

jr,r′ = 2q

h̄

∫
2Re{G<

r,r′ (E)Hr,r′ }dE
2π

nr,r = −2i
∫

G<
r,r(E)

dE
2π

For types of Green’s functions are defined. G R,A deal with

the dynamics of carriers and G<,> with the statistics of car-

riers. We use an adaptive method to generate a nonuniform

mesh in the energy-space. Very narrow resonances are re-

solved, while the total number of grid points is kept low,

thus delivering stable results at reasonable simulation times

[9].

3 Software techniques

The software is written in C++ using state-of-the-art soft-

ware design techniques. Critical numerical calculations are

performed with stable and powerful numerical libraries Blas,

Lapack, and Arpack. VSP holds a graphical user interface

written in Java (see Fig. 3), as well as an XML based in-

terface. Furthermore, VSP has an open software application

inherit

uses

leakage

NEGF Schrödinger

ModelRunner

Poisson Trap Model

selfcons.
S / P

selfcons.
NEGF Gate

Model

closed

Fig. 2 VSP is structured into several models having a common inter-
face. Hence, new models can be added easily without any change in the
existing software architecture

Fig. 3 The user is guided through the simulation process by the GUI.
The steps are device definition, grid specification, quantity definition,
select and run the proper model, and finally the evaluation of the simu-
lation results. A screen shot of the distributed quantity editor is shown
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Fig. 4 The wavefunctions and the energy levels of some QBS in the
inversion layer of an nMOS device with a stacked gate dielectric

interface (API) for the use inside third party simulation envi-

ronments. These features are mandatory for tasks like param-

eter identification and model calibration, e.g. for CV curves

and gate stack optimizations [10]. Binaries are available for

Linux, Windows, IBM AIX, and MacOS on request.
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Fig. 5 The CV characteristic of SiO2 HfO2 stacked gate dielectric for
different EOTs. An initial SiO2 layer of 0.6 nm has been assumed. The
use of metal gates is reasonable for down scaling the EOT to the sub
1.0 nm

Fig. 6 Local density of states of a resonant tunneling diode (RTD) at
zero bias. Quantized states are clearly shown in the well

4 Applications

For investigations of MOS inversion layers, a closed bound-

ary solver is applied. The calculation of leakage currents is

performed in a post processing step, since they have a neg-

ligible influence on the electrostatic device behavior. Con-

ventional bulk MOS, partially depleted SOI as well as novel

device designs like DG-MOS structures can be investigated.

The band edge energy of a MOS structure with a stacked gate
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Fig. 7 IV characteristics of an RTD with open boundary conditions.
The negative differential resistance can be clearly seen

dielectric under inversion conditions has been evaluated and

displayed in Fig. 4. The corresponding CV characteristic is

shown in Fig. 5. A resonant tunneling diode has been inves-

tigated using the open boundary S/P solver model. For the

double barrier structure, a barrier height of 0.5 eV, a barrier

width of 2 nm, and a quantum well width of 2 nm has been as-

sumed. The local density of states and the IV characteristics

are shown in Figs. 6 and 7, respectively.
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