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ABSTRACT 

An analytical two-band k·p model for the conduction band of silicon is compared with the numerical nonlocal empirical 
pseudo-potential method and the sp3d5s* nearest-neighbor tight-binding model. The two-band k·p model gives results 
consistent with the empirical pseudo-potential method and describes the conduction band structure accurately. The tight-
binding model overestimates the gap between the two lowest conduction bands at the valley minima, which results in an 
underestimation of the non-parabolicity effects. When shear strain is introduced, the two-band k·p model predicts an 
analytical expression for the strain-dependence of the band structure, which is in good agreement with results of pseudo-
potential simulations. 
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1. INTRODUCTION
The k·p theory describes the band structure analytically. After the pioneering work by Luttinger and Kohn [1] the six-
band k·p method has become widely used to model the valence band of cubic semiconductors. Usually the conduction 
band in silicon is approximated by three pairs of equivalent minima located near the X-points of the Brillouin zone. It is 
assumed that close to the minima the electron dispersion is parabolic and well described by the effective mass 
approximation.  

A non-parabolic isotropic dispersion describes deviations in the density of states from the purely parabolic expression, 
which become important at higher electron energies. In ultra-thin body (UTB) FETs with (110) UTB orientation, 
however, a direction-dependent non-parabolicity must be introduced to explain the mobility behavior at high carrier 
concentrations [2]. Therefore, a more refined description of the conduction band minima beyond the usual single-band 
non-parabolic anisotropic approximation is needed.   

Another reason to challenge this standard approximation is its inability to properly describe the band structure 
modification under shear stress. A recent experimental study [3] indicates that a shear distortion, which is inherent to 
[110] uniaxial stress used in the semiconductor industry to enhance the performance of n-MOSFETs, leads to a
dependence of the transversal effective masses on stress. This conclusion is also supported by recent results of pseudo-
potential band structure calculations [3,4]. Since the transversal mass determines the mobility in a FET with ultra-thin Si
body, the electron mobility enhancement induced by [110] tensile stress in such FETs is solely due to a decrease of the
conductivity mass in the stress direction [4-6].  Shear strain substantially modifies not only both transversal [4-7], but
also the longitudinal [5,6] effective masses. Any dependence of the k·p effective masses on stress is neglected within the
single-band description of the conduction band and can only be introduced phenomenologically. In order to describe the
dependence of the effective mass on stress, a single-band description is not sufficient. Coupling to other bands has to be
taken into account.

A 30 bands k·p theory was introduced recently [8]. Although universal, it cannot provide an explicit analytical solution 
for the energy dispersion. In this work we present an efficient two-band k·p theory. By comparing our results with 
predictions of the empirical pseudo-potential method we demonstrate that the theory accurately describes the stress 
induced band structure modification due to shear stress and allows to study the influence of the conduction band 
structure on transport properties of stressed Si. 
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Fig. 1. Band structure of silicon from the EPM (solid lines) and from the sp3d5s* model (dashed lines). 

2. EMPIRICAL NONLOCAL PSEUDO-POTENTIAL AND TIGHT-BINDING BAND
STRUCTURE CALCULATIONS  

We use the empirical nonlocal pseudo-potential method (EPM) for numerical band structure calculations. The 
parameters of the EPM method are adjusted in order to reproduce the measurable quantities of semiconductors related to 
the band structure: energy gap and effective masses. The method includes spin-orbit coupling. In our calculations of the 
silicon band structure we used the parameters from [9].  

Recently, empirical tight-binding methods for band structure calculations became popular. Agreement between the band 
structures obtained from the EPM and the sp3d5s* model with the parameters from [10] is good as shown in Fig.1. 
However, the conduction band minimum in the sp3d5s* model is further away from the X point than in EPM, where the 
valley minimum is located at the distance )/2(15.00 ak π=  from the X point. This leads to an almost two times higher 

Fig. 2. Conduction bands close to the valley minimum. The EPM (solid lines) reproduces the band structure accurately. 
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Fig. 3. Comparison of the yx kk ,  energy dispersion relations at the minimum position 0kkz = as obtained from EPM (solid

lines) and the tight-binding method (dashed lines). The contour lines are spaced every 50 meV. 

gap between the two lowest conduction bands at the valley minima (Fig.2) compared to ∆  =  0.53 eV found from the 
EPM. The increase in the gap reduces the coupling between the conduction bands. Since the non-parabolicity of the 
lowest conduction band is determined by the coupling with other bands as shown in the next section, the higher gap 
predicted by the tight-binding method results in a substantially lower non-parabolicty of the band. It also results in a 
different shape of the constant energy lines in the yx kk ,  plane at 0kkz −= . Fig.3 shows that the EPM gives a more 
pronounced band warping than the sp3d5s* tight-binding model. 

3. TWO-BAND K·P MODEL
We consider the valley pair along the [001] direction. Other valleys can be analyzed in a similar fashion. The band
closest to the first conduction band 1∆  (i=1) is the second conduction band '2∆  (i=2). The two bands become

degenerate exactly at the X points. Since the minimum of the conduction band is only 0k  away from the X point, the
dispersion around the minimum is well described by degenerate perturbation theory which includes only these two
bands. Diagonal elements of the Hamiltonian iiH at the X point are: 
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where 0m  is the free electron mass, tm is the transversal and lm  the longitudinal effective mass. The values of zk  are 
counted from the X point and are thus negative. The coupling between the two bands is described by the off-diagonal 
terms [7]: 
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Fig. 4. Comparison of the dispersion relation (3) at the valley minimum (dashed-dotted lines) with the EPM results (solid 
lines). The distance between the equi-energy contour lines is 50 meV. 

The parameter 1−M  is obtained from the k·p perturbation theory: 
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We use for 1−M  the value computed by the EPM at the X point 11 8.0 −− = tmM , where the numerical value is close 

(but not equal) to 1
0

11 −−− −≈ mmM t reported in [7]. With degenerate perturbation theory we obtain the following 
dispersion relation for the lowest band:  
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Expanding (3) around the minimum 00 / mpmkk lz ==  with respect to 0kkq zz −= , one obtains a simplified 
dispersion relation [11]: 
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22 ==∆  is the gap between the 1∆  and the '2∆  conduction bands at 0kkz −= . To estimate 

the value of the non-parabolicity parameter, we follow [11], Appendix B, and average out the angular dependence in (4). 
Assuming )(kEα  to be small and recasting terms, one finally obtains: 
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Fig. 5. Dispersion at the valley minimum obtained from the sp3d5s* model (dashed lines), from (3) with the correct EPM 
value ∆ =0.53 eV (dotted-dashed lines), and from (3) with ∆ =1.2 eV (solid lines). The distance between the equi-
energy contour lines is 50 meV. 
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Substituting the parameter values for Si in (5), we estimate α = 0.6 eV-1, which is close to the empirical value of  α =
0.5 eV-1.

In Fig.4 the analytical expression is compared to the numerical band structure obtained from the EPM at 0kkz −= .
Excellent agreement is found up to the energy 0.5 eV. Fig.4 displays a pronounced warping of the conduction band at 
higher energies. On the other hand, Fig.3 shows that the sp3d5s* model predicts less anisotropy (dashed contour lines). 
As indicated in Fig.2, the gap between the two lowest conduction bands predicted by the sp3d5s* model is 
nonrealistically large. This results in a smaller coupling between the bands. The solid contour lines shown in Fig.5 
obtained from (3) with a nonrealistic value of ∆  = 1.2 eV reproduce the results of the tight-binding model. This 
confirms the observation that the larger gap between the two bands at the valley minimum results in less anisotropy of 
the conduction band. 

4. SHEAR STRAIN

Uniaxial stress along the [110] direction generates diagonal zyxjjj ,,, =ε  as well as off-diagonal xyε components of
the strain tensor in the principal coordinate system. The diagonal components are added to the diagonal matrix elements 
(1) of the [001] valley [12]:
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Fig. 6. Comparison between the EPM band structure calculations (solid lines) and the analytical model (7) (dashed lines) at 

the minimum mink  from (8) for shear strain xyε = 1%. The analytical model predicts the  anisotropy of the transversal 

effective mass on shear strain. The contours are spaced at 50 meV. 

                           2,1,)()( 0 =+= iEHH iiii δkk                                                                           

where zzuzzyyxxdE εεεεδ Ξ+++Ξ= )( with dΞ  denoting the dilation and uΞ  the uniaxial deformation potentials 
for the conduction band. The off-diagonal elements of the Hamiltonian are [7]: 
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where D = 14 eV denotes the shear deformation potential.  

The dispersion relation of the [001] valleys including the shear strain component for the conduction band now reads:  
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Because of shear strain the minimum mink  moves closer to the X point. From (7) we obtain 

                                                         1||,1 2
0min <−= ηηkk ,                                                   (8a) 

                                            .1||,0min >= ηk                                                    (8b)                            

Here, the dimensionless off-diagonal strain ∆= /2 xyDεη  is introduced. Interestingly, for 1≥η the valley minimum is 

exactly at the X point. The minimum also moves down in energy by minE∆  with respect to the remaining degenerate 
valleys. For 1|| ≤η  the strain dependence is quadratic: 

                                                             4/2
min ∆−=∆ ηE ,                    1|| ≤η ;                                       (9a) 
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Fig. 7. Comparison of (10) and transversal masses extracted from EPM band structure calculations. The lower branch 

corresponds to −
tm and the upper to +

tm . Excellent agreement between numerical results and the analytical expressions
(10) is found.

while it is linear for 1|| ≥η :

   4/)1||2(min ∆−−=∆ ηE , 1|| ≥η .       (9b) 

In Fig.6 we compare the results of the EPM calculations with the analytical model (5) at the minimum mink  for xyε = 1%.
The agreement between the two-band k·p model and the EPM calculations is excellent. In contrast to the unstrained case 
shown in Fig.4 the dispersion relation at small xk and yk  becomes anisotropic displaying the dependence of the 
transversal effective mass on shear strain. Evaluating the second derivatives of (7) at the band minimum (8), we obtain 
two different branches for the inverse effective mass across (-) and along (+) the tensile stress in [110] direction: 

     [ ]Mmmm ttt /1)(/ ηη ±= ,         1|| ≤η ;               (10a)  

     [ ]Mmmm ttt /1)(/ ±=η ,             1|| ≥η ,          (10b) 

Good agreement between the inverse transversal effective masses evaluated numerically by EPM and found from (10) is 
demonstrated in Fig.8. 
(7) also allows evaluation of the dependence of the longitudinal mass )(ηlm  on strain. The longitudinal mass )(ηlm  can 
be written as: 

    [ ] 121/)( −
−= ηη ll mm ,          1|| ≤η ;        (11a)  

   [ ] 11||1/)( −−−= ηη ll mm ,           1|| ≥η .            (11b) 
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5. CONCLUSION
Predictions of the two-band k·p model are compared with the results of the empirical nonlocal pseudo-potential method 
and the sp3d5s* nearest-neighbor tight-binding model. It is demonstrated that the two-band k·p model is consistent with 
the results of the empirical pseudo-potential method. The model accurately describes the whole band structure around the 
valley minimum, including the effective masses and the band non-parabolicity. It is shown that the sp3d5s* model 
overestimates the gap between the two lowest conduction bands at the valley minimum and consequently underestimates 
the anisotropy due to non-parabolic effects. The two-band k·p model allows to account for shear strain, which leads to 
profound changes in the conduction band causing the valley minima to shift and the effective masses to change. 
Predictions of the two-band k·p method are in good agreement with the results of the pseudo-potential method. 
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