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The challenging art of multi-paradigmatic application development, which only few
languages currently support, greatly aids the development of highly efficient and
reusable software components. A link of two such languages, namely Python and
Cþþ , is presented. Thereby data structures and algorithms realised in Cþþ using
features such as compile-time meta-programming are made available to the run-time
environment of Python. Several generic components and modules for application
design in the area of scientific computing are presented. Compile times and run-times
are discussed to show the advantages of the proposed combination of both languages.
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1. Introduction

High-performance application design for scientific computing has always been a challenge

regarding the utilised programming paradigms. An additional development in recent years

regarding interpreted languages such as Python [30] raised the complexity in application

design, but also introduced new possibilities, especially concerning rapid prototyping [31].

The Python programming language which has enjoyed a growing community of

developers and users due to the easy availability of several different programming

paradigms within a single language and its, by design, simple syntax and semantics, has

many of the required features but lacks the essential feature of consistent and efficient

traversal of simulation domains as well as quantity storage mechanisms. A key feature of

Python is the ability to rapidly develop applications, efficiency however is limited by the

interpreter, and the performance of the individual modules. The absence of multi-

threading capabilities and inherent parallelisation is another severe issue currently not

rigorously treated. Creating a high-performance link between the convenient Python

control and parallel execution paths is therefore of utmost importance, as presented here

[20]. While the capabilities of the interpreter continue to evolve, it is of high importance to

provide efficient modules in order to insure acceptable run-times. This is especially true

for the field of scientific computing, where processing of considerable amounts of data is

commonplace.

Python modules are often based on highly optimised libraries written in a variety

of compiled languages which are made available to Python by a wrapping layer.

The multi-paradigmatic nature of both Cþþ and Python makes combinations of these two
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languages very appealing. Not only does Cþþ offer support for several paradigms

concurrently, it also provides meta-programming mechanisms to orthogonally optimise

and even parallelise developed code without modification. However, the great multitude of

features and possibilities offered by Cþþ along with its strong typing mechanisms is

often perceived as an obstacle, especially by beginners to programming, for rapid

implementations of prototypes. On the other hand, Python has become an easy language to

learn for rapid prototyping also in the field of scientific computing.

2. Combining multi-paradigmatic languages

It is a current trend to combine several programming languages, resulting in multi-

language applications [25]. Different languages are utilised, each within the field where

they perform best. Languages such as Python are then used to connect different modules.

However, problems with interface specification and implementation arise with the

combination of several programming languages, further complicating matters. In addition,

the handling of different languages on different platforms becomes even more difficult.

In the field of scientific computing, the performance aspects should be handled

orthogonally to the development of applications. Optimisations can thereby be treated

separately. With the multi-language approach, performance aspects cannot be easily

considered orthogonally because of the use of compiled modules which require an

interface layer in order to build applications.

To enable the efficient transition between different languages, the paradigm and

performance border across languages have to be resolved. An example is given by

Typhoon which is presented here as a translation module from Cþþ to Python, as

schematically shown in Figure 1.

Typhoon enables this transition by using the generic programming paradigm

implementation of Cþþ : static parametric polymorphism. The excellent run-time

performance of compiled and highly-optimised code is thereby available in Python to

allow rapid prototyping, with the multi-paradigmatic nature of Python making this

transition especially simple and powerful by offering the utmost freedom for development.

These languages were selected by the availability of several mechanisms to use

various programming paradigms, such as imperative, functional and generic program-

ming. This is an essential feature in developing high-performance scientific applications.

Another important fact is to develop reusable software components, where a software

component is reusable if it can be used beyond its initial use within a single application or

group of applications without modification.

Figure 1. By enabling the transition from a statically typed language like Cþþ by Typhoon, the
excellent run-time performance of compiled application parts can be adopted into an interpreted
environment such as Python.
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Classical languages, such as different types of assembler or C, use a straight-forward

monomorphic programming style based on the imperative programming paradigm. In the

field of scientific computing, only one- and two-dimensional data structures were initially

used to develop applications, due to the limitations of computer resources. The imperative

programming paradigm was sufficient for this type of task. Code that is developed this way

supports only the initial data types and cannot be reused at all.

With the improvement of computer hardware and the rise of the object-oriented

programming paradigm, the shift to more complex data models was possible. Modern

high-level languages such as Cþþ or Java [15] implement means for polymorphic

programming which make code reuse possible, e.g., by inheritance. Whereas several new

programming languages such as Ruby [40] and other derivatives do not bother the user

with the data types and therefore offer various automatically casted types.

Implications to application development can be observed clearly by studying the

evolution of the object-oriented paradigm from imperative programming. The object-

oriented programming paradigm has significantly eased the software development of

complex tasks, due to the decomposition of problems into modular entities. It allows the

specification of class hierarchies with its virtual class polymorphism (subtyping

polymorphism), which has been a major enhancement for many different types of

applications, but another important goal in the field of scientific computing, orthogonal

libraries, cannot be achieved easily by this paradigm [9]. A simple example for an

orthogonal library is a software component, which is completely exchangeable, e.g., a

sorting algorithm for different data structures. An inherent property of this paradigm is the

divergence of generality and specialisation [2,4,37].

Thus, the object-oriented programming paradigm is pushed to its limits by the various

conceptual requirements in the field of scientific computing, due to problems with

interface specifications, performance issues and lack of orthogonality. Even though the

trend of combining algorithms and data structures is able to provide generalised access to

the data structures through objects, it is observable that the interfaces of these objects

become more complex as more functionality is added. Thus, the intended generality often

results in inefficiency of the programs, due to virtual function calls, which have to be

evaluated at run-time. Compiler optimisations such as inlining or loop-unrolling cannot be

used efficiently, if at all. A lot of research has been carried out to circumvent these issues

[6], but major problems arise in the details [13].

Functional programming is a radically different programming paradigm, where

computation is treated as the evaluation of functions based on the following properties:

. Objects are provided only as constants or as expressions on objects.

. Functional programming avoids states of objects and mutable data.

The drawback of this paradigm is that it is already detached from the conventional

programming style of C, Java, Cþþ or C# [5]. The functional modelling is fully reusable,

because no assumptions about the used data types are made. Pure functional programming

languages, such as Haskell, are completely polymorphic, concept-based programming

languages. However, the issues with these languages are briefly explained by two

drawbacks. First, the compiler has to do a lot of optimisation work to reach the excellent

performance of other programming languages such as Fortran or Cþþ [12,29,36].

Second, some tasks, such as input/output operations are inherently not functional. These

parts of an application are always given by different states due to the fact that data sources,

e.g., hard-disk or memory, are state-based and can be modelled by the concept of a monad

to introduce some kind of structure for functional programming [38,39].

International Journal of Parallel, Emergent and Distributed Systems 541



Other developments regarding programming paradigms can be observed by the emerged

generic programming paradigm [22,26] which has the same major goals as object-oriented

programming, such as reusability and orthogonality. However, the problem is tackled from a

different point of view [14]. Together with meta-programming [1], generic programming

accomplishes both a general solution for most application scenarios and highly specialised

code parts for minor scenarios without sacrificing performance [3,16,23] due to partial

specialisation. The Cþþ language supports this paradigm with a type of polymorphism

which is realised through template programming [33], static parametric polymorphism.

Combining this type of polymorphism with meta-programming, the compiler can generate

highly specialised code without adversely affecting orthogonality. This allows the

programmer to focus on libraries which provide concise interfaces with an emphasis on

orthogonality, as can already be found, e.g., in the BGL [34]. Although Java has gained more

functionality with respect to a multi-paradigm approach [10,27], its performance still cannot

be compared to the run-time performance of Cþþ [24]. Another comparison of high-level

languages as well as scripting languages is also available [28].

3. Multi-paradigm development in C11

The developed generic scientific simulation environment (GSSE [18,19]) incorporates

various functional as well as generic modules not only to support the close interaction with

Python, but also the interoperability with the Cþþ STL and parallel STL [35], BGL [34],

GrAL [7] and CGAL [11].

Basic data structures, such as the STL containers, already model a simple topological

space and hence provide elementary topological traversal mechanisms. More complex

data structures, e.g., a one-dimensional graph, can also be traversed by simple

mechanisms, e.g., all vertices, all edges, vertex on edge and edge on vertex. Here, the

distinction between so-called intrinsic traversal (vertices within a container) and deduced

traversal (edge on vertex traversal) is important. Higher dimensional topological spaces,

e.g., two- and three-dimensional meshes and grids, require a more complex combinatorial

traversal hierarchy.

By providing a formal and common traversal interface for different types of libraries,

interoperability is significantly enhanced. An example of using STL data structures with

GSSE [17,18] concepts, e.g. an array, is presented next. Higher dimensional topological

objects, such as edges, facets or cells, are not available directly in STL containers.

More complex traversal on a higher dimensional space can be accomplished in the

following way for several libraries, in this case STL, CGAL, GrAL and GSSE, where all

geometrical points with a special coordinate functor are marked:
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This example can be executed on an arbitrary number of cores due to the functional

specification. Only a simple recompilation step with, e.g., the parallel STL is required.

4. The GSSE::Typhoon module

The advanced traversal and quantity storage mechanism of the GSSE is available to

application developers directly in Cþþ . For rapid prototyping or for data manipulation

required during simulation set-up, a means of utilizing the same feature set flexibly

without the need of recompilation may be desirable. To meet this demand, Typhoon links

these mechanisms to the Python programming language, thereby enabling the highly

efficient and parallel multi-dimensional and multi-topological traversal of the GSSE for

the run-time scheme. The Typhoon Python module has been implemented using Boost

Python [8], which simplifies the interfacing of Cþþ and Python. Care has to be taken to

correctly transfer the high flexibility awarded to the GSSE by employing several

programming paradigms in concert with the ones available to Python. A particular

difficulty is the fact that the static polymorphism used in Cþþ for performance and

consistency reasons must be transferred to the dynamically typed world of Python. While

generic programming techniques are used to minimise the implementation effort, the

resulting compile times cannot be neglected, as all desired facilities for all required

dimensions must be instantiated at compile time in order to be available at run-time. In a

Cþþ application, the correct dimension is automatically selected at compile time, while

in the case of Python applications of dimensions one to three, the single code base results

in three separate Python modules, with their proper selection automatically performed by

Python’s dynamic type system and by function overloading.

The following short code snippet demonstrates the application of the traversal

mechanisms, where the same traversal mechanism is used as in the Cþþ example. First

all segments in a domain are traversed, followed by the traversal of the cells of the

traversed segment. A quantity is stored on all of the traversed cells using the identifier

‘quan_1’. Then a sample code is given to present, how the traversal mechanisms can be

combined with Python’s lambda function facilities to obtain a powerful selection

mechanism. The result of such a selection is again compatible with Typhoon’s facilities, as

is shown in the last two lines of code.

Here, the actual traversal is executed by the GSSE traversal library, where the control

of run-time selections is handled by Typhoon.
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Using the Typhoon Python module it is possible to also rapidly develop application

prototypes by combining it with one of the numerous scientific packages already available

for Python. Figure 2 schematically shows the interaction of the GSSE, Typhoon, and

Python.

The availability of a wide variety of traversal mechanisms in conjunction with high

performance solver packages such as Trilinos [21], which is made available in Python by

PyTrilinos [32], is a particularly interesting combination, as it enables even complete

implementations of simulations directly in Python. Typically, the input is used to assemble

an equation system which is subsequently solved to compute an approximate solution of

the problem under investigation. By using the Typhoon module, the Python code remains

unchanged even for different topologies and dimensions, as the underlying GSSE takes

care of equalizing the interfaces.

By traversing the vertices of the input structure the system matrix is assembled using

Typhoon. The high level of abstraction provided by the GSSE is retained without

restrictions on the topology or dimension of the specified problem. In contrast to a Cþþ

implementation, where the, often time consuming, recompilation of the program is

required to obtain an executable from the source code, the Python implementation is

available immediately. A caveat, however, is that the Typhoon module had to be compiled

including the appropriate dimension and topology, which is automatically taken care of by

Cþþ during compilation.

The following source code demonstrates the combination of Typhoon’s traversal

mechanisms, which are used to assemble the matrix, and the PyTrilinos solver interface,

which is employed to calculate the solution:

Figure 2. The Typhoon module brings the topology and traversal mechanisms of the GSSE to
Python. The combination with additional Python modules enables a rapid implementation of
prototype applications.
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4.1 Technical details

Making the template heavy traversal mechanisms offered by GSSE compatible with the

requirements of the dynamic run-time requires the instantiation of all the required code

parts. A helper construct, which encapsulates the necessary steps has been developed to

prohibit the writing of excessive amounts of code and to ease use. A visualisation of the

general architecture is given in Figure 3. The interplay of both, the topological structure,

which describes the data structures, as well as the algorithmic aspects of the GSSE are

mapped to Python using a single entity, thereby ensuring consistency. As has been shown

in the previous examples, the exposure is also compatible with the specification of

algorithms in Python using the functional programming paradigm.

The main entity containing all subsequent type definitions and helper functions is

given in the following short piece of code along with a few basic type definitions. The

template parameter CCT is the GSSE domain which is to be exported to Python. The

following type definitions make various basic GSSE entities available internally.

The next code sample demonstrates, how simple helper functions are employed to

extract instances of the required meta-programmed GSSE constructs, with this particular

case dealing with traversal.

Figure 3. Using Typhoon the interplay of data structures and the algorithms working on them is
translated using the datatype system of the Cþþ compiler to automatically create high-performance
object code. The resulting module is then available in Python and can be used with the programming
paradigms available in Python.
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The pieces of code shown are used to facilitate the export using Boost Python. The

export definitions themselves are contained in a single wrapping function for ease of use.

The suffix used in the function has to be unique for each GSSE domain exported, as it

is used to remove ambiguity for the dynamic type system. The next piece of code

demonstrates the final binding of the traversal helper function to the internal types and its

export to Python.

By employing the same technique for all types derived from a GSSE domain, every

invocation of an export directive is completely self-contained. The construct not only

defines types derived from the specified domain, but also ensures that the required

functionality is made available for these types. This is accomplished by assigning internal

names to the required types and functions. At the same time, a consistent interface to

Python is created, which depends on the internal types, thereby being resolvable by the

dynamic type system at run-time. It is thereby possible to make the encapsulated

functionality available to the user as easily as possible.

It should also be noted, that since GSSE provides a super-set of facilities to the STL

standard containers and algorithms, the introduced technique can also be applied to STL

containers and algorithms.

5. Benchmarks

The compile times of associated with the structures required for rigorous traversal

operations cannot be neglected, especially in higher dimensions. Table 1 gives an

overview of the time consumed for compilation for several dimensions. While Typhoon

cannot alter the compile times themselves, it serves to save a lot of time as compilation

P. Schwaha et al.546



needs to be performed but once for the facilities to be available in Python without further

compile time delays, whereas the time has to be expended repeatedly in the case of Cþþ .

To further compare the two different approaches controlled by Typhoon, we give

benchmark results for topological traversal. The benchmarks are obtained by simple

traversal of an array as equivalent data structures are available in Python and Typhoon.

No quantities were stored on the traversed objects. It should be noted that memory

consumption was much higher in native Python than when using Typhoon and even

prohibited the traversal of more than the given 108 elements.

The second and third columns are for multi-dimensional arrays and show that Typhoon

is always faster when traversing multi-dimensional structures than Python. Again Python’s

native memory requirements surpassed those of Typhoon.

The memory issue is expected to become even more pronounced, when quantities are

to be stored on the traversed structures as Typhoon inherently makes use of the GSSE’s

quantity handling capabilities (Table 2).

6. Conclusion

A module linking the two multi-paradigmatic languages Cþþ and Python named

GSSE::Typhoon has been presented. The multi-dimensional and multi-topological

capabilities of the Cþþ framework GSSE are automatically translated to Python for a

desired dimension and topology, thus making the highly optimised and parallelisable traversal

and quantity storage facilities available to Python. It thereby provides a feature set important

to scientific computing which native Python lacks. The compatibility of the traversal

mechanisms with Python’s multi-paradigmatic nature as well as other Python software

packages results in a powerful tool for scientific computing, useful for both rapid prototyping

and simulation setup. Furthermore, the employed concepts, are not limited to the GSSE, but

are also easily applicable to the wide range of STL standard containers and algorithms.
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