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Abstract. A generic scientific simulation environment is presented
which imposes minimal restriction regarding topological, dimensional,
and functional issues. Therewith complete discretization schemes based
on finite volumes or finite elements can be expressed directly in C++.
This work presents our multi-paradigm approach, our generic libraries,
some applications based on these libraries, and performance aspects.

1 Introduction

In the last decades numerous software environments and libraries have been
developed to handle the many areas in the field of scientific computing. Due
to the diversity of the mathematical structures, combined with efficiency con-
siderations, the development of high performance simulation software is quite
challenging. These challenges are becoming more difficult to meet, when the
purpose of the software is to validate novel algorithms and complex methods, or
to investigate physical phenomena that have not yet been fully understood. High
performance computations have turned the attention especially to C++, since
Blitz++ has shown that the run-time behavior is comparable to Fortran [1], the
traditional language for scientific computing. In addition, distinct programming
paradigms and their respective advantages can be combined in a multi-paradigm
language, such as C++.

2 Motivation

Many library approaches [1,2,3] focus on topics such as expression templates,
high performance matrix operations and calculations, and discretization of dif-
ferential operators. The nature of dealing with different types of partial differen-
tial equations (PDEs) with the inherent coupling of topological traversion and
functional description complicates the use of these libraries.

Our main area of work is focused on Technology Computer-Aided Design
(TCAD), which deals with the assembly of large equation systems by utilizing
discretized partial differential equations from different fields of physics. All types
of PDEs (parabolic, elliptic, hyperbolic) and their discretization schemes such
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as the finite element method [4] or the finite volume method [5] have to be con-
sidered for the diverse types of problems. Types of topological cell complexes,
different dimensions, and solving strategies have to be considered during appli-
cation development [5,6,7]. Most of these applications use data structures such
as list and array as well as triangles, quadrilaterals, tetrahedra, cuboids, each
with their own access mechanisms, traversal operations, and data storage.

These issues demand great care to ensure high software quality while also
addressing performance issues, when source code is being written. This is the
primary motivation to develop generic libraries for high performance applications
in the field of scientific computing. Generic library design deals with the con-
ceptual categorization of computational domains, the reduction of algorithms
to their minimal conceptual requirements, and strict performance guarantees.
The benefits of this approach are the re-usability and the orthogonality of the
resulting software.

3 Related Work

Various research groups have put a lot of effort into the development of libraries
for sub-problems occurring in scientific computing. We briefly review the most
important library approaches suitable for application design:

– The Boost Graph Library (BGL [2]) is a generic approach to the topic of
graph handling and traversal with a standardized generic interface.

– The Computational Geometry Algorithms Library (CGAL [8]) implements
generic classes and procedures for geometric computing with generic pro-
gramming techniques.

– The Grid Algorithms Library (GrAL [9]) is a generic library for grid and
mesh data structures and algorithms operating on them.

– deal.II [3] provides a framework for finite element methods and adaptive
refinement for finite elements.

– ExPDE [10] collects efficient high-performance libraries for PDEs using the
C++ technique of expression templates

Our analysis has revealed that, up to now, no related work can be used directly.
All of these libraries have not been developed with emphasis on interoperability.
This issue complicates the transition from one library to another. Therefore, our
approach (Section 4.1) introduces a common layer with data structure definition
and access routines, where all of these libraries can be used. With the generic
programming paradigm and the implementation with templates in C++ the
abstraction penalty can be minimized (Section 6).

Deal.II and the ExPDE library collection offer support for application de-
sign in the field of scientific computing. These libraries are an important step
into library centric application design. But, as mentioned before, none of these
libraries were developed with interoperability as a necessary constraint. As a
consequence, additional code has to be introduced which slows the development
process down and impedes the execution speed of the final application.
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4 The GSSE

Based on the experience of developing high performance applications a generic
scientific simulation environment (GSSE) with an overall high performance
was developed, which does not impose restrictions on topological treatment or
functional description. Different programming paradigms were used for the non-
trivial and highly complex scenario of scientific computing. The generic pro-
gramming paradigm realized by the template mechanism offers homogeneous
interfaces between algorithms and data structures by the iterator/cursor pat-
tern. Functional programming enables an efficient means to specify equations
and offers extensible expressions.

Investigations of the applications developed at our institute have shown that
the topological structures can be abstracted and generalized into a generic topol-
ogy library (GTL), which is presented in more detail in Section 4.1. This new
approach of a generalized topology enables a new functional description for the
discretization of PDEs without sacrificing any performance. This is accomplished
in our generic discretization library (GDL, Section 4.2), which fulfills the require-
ments for scientific computing, especially TCAD [11].

To introduce the base libraries of the GSSE, we examine different topolog-
ical traversal operations without any assumption about the dimension. This
dimension independent programming eases software development considerably
and reduces the probability of errors.

4.1 Generic Topology Library: GTL

Topological functionality is mostly needed to fulfill the requirements of dis-
cretization schemes. All these schemes need a set of neighboring elements based
on the topological property of incidence. Therefore the GTL [12] provides com-
prehensive incidence traversal and orientation operations with a generic interface
similar to the C++ STL [13] and is based on GrAL [9]. Problems which can be
formulated only with difficulty using existing libraries, can thereby be handled
easily.

The following example presents an incidence traversal mechanism starting
with an arbitrary cell iterator which is evaluated on a cell complex (grid). Then a
vertex on cell iterator is initialized with a cell of the cell complex (cell container).
The topological traversal is started with the for loop. During this loop an edge
on the vertex iterator is created and initialized with the evaluated vertex. This
edge iterator starts the next topological traversal. The valid() mechanism is
used, because there is no end() iterator on inter dimensional objects.

c e l l i t e r a t o r c i t = ce l l c omp l ex . c e l l b e g i n ( ) ;
for ( c e l l v e r t e x v o c i t (∗ c i t ) ; v o c i t . va l i d ( ) ; ++vo c i t ) {

for ( v e r t e x edge e ov i t (∗ vo c i t ) ; e o v i t . va l i d ( ) ; ++e ov i t ) {
// operat ions on edges

}
}
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4.2 Generic Discretization Library: GDL

One of the base operations in the context of PDEs is the assembly procedure
of discretized equations into a matrix. To ease this procedure the GDL was
developed. This library implements the ability to specify whole equations in a
concise yet expressive way. The availability of a topology or traversal library, e.g.
the GTL, is a fundamental requirement to specify equations in a functional way.
Together these two libraries offer mechanisms to separate discrete mathematics
into topological and numerical operations. To present the application of the
GDL, we examine a simple equation:

∑

v→e

(Δe→v quan) = 0

where v → e denotes the traversal of all edges incident to the vertex, e → v de-
notes the traversal of the vertices incident to the edge, quan denotes the quantity
located on a vertex, and Δ denotes the difference of this quantity.

The implementation with the GTL and the GDL without any dependence on
the dimension or the type of cell complex is presented in the next code snippet.
The addition over all edges incident to the given vertex are traversed by the
vertex edge expression with the sum functor. All elements have a standard
local orientation, e.g. an edge provides a source and a sink vertex. We define an
orientation function O(a, b) between an edge and a vertex, which returns +1 if
a vertex coincides with the source and −1 if the vertex coincides with the sink
(Figure 1).

Fig. 1. Orientation of an edge. The orientation function returns either +1 or −1 de-
pending on whether the vertex is the sink or the source of the edge.

Finally, the e and 1 are local variables (placeholders). The e variable passes
the edge into the next context [ quan * orient( 1, e) ], and 1 stands for
the local vertex.
for ( v i t = ce l l c omp l ex . v e r t e x beg in ( ) ;

v i t != c e l l c omp l ex . ve r tex end ( ) ; ++v i t ) {
equat ion = sum<vertex edge>
[

sum<edge vertex >(0.0 , e ) [ quan ∗ o r i en t ( 1 , e ) ]
] (∗ v i t )

// . . eva luate the equation ob je c t
}

The complex resulting from this mapping is completed by specifying the current
vertex object *v it at run-time, which clearly demonstrates the compile-time
and run-time border. The datatype equation is explained in more detail in
Section 4.4.
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4.3 Matrix Assembly

Differential equations are discretized on elements of the topological structure
and entered in a matrix by assembly methods. In general there exist two main
methods of equation assembly which differ in the type of sub-matrices assembled
in one step.

Element-wise assembly (Figure 2) is typically used in the finite element method.
All cells (finite elements) are traversed and for each of the cells a local matrix
is calculated. This matrix introduces coupling factors between the various shape
functions. As each shape function is mapped to an element of the underlying cell
complex, couplings between functions can be seen as couplings between values on
elements. The local matrix entries are written into the global matrix according to
a global vertex/cell numbering scheme. The finite volume scheme uses a different

Fig. 2. Element-wise assembly. All cells are
traversed and sub-matrices are calculated.
The sub-matrices are inserted into the sys-
tem matrix.

Fig. 3. Line-wise assembly. All vertices are
traversed and linear equations are assem-
bled. Linear equations are inserted into the
system matrix.

technique of matrix assembly (Figure 3). The differential equation is discretized
on a vertex of the simulation domain. Couplings to other values are described by
sums over topological elements. One of the major advantages of this method is that
each degree of freedom causing a matrix entry has its own governing equation. This
also implies that the matrix regions of assembly are disjoint, which allows a larger
degree of parallelization, because each assembling element has exclusive access to
matrix lines.

4.4 Linear Functions

In order to simplify the line-wise assembly method, e.g. for finite volumes, we in-
troduce the notion of a linear function data type. We consider some differential
operator L(ψ) and the differential equation L(ψ) = 0. Figure 4 shows a one-
dimensional simulation domain with a quantity distribution. While the depicted
values are not the solution of the considered equation, the residual can be deter-
mined by using the finite volume formulation. We consider not only the residual
value but also the effects of linear changes of single values on the residuum. In
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Fig. 4. Linear equation. The linear equation data structure stores the value as well as
the dependence on the unknown variables Δxi.

order to provide an environment which is able to handle small variations, we
assign an index i to all variables. The small variations are called Δxi and the
function value is denoted by ψi. A function value including dependencies thus
yields ψi + Δxi. Based on these considerations we introduce addition.

(ψi + Δxi) + (ψj + Δxj) = (ψi + ψj) + (Δxi + Δxj) . (1)

In order to define a closed algebraic structure, we use the concept of a linear
function. This function can be written in the following manner

∑

i

ai · Δxi + ci . (2)

The relations described in Equation 1 can be generalized to algebraic expressions.
A data structure which implements these operations consequently, provides the
following property: specifying the residuum and replacing the function value ψi

by ψi + Δxi results in a linear equation for the values of Δxi.
The following example uses finite volume schemes in order to assemble a

simple Laplace equation. We use the linear equation data type instead of the
standard numerical types (e.g. double) and replace the function values by linear
equations. The constructor of the linear equation contains the value ψi as well
as the index i and returns an equation object with the meaning ψi + Δxi. The
following code snippet presents an application of the introduced linear function
concept to obtain the formulation of the Laplace equation:
l i n e a r equ a t i o n l ap l a c e eqn ;
v e r t e x edge e ov i t ( ve rtex )
for ( ; e o v i t . va l i d ( ) ; ++e o v i t ) {
l i n e a r e qu a t i o n equat ion ;
edge ve r t ex v o e i t (∗ e ov i t ) ;

for ( ; v i t . va l i d ( ) ; ++v i t )
{

equat ion += l i n ea r e qu a t i o n ( f (∗ v i t ) , i (∗ v i t ) ) ∗
o r i en t (∗ v i t , ∗ e ov i t ) ;

}
equat ion ∗= A(∗ e o v i t ) / d(∗ e ov i t ) ;
l ap l a c e equ += equat ion ;

}

The linear equation can also be specified using functional programming.
l ap l a c e equ = sum<vertex edge>
[ sum<edge vertex >( e )

[ l i n eqn ( p s i ( 1 ) , i ( 1 ) ) ∗ o r i e n t ( 1 , e )
] ∗ A( 1 ) / d( 1 )

] ( ve r tex ) ;
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5 Application Design Using the GSSE

We demonstrate the development of simple applications which solve partial
differential equations based on the facilities of the GTL and the GDL. These
equations can be divided into elliptic equations, such as the Laplace or Poisson
equation, parabolic equations which describe diffusive processes, and hyperbolic
equations, such as wave equations. Examples for each of these equations are often
found in TCAD. The first example presents the capability of reducing complex
discretization to simple topological iterations, mostly based on the GTL. The
second example utilizes the GDL based on a piecewise construction of functional
parts to form a complex equation.

5.1 Maxwell’s Equation

We present an implementation using Yee’s algorithm for Maxwell’s equations
[14] in the following. While the Yee formulation makes use of staggered grids,
the application on structured topologies based on the GTL and inter-dimensional
iterators causes an enormous simplification. Instead of special grids, we employ
different dimensional elements such as edges and faces for the representation of
the electrical field strength and magnetic field. It turns out that the tensorial
character of the quantities fits into the dimensionality concept of the topological
elements. We present the special case of a transversal magnetic mode only. The
following formulation can be derived by applying the Yee discretization scheme.

En+1
z (i, j) = En

z (i, j) +Δt
l

Δx
[Hn+1/2

y (i +
1
2
, j) − Hn+1/2

y (i − 1
2
, j)

−Δt
l

Δy
[Hn+1/2

x (i, j +
1
2
) − Hn+1/2

x (i, j − 1
2
)

With the transfer of all index calculations to topological iteration and traversal
mechanisms, e.g. the electric field quantity to edges Ee and the magnetic field
quantity to facets Hf the formula can be rewritten as:

Ee − Eold
e = Δt leΔe→f

[Hf

Af

]
,

where e → f denotes the traversal of all facets incident to the edges, and Af
represents the area of the corresponding facet. The evaluation of all quantities
on their corresponding dimension and topological objects is completed auto-
matically. The final source code is presented in the following code snippet. The
minimal requirement to specify such complex equations can be seen clearly.

equation E += dt ∗ l ∗ sum<edge face t >(0.0 , e )
[

H / A ∗ o r i en t ( e , 1 )
]
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5.2 Applications for Device Simulation

Good understanding of electron transport in semiconductors is one key require-
ment for the progress in microelectronic devices. For device simulation we present
the drift-diffusion model which reads in a simple form for electrons [5]:

div (ε grad (Ψ)) = q (n − ND) (3)
div (Jn) − q ∂tn = qR

Jn = q n μn grad (Ψ) + q Dn grad (n)

Discretizing the continuity relation (as presented in Equation 3) using the
Scharfetter-Gummel scheme [15] results in:

∑

v→e

q μnUt
A

d

∑

e→v

n Bern
[ ∑

e→v

ψ

Ut

]
(4)

Bern(x) = x/(ex − 1) represents the Bernoulli function and Ut describes the
thermal voltage. This discretized form can be transformed into C++ code using
our formalism to yield:

// Poisson equa t i on
equa t i on po i s s=
sum<vertex edge >
[ A / d ∗ eps ∗

sum<edge vertex >(0.0 , e ) [ pot∗ o r i en t ( 1 , e ) ]
] − q∗(n−nD)

// Continui ty equa t i on f o r e l e c t r o n s
equat ion n = sum<vertex edge >
[ q ∗ mu n ∗ U t ∗ A / d ∗

sum<edge vertex >(0.0 , e )
[

o r i en t ( e , 1 )∗n( 1 )∗
Bern ( l o ca t e ( e ) [ sum<edge vertex >[ pot∗ o r i en t ( 1 , e ) ] / U t ] )

] ]

Due to the functional specification, a special mechanism has to be introduced
locate( e) to obtain the edge information in the innermost loop. The main
problem with this type of programming in C++ is that the expression between
[] opens up a new scope and new local variables. The locate function passes
the edge information from the second sum to the Bern function.

5.3 Number of Code Lines

To implement a complete application, one line of code is used to import a given
cell complex (mesh) from a file and another line is used to assemble the linearized
functions into a generic matrix interface. The overall number of lines of code
to implement an application can thereby be greatly reduced. This results in a
minimization of maintenance of source code as well as the learning time for new
developers.
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6 Performance

The basic parts of how to achieve high performance in C++ are based on the us-
age of templates. Therewith the compiler’s data-type-based function selection at
compile time leading to a global optimization with inlined function blocks is pos-
sible. Additionally lightweight object optimization [16] with frequent allocation
to registers is made available.

To circumvent the problems with benchmarking different techniques, we re-
strict the performance analysis on a simple but often used detail, namely the addi-
tion of several small matrices which occur in the discretization schemes described
before. This simple expression can be compared to other benchmark studies [17].
The test is performed using the vector addition Af = Ab + Ac + Ad, evaluated
with different vector sizes on a Pentium 4 (2.4 GHz) with the GCC 4.1.0. Sev-
eral approaches, a naive C++ implementation with std::vector<T>, Blitz++, a
simple version of expression templates [18] , the C++ std::valarray, and finally
the GDL approach are compared to a hand-optimized Fortran 77 implementation
(F77) as can be seen in Figure 5 . Although functional and generic programming
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Fig. 5. Performance of the evaluated expression on a P4 (left) and an AMD64 (right)

support the parallelization significantly, the currently used computer technology
restricts this effort due to their architecture. For vector lengths smaller than 104,
cache hits reveal the full computation power of the CPU, longer vectors show the
limits imposed by memory band width.

7 Conclusion

The application of several modern programming paradigms solves the problem
of portability while insuring high performance by providing orthogonal means of
optimization. Currently no language other than C++ offers sufficient support for
all the necessary programming paradigms to enable this high-level abstraction
at unmatched performance. As we have demonstrated in the complex field of
TCAD, applications can be developed with a reasonable amount of effort.
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