
Computer Physics Communications 180 (2009) 1242–1250
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

A fast level set framework for large three-dimensional topography simulations

Otmar Ertl ∗, Siegfried Selberherr

Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29/E360, A-1040 Wien, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 August 2008
Received in revised form 2 February 2009
Accepted 7 February 2009
Available online 11 February 2009

PACS:
02.70.-c
81.65.-b
85.40.-e

Keywords:
Topography simulation
Deposition
Etching
Sparse field
Level set method
Run-length encoding

We present fast methods to describe the surface evolution of large three-dimensional structures. Based
on the sparse field level set method and the hierarchical run-length encoding level set data structure
optimal figures for the computation time and for the memory consumption are achieved. Furthermore,
we introduce a new multi-level-set technique, which is able to incorporate multiple material regions, and
which can also handle material specific surface speeds accurately. We also describe an optimal algorithm
for the visibility check for unidirectional etching. The presented techniques are demonstrated on various
examples.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

For the simulation of topographic manufacturing steps in semi-
conductor processing, such as deposition and etching, numerous
methods were applied in the past to describe the surface evolu-
tion over time [1]. Segment-based models track individual points
which are connected among each other by segments [2]. Due to to-
pographic changes it is necessary to thin out or to introduce new
surface points. This is a difficult task, especially in three dimen-
sions. Other methods for describing the surface evolution, which
base on cells, are the cellular model [3], the building block model
[4], the equi-volume rate model [5], or the cellular automata model
[6]. A well established method for surface evolution is the level set
method [7]. It describes the surface S = ∂M of a region M im-
plicitly by a continuous function Φ(�x). The surface can then be
obtained as the zero level set

S = {�x: Φ(�x) = 0
}
. (1)

As convention, we define for the sign of the level set function

Φ(�x) � 0 ⇔ �x ∈ M. (2)

* Corresponding author.
E-mail addresses: ertl@iue.tuwien.ac.at (O. Ertl), selberherr@iue.tuwien.ac.at

(S. Selberherr).
0010-4655/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2009.02.002
The time evolution of the surface can be easily described by the
level set equation

∂Φ

∂t
+ V (�x)‖∇Φ‖ = 0, (3)

where V (�x) denotes the normal component of the extended sur-
face velocity field [8]. If the velocity field is known, the level set
method allows a simple calculation of the surface evolution by
means of solving (3) on regular grids. Thereby topographic changes
can be handled without special consideration. Originally, the level
set values were stored and updated in each time integration step
for all grid points. Therefore, a complexity of order O(N3/2) can
be expected in three dimensions, where N denotes the surface
size. Several techniques were introduced to achieve a linear scaling
O(N).

2. Sparse field level set method

To reduce the calculation time down to O(N) the narrow band
method was developed [9]. With this technique only grid points
which are close to the surface are updated. These points are called
active points. A further development of this method is the sparse
field method [10], which was first introduced to topography sim-
ulation in [11]. The sparse field level set method updates just one

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:ertl@iue.tuwien.ac.at
mailto:selberherr@iue.tuwien.ac.at
http://dx.doi.org/10.1016/j.cpc.2009.02.002

O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250 1243
layer of active grid points in time. The set of active grid points L0
is defined as

L0 :=
{

�p ∈ P : −1

2
� Φ(�p) � 1

2

}
, (4)

where P ⊆ Z
3 denotes the set of all grid points. Additional lay-

ers of grid points are necessary to calculate first or higher order
derivatives at active grid points, which are required for conven-
tional time integration schemes. These layers can be expressed as

Ln :=
{
�p ∈ P : sgn

(
Φ(�p)

) · min
�p′∈L0

‖�p − �p′‖1 = n
}

(5)

using the Manhattan norm ‖ · ‖1. First order derivatives require
all grid points of layers L±1, while also those of layers L±2 are
necessary for second order derivatives. After updating the level
set values of all active grid points �p ∈ L0 using an appropriate
time integration scheme, grid points of neighboring layers are pro-
cessed in the order L±1, L±2, The level set values of grid points
in layer L±n only depend on the values of the next inner layer
L±(n−1) . The level set values are updated using a simple scheme

Φ(�p ∈ Ln) =
{

min�p′∈η(�p)∩Ln−1
Φ(�p′) + 1 if n > 0,

max�p′∈η(�p)∩Ln+1
Φ(�p′) − 1 if n < 0.

(6)

Here η(�p) denotes the set of grid points which are neighbors of �p.
Finally, the set of active grid points L0 is refreshed using (4).

The sets of grid points for the neighboring layers are also updated
using (5). Due to the update scheme (6) and due to (4)

Ln =

⎧⎪⎪⎨
⎪⎪⎩

{�p ∈ P : n − 1
2 � Φ(�p) < n + 1

2 } if n < 0,

{�p ∈ P : − 1
2 � Φ(�p) � 1

2 } if n = 0,

{�p ∈ P : n − 1
2 < Φ(�p) � n + 1

2 } if n > 0

(7)

holds. Therefore, for time integration schemes using first and sec-
ond order derivatives it is sufficient to consider only level set val-
ues up to an absolute value of 3

2 and 5
2 , respectively.

The solution of the level set equation (3) with finite difference
schemes requires the observance of a Courant-Friedrichs–Lewy
(CFL) condition to guarantee stability [7]. It limits the maximum
advancement of the surface measured in grid spacings. In case of
the sparse field level set method, the CFL condition limits the max-
imum change of all level set values

max
�p∈L0

∣∣Φ(t+�t)(�p) − Φ(t)(�p)
∣∣ � �ΦCFL. (8)

For the following considerations we demand

�ΦCFL <
1

2
, (9)

which implies that only the level set values of active grid points
can change their signs during one time integration step. This state-
ment follows from (4) and (6).

The sparse field level set method saves a lot of computation
time in comparison to the narrow band method. First of all, only
a minimal set of active grid points is involved in the time integra-
tion procedure. Furthermore, the time consuming surface velocity
extension can be avoided. This extension is necessary for topog-
raphy simulations, since the velocities are only defined on the
surface and the level set method requires a velocity field [8]. Fi-
nally, the sparse field level set method does not require periodic
re-initializations like the narrow band method [9].

2.1. Sets of active grid points

In [10] a set of active grid points is defined as efficient, if all
active grid points have at least one neighbor with opposite signed
Fig. 1. Two examples, where the sparse field level set method produces inefficient
sets of active (black) grid points. The surface S moves with a uniform positive sur-
face velocity (arrows). After a time step some active grid points (squares) do not
have any neighbor with opposite signed level set value.

level set value. The sparse field level set method does not maintain
efficient sets of active grid points over time. Two examples, where
active grid points without opposite signed neighbor are produced
by the update scheme, are shown in Fig. 1. These points often
appear in regions, where the surface converges, and do not neces-
sarily have to be close to the surface afterwards, as illustrated by
the second example. The consideration of these unnecessary grid
points makes the expansion of the surface velocity field more com-
plicated and computationally more intensive. Even worse, dense
sets of such points may be produced, essentially increasing the
memory consumption and the calculation time during time in-
tegration. To circumvent all these problems a pruning procedure
was proposed [10], which eliminates all active points which do not
have an opposite signed neighbor, after each time step.

A requirement of the sparse field level set method is that in
each pair of neighboring grid points with opposite level set signs,
there is at least one active grid point

�p′ ∈ η(�p) ∧ Φ(�p′)Φ(�p) � 0

⇒ ∣∣Φ(�p)
∣∣ � 1

2
∨ ∣∣Φ(�p′)

∣∣ � 1

2
. (10)

In other words, the sets of positive and negative grid points have
to be always separated by active grid points. However, in very sel-
dom cases (10) can be violated as exemplified in Fig. 2. To get a
robust algorithm it is necessary to resolve such situations by re-
ducing the level set values of both involved grid points to 1

2 or
− 1

2 , respectively.

2.2. Initialization

The initial data, which is necessary for the sparse field level set
method, must include at least the level set values of all active grid
points as well as the signs of all other grid points. If this informa-
tion is available, it is possible to calculate all other level set values
following (5) and (6).

It is sufficient to provide the level set values of all grid points,
which are vertices of grid line segments intersected by the initial
surface. These points with level set values in the range of [−1,1]

1244 O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250
Fig. 2. A special case which can occur within the sparse field level set method,
and which needs special consideration: Two neighboring active grid points (black)
with opposite signed level set value are updated in time. Due to the given surface
velocities (arrows), both grid points loose their activity status, leading to a pair of
non-active neighboring grid points with opposite signs.

clearly separate all grid points into regions with positive and neg-
ative level set values, respectively. Starting from these initial grid
points the level set values of all other grid points can be straight-
forwardly determined using the update scheme (6). Hereby, the
sign can be obtained by taking the sign of a neighbor grid point
belonging to the next inner layer.

Hence, what is needed at the very beginning is a list of the
coordinates of all required grid points together with their initial
level set values. Usually the initial geometry is given as triangula-
tion. A distance transformation is necessary to calculate the level
set values. Since we only need the level set values of nearby grid
points, the initialization can be performed in an efficient manner.

In case of the sparse field level set method it is more beneficial
to use the smallest Manhattan distance rather than the smallest
Euclidean distance for the initialization. With the latter, the first
time step of the sparse field level set method gives wrong results
for the position of a (non-axis-parallel) plane moving with con-
stant speed. However, if initialized with the Manhattan distance,
tri-linear interpolation of the level set function describes correctly
the position of the plane after the first time step. The reason for
this behavior is the update scheme (6), which also corresponds to
a Manhattan distance calculation.

The Manhattan distance computation can be essentially simpli-
fied for our purpose. For each grid point �p we check each grid line
going through �p and with direction k ∈ {x, y, z} for intersections
with elements � of the surface triangulation. If this is the case,
the signed distance can be calculated according to

d(�p,�,k) = sgn(nk) · |pk − qk|, (11)

where �q = (qx,qy,qz) is the intersection point with the triangle �.
Since we only need all grid points with an opposite signed neigh-
bor, triangles can be excluded with an (absolute) distance greater
than 1 + ε1. A small positive constant ε1 is added for numerical
reasons.

The signed distance of the closest triangle is finally assigned to
the initial level set value Φ(�p). However, choosing the closest tri-
angle according to |d(�p,�,k)| = |pk − qk| can lead to problems, as
depicted in Fig. 3a, where the wrong sign could be assigned to the
grid points since both triangles are equally distanced. To get the
right sign without additional consideration of neighbor triangles,
we measure the distance using

d′(�p,�,k) = sgn(pk − qk) · (pk − qk − ε2 · tk) (12)

to find the closest triangle. Here �t = (tx, t y, tz) denotes the unit
vector pointing from �q to the centroid of the triangle and ε2 is
again a small positive constant. However, the distance which is fi-
nally assigned to Φ(�p) is still calculated using (11).

The whole initialization algorithm is realized by an iteration
over all triangles. Then the grid lines which may intersect the tri-
angle are confined by calculating the bounding box of the triangle.
If a grid line intersects a triangle, all grid points on the grid line
with an (absolute) distance smaller than 1+ε1 are determined. For
these grid points the indices �p are stored together with the corre-
sponding values for the distances d and d′ in a list. Finally the list
Fig. 3. (a) Two elements of the surface mesh (gray) meet on a grid line (black).
Hence, for both grid points the distance is equal to both elements. As consequence
the determination of the signed distance according to (11) is ambiguous. (b) The
distance transformation can produce inefficient sets of active grid points. The bot-
tom left grid point does not have an opposite signed neighbor.

is lexicographically sorted according to the indices �q. If there are
more entries with same �q (which is not very often the case), d of
that entry with the smallest d′ is used for Φ(�p).

The whole initialization has an algorithmic complexity of
O(N log N + M), where N denotes the number of grid points
nearby the surface and M the number of triangles. The initial-
ization algorithm can produce inefficient sets of active grid points
(Fig. 3b) which can be avoided by appending a pruning procedure
as mentioned earlier.

3. Hierarchical run-length encoding

To reduce the memory consumption of the level set method
various techniques, as for example oct-trees [12], were introduced.
Recently, the hierarchical run-length encoded (HRLE) level set data
structure was developed [13]. This data structure efficiently stores
the level set values of a subset of all grid points in lexicographi-
cal order. For all other undefined grid points only the signs of the
level set values are stored using run-length compression. Subse-
quent undefined grid points with same sign are combined in runs
as shown in Fig. 4. The run-length encoding is successively applied
to all grid directions. The result is a hierarchical data structure
with a linear scaling memory consumption with little overhead.
The data structure uses arrays for its internal representation. The
availability of the signs of all grid points is very useful, since it
gives the information on which side of the surface a grid point
is located. The sign of the level set function is also important for
multi-level-set methods, which are described later.

In the following we show that the HRLE data structure in
conjunction with the sparse field level set method are powerful
methods to obtain fast linear scaling algorithms useful for three-
dimensional topography simulations. We implemented exactly the
same data structure as described in [13], where a detailed descrip-
tion of the HRLE data structure can be found.

3.1. Setup of data structure

The HRLE data structure can be setup by inserting all defined
grid points (i, j,k) in lexicographical order (with reversed signifi-
cance (k, j, i) to be consistent with [13]) together with their level
set values. Undefined runs are automatically created if grid points
are skipped. To avoid ambiguities concerning the sign of undefined
runs, our setup algorithm needs at least the level set values of all
grid points with an opposite signed neighbor, as obtained by our
initialization algorithm (see Section 2.2). In this way, the right sign
of undefined runs can be derived from the previous or from the
next inserted defined grid point. If the points are already sorted,
the data structure can be setup with optimal linear complexity.

O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250 1245
Fig. 4. The level set function of a triangle represented by an HRLE data structure
for a 10 × 9 grid. In this example only the level set values of active grid points are
stored explicitly. Undefined grid points with same signs are combined in runs. Light
and dark gray runs correspond to positive and negative level set values, respectively.

The successive insertion of grid points at the end of the data struc-
ture only requires the modification of the ends of dynamic arrays,
which can be realized with constant complexity using, for instance,
STL (Standard Template Library) vectors [14].

3.2. Data access

The HRLE data structure allows fast random access to grid
points with a worst case complexity of O(log N), while sequen-
tial access can be performed with constant complexity. For the
sequential access we implemented an iterator, which stops at ev-
ery defined grid point and also at every undefined run. The iterator
can be asked for the range of grid point indices, which the current
run contains. The iterator provides functions to retrieve the mini-
mum and maximum index vector. If the iterator is at the position
of a defined grid point, both index vectors are identical. The itera-
tor gives access to the level set value of the current grid point(s). In
case of undefined runs ±∞ (or an adequate numerical representa-
tion) is returned as level set value. After initialization the iterator
refers to the first undefined run or defined grid point in the HRLE
data structure. Functions for advancing to the next position and for
checking if the end is reached, allow a simple iteration over the
whole data structure. Fig. 5b shows a HRLE data structure with se-
quentially numbered undefined runs and defined grid points. The
numbering corresponds to the traversal sequence of the iterator.
As example, an iterator at the second position refers to the posi-
tive undefined run which contains the grid points (0,2), (1,2), and
(2,2).

The level set method requires access to neighbor grid points
for the calculation of derivatives. To find the correct neighbor grid
points the given boundary conditions must be incorporated. We al-
low periodic, reflective, and infinite boundaries, which can be spec-
ified for each axis direction independently. Infinite boundaries are
actually realized by reflective boundaries and setting the domain
extensions to very large positive and negative values. As example,
Fig. 5a shows a small simulation domain with reflective and peri-
odic boundaries for different directions.

In order to obtain linear scaling algorithms, in spite of neighbor
access, stencils of iterators can be used and moved simultaneously
over the whole data structure [13]. For this purpose our iterator
allows the definition of an offset. The behavior of an iterator with
a given offset equals an iterator moving over the HRLE data struc-
ture, which is obtained by shifting all undefined runs and defined
grid points according to the given offset with simultaneous con-
sideration of the boundary conditions. Figs. 5c and 5d show the
HRLE data structure as seen for iterators with offsets (−1,−1)

and (2,1), respectively. The (−1,−1)-iterator gives access to the
(−1,−1)-neighbors for all grid points with indices in the range
Fig. 5. (a) A surface embedded in a domain with extensions 4 × 5. However, due
to the different boundary conditions in i-direction (reflective) and j-direction (pe-
riodic) 5 × 5 grid points are used for the discretization of the level set function.
(b) The corresponding HRLE data structure with serially numbered defined grid
points (medium gray), positive (light gray) and negative (dark gray) undefined runs.
For iterators without offset the traversal order equals the numbering. (c) The un-
defined runs and defined grid points as seen by an iterator with offset (−1,−1).
(d) The same for an iterator with offset (2,1).

given by the minimum and maximum indices returned by the iter-
ator. For example, the 4th position of the (−1,−1)-iterator refers
to the positive defined run with number 2. The minimum and
maximum index vector are (0,3) and (3,3), respectively, which
means that the referenced run contains the (−1,−1)-neighbors for
the grid points (0,3), (1,3), (2,3), and (3,3). Using Fig. 5b it can
be easily verified that for these grid points the (−1,−1)-neighbors
really belong to the positive undefined run with number 2.

Our implementation realizes an offset iteration with linear
complexity. Due to the offset the iterator does not traverse the
HRLE data continuously. For example, there is a jump for the
(−1,−1)-iterator if it is moved from position 2 to 3 (Fig. 5c). The
referenced run changes abruptly from 9 to 1. In such cases a binary
search within the HRLE data structure to find the next position
may be necessary. However, on average it is possible to advance
the iterator in constant time. In case of reflective boundary con-
ditions it might be necessary to reverse the traversal direction, as
shown for the transition of the (2,1)-iterator from the 5th to the
6th position (Fig. 5d).

To obtain linear complexities for algorithms requiring neighbor
access, several offset iterators can be grouped and moved simul-
taneously over the data structure. As example, an iterator for first
order finite differences can be built from 7 iterators with offsets
{(0,0,0), (±1,0,0), (0,±1,0), (0,0,±1)}. The group of iterator is
traversed as follows. In each iteration step the common range of
grid point indices, which are contained in the actual runs of all it-
erators, is determined. This range defines the set of grid points, for
which the current iterator positions apply. Then only those itera-
tors, whose maximum index vector is equal to the upper bound

1246 O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250
of the common range of index vectors, are moved forward and so
forth.

The inherent incorporation of different boundary conditions
and the possibility to form different stencils of iterators allow a
simple implementation of algorithms for the HRLE data structure.

3.3. Sparse field implementation

After each time integration step the level set function has to
be rebuilt, because due to the movement of the surface, some ac-
tive grid points become inactive and vice versa. Therefore, also the
layers of defined grid points have to be altered accordingly. Since
arrays are used for storing the data structure, it is inefficient to
adapt the data structure by inserting and deleting grid points. In-
stead, we construct a new level set data structure on-the-fly, by
iterating over the existing data structure and inserting defined grid
points at the end. Thus, the whole data structure is setup from
new. Actually, each time step the level set data structure is recon-
structed several times. In the following we describe the procedure,
which realizes the sparse field level set method using the HRLE
data structure with linear complexity.

3.3.1. Time integration
First the level set values of all active grid points are changed

according to the applied time integration scheme. A stencil of it-
erators as previously described is used to enable the calculation
of finite differences. A first iteration is necessary to determine the
maximum possible time step fulfilling (8). During a second itera-
tion the level set values of active grid points are updated in time
and inserted into a new level set data structure. All other defined
grid points are skipped. However, the signs of all non-active points,
which do not change during the time integration step due to (9),
are maintained and stored in the HRLE data structure.

3.3.2. Pruning and consistency check
As previously mentioned a pruning procedure is necessary to

avoid dense sets of active grid points. Again, a stencil of itera-
tors, like that for first order differences, is used and moved over
the data structure, which is then constructed from new again. The
whole stencil stops whenever the central iterator reaches a defined
grid point. Grid points are skipped, which do not have a neighbor
with opposite signed level set value. The level set values of all
other grid points are transfered to the new level set data structure.
However, before inserting they are checked, if their level set val-
ues are greater than 1

2 , while that of one neighbor grid point is
less than − 1

2 or vice versa. If this is the case, the prerequisite of
the sparse field level set method (10) is violated. To guarantee the
robustness of the algorithm the level set value must be reduced to
± 1

2 (while keeping its sign) before insertion into the new level set
data structure.

3.3.3. Dilation
Finally, the set of defined grid points has to be dilated using

the update scheme (6). Again a stencil of iterators is moved over
the structure simultaneously. However, this time the iterator stops
whenever any iterator of the stencil reaches a defined grid point.
If the position of the central iterator is a defined grid point, it is
passed unchanged to the new data structure. Otherwise, the level
set value is first determined using the update scheme (6). Depend-
ing on how many layers of defined grid points are needed for
the next time integration step this task has to be repeated sev-
eral times.

For example, if second order approximations of the gradient are
necessary, the explicit level set values of all grid points in layers
L0, L±1, and L±2 are required. Due to (7) it is sufficient to treat
all points with absolute values less than or equal to 5

2 . For this
dilation three cycles are necessary. During the first, second, and
third cycle all grid points with absolute level set values less or
equal to 1

2 , 3
2 , and 5

2 are added, respectively. Due to (4) and due
to (9) it is also possible to expand the level set structure up to
absolute level set values of 1 during the first cycle. However, then
still 2 more iterations are needed to expand the structure up to 5

2 .
The performance is improved, if defined grid points are added as
late as possible to speed up the successive iterations.

Furthermore, the pruning and consistency check as described in
the previous section can be included during the first dilation cycle
to accelerate the algorithm.

3.4. Boolean operations

The intersection or union of regions enclosed by two level set
functions can be expressed as the maximum or minimum of both
functions [15,16], if the sign convention (2) is used. These oper-
ations are useful for more general topography simulations, where
consecutive process steps, like etching and/or deposition processes,
should be simulated or several materials are involved.

If single iterators for each level set function are used and simul-
taneously moved over both HRLE data structures, while stopping
at each defined grid point, a linear complexity O(Na + Nb) can be
obtained for these operations. Here Na and Nb are the number of
defined grid points of both level set functions.

Boolean operations can again result in inefficient sets of active
grid points in terms of the sparse field level set method. Therefore,
we apply the previously described pruning procedure after each
boolean operation.

3.5. Unidirectional visibility test

For processes with unidirectional fluxes the HRLE data struc-
ture can be used for a very efficient visibility test. To determine
the surface velocities, we have to distinguish for all active grid
points, whether its surface velocity is affected by the directional
flux. If this is the case, the point is called visible. We assume that
the flux is in positive i-direction (x-direction). Then, an active grid
point with indices (i, j,k) is visible, if the level set values of all
grid points in {(i′, j,k): i′ < i} are greater than or equal to that of
grid point (i, j,k). Hereby, the level set values of undefined grid
points are assumed to be ±∞. Fig. 6 illustrates by means of an
example which active grid points are visible. Taking advantage of
the lexicographical ordering with reversed significance, it is suffi-
cient to iterate once over the HRLE data structure to determine the
visibilities for all active grid points. Hence, this visibility test is of
optimal complexity O(N), where N again denotes the number of
defined grid points, which is proportional to the surface size.

If a grid point is visible, the local flux can be determined by

F (�p) = Fsrc · max
(
0,−nx(�p)

)
, (13)

where Fsrc denotes the incident flux from the source, and nx is the
component in i-direction (x-direction) of the normal vector calcu-
lated by

�n(�p) = (
nx(�p),ny(�p),nz(�p)

) = ∇Φ(�p)

‖∇Φ(�p)‖ . (14)

The local fluxes can then be used to calculate the surface velocities
for the active grid points.

3.6. Surface extraction

To visualize a surface represented by the HRLE level set data
structure we use the marching cubes algorithm [17]. This algorithm
is realized with a cell-shaped stencil of 8 iterators. This group of
iterators is moved in parallel over the data structure. Whenever, at

O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250 1247
Fig. 6. The surface S and its HRLE representation are shown. In this example, the
level set values are only defined for the active grid points. Positive and negative
runs of undefined grid points (gray) are assumed to have level set values +∞ and
−∞, respectively. The unfilled grid points fulfill the visibility criterion.

least one iterator reaches the position of an active grid point, the
current grid cell is processed by the marching cubes algorithm. The
result of this approach is a fast surface extraction method.

4. Multiple level sets

Sometimes topography simulations require the treatment of dif-
ferent materials. Especially, etch processes require the distinction
of different material regions, as for example mask and substrate,
where different etch rates have to be applied. Hence, the geometric
information of material regions is necessary during time evolution.
Usually the initial geometry is given as triangulated mesh, where
each element is assigned to a certain material. In case of etch-
ing, this irregular grid has to be accessed many times to query
the material region of surface points in order to calculate the cor-
rect surface velocities. Therefore, if search trees are used, where
the queries are of logarithmic complexity, a non-linear algorithm
for time evolution can be expected. If consecutive deposition and
etching processes have to be simulated, as for example in Bosch
processes, a costly and challenging modification of the irregular
mesh is necessary after each process step.

Instead of using an irregular grid for the material regions and a
regular grid for the level set function simultaneously, we propose
to use multiple level set functions. The initial geometric informa-
tion is simply mapped from the irregular to the regular grid by
means of additional level set functions. In the following we de-
scribe a multi-level-set technique using the sparse field level set
method and the HRLE data structure. With the ability to resolve
the material dependent surface velocities with sub-time-step ac-
curacy, a more accurate final profile is obtained, especially in the
presence of thin layers or large etch rate ratios.

4.1. Level set representation

For our considerations we assume that the whole structure M
is composed of K disjoint material regions Mk

M =
K⋃

Mk and Mk ∩ Ml = ∅ for all k �= l. (15)

k=1
Fig. 7. A geometry consisting of 3 different material and its representation by 3
level set functions. The zero level set of Φ3 corresponds to the surface. Φ2 and Φ1

describe the interfaces M3/M2 and M2/M1, respectively.

There are several possibilities to represent the different material
regions by level set functions. One way is to describe each material
region Mk by one enclosing level set function Φk [18]

Φk(�x) � 0 ⇔ �x ∈ Mk. (16)

However, with this representation very thin layers with thicknesses
smaller than one grid spacing cannot be resolved, as needed for
example to describe thin passivation layers in etching processes. If
the passivation layer becomes thinner than the grid spacing, it can
vanish abruptly, and the etching of the underlying material would
start too early. This can lead to significant errors, especially for
large etch rate ratios. To circumvent this problem, we describe a
stack of materials M1, M2, . . . , M K , where M1 denotes the sub-
strate, by choosing K level set functions in such a way that

Φk(�x) � 0 ⇔ �x ∈
k⋃

i=1

Mi (17)

as demonstrated in Fig. 7. Hence, the level set function ΦK de-
scribes the surface of the whole structure, while the other level
set functions represent interfaces. We assume that these level set
functions fulfill the inequality

Φ1(�x) � Φ2(�x) � · · · � ΦK (�x). (18)

This is the case if they are initialized as distance functions. The
number of the material on the surface S can be obtained by

m(�x ∈ S) = min
{

1 � k � K : Φk(�x) = 0
}
. (19)

4.2. Time evolution

To calculate the time evolution of the surface, we have to take
the different material regions into account. First, we move the sur-
face accordingly to the materials which are on top and which can
be obtained from (19). Hereby, we define that a deposition process,
which is characterized by positive surface velocities, always in-
creases the thickness of material K . If a new material K +1 should
be deposited instead, simply a new level set function ΦK+1(�x) is
added and initialized with ΦK+1(�x) = ΦK (�x).

For etching the surface velocities are negative, and the etch
rates of the different materials have to be incorporated during the
time evolution of the surface. It is sufficient to update the top most

1248 O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250
level set function ΦK in time and to adjust all other level set func-
tions according to the Boolean operation

Φ
(t+�t)
k (�x) = max

(
Φ

(t)
k (�x),Φ(t+�t)

K (�x)). (20)

This adaption rule, which also maintains relation (18), is even
more general, since it is not restricted to pure etching processes,
where the surface velocities are all negative. It is also valid for
pure deposition processes and etching processes with simultane-
ous (re-)deposition of one material type.

There is still the open question, how to change ΦK under con-
sideration of the different material regions. Common approaches
use one single velocity field which is set up in dependence on
the material types on the surface [15]. These velocities are used
during the whole time integration step. Thus, if another material
region is reached, the surface is moved with the wrong velocity.
This is especially a problem, if the surface velocities are very dif-
ferent, which is for example the case in presence of masks or etch
stop layers.

Our method takes changing velocities with sub-time-step accu-
racy into account. To explain our approach we define K different
velocity fields Vk(�x) (1 � k � K), for each material type one. Vk(�x)
is the velocity field which would be obtained, if the material type
k is on the whole surface, thus m(�x) = k for all �x ∈ S . Many mod-
els used in topography simulations use the pseudo-steady state
assumption, that the geometry changes slower than the solution
of the governing transport equations [19]. Therefore, the solution
mainly depends on the current surface profile, which allows an in-
dependent determination of the surface velocity fields Vk(�x) for all
material types k.

Due to our restriction that only the material type K of the top
level region M K can be deposited, the surface velocity fields obey

Vk(�x) ∈ R
−
0 for 1 � k < K ,

V K (�x) ∈ R. (21)

For the time evolution of ΦK we apply for each individual active
grid point �p ∈ L(K)

0 the following update rule:

Φ
(t+�t)
K (�p) = Φ

(t)
K (�p) −

K∑
k=1

�tk(�p) · Ĥ
(

Vk,Φ
(t)
K , �p)

. (22)

Here Ĥ(Vk,Φ
(t)
K , �p) is the numerical approximation for Vk(�p)×

‖∇Φ
(t)
K (�p)‖ and depends on the applied finite differencing scheme

[15,20]. �tk(�p) denotes the time for which the surface velocity
Vk(�p) is used during time integration. These times can be approx-
imated for a given time integration step �t by

�tk(�p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φ
(t)
k (�p)−Φ

(t)
k−1(�p)

Ĥ(Vk,Φ
(t)
K ,�p)

if k > k′(�p),

�t − ∑K
l=k+1 �tl(�p) if k = k′(�p),

0 if k < k′(�p).

(23)

For each active grid point �p the material number k′(�p) is chosen
to be the smallest number (1 � k′(�p) � K) for which all �tk(�p) are
non-negative. If V K (�p) is positive, k′(�p) is always set to K . k′(�p)

can be interpreted as the material type which is locally on the
surface after the time integration step.

It should be noted that it is not necessary to evaluate each
velocity field Vk at all active grid points �p ∈ L(K)

0 . For an active
grid point �p it is sufficient to calculate Vk(�p) for k′(�p) � k � K .
Vk(�p) with k < K is also not relevant if Φ

(t)
k (�p) = Φ

(t)
k−1(�p). More-

over, if V K (�x) is never positive, due to the applied model, then
also the determination of V K (�p) can be skipped in the case of
Φ

(t)
K (�p) = Φ

(t)
K−1(�p). Hence, for a certain active grid point only the
local surface velocities for those materials have to be determined,
which are actually involved during the time step.

The time integration step �t is chosen in such a way that the
CFL condition (8) is fulfilled for ΦK

max
�p∈L(K)

0

∣∣Φ(t+�t)
K (�p) − Φ

(t)
K (�p)

∣∣ = �ΦCFL. (24)

Due to the limitation of �ΦCFL (9) it is sufficient for the solu-
tion of (23) to store only level set values up to an absolute value
of 1 within the HRLE data structures for the level set functions
Φ1,Φ2, . . . ,ΦK−1. Undefined grid points are assumed to have level
set values +∞ or −∞ depending on their signs.

The multi-level-set method is realized using the HRLE data
structure by adapting the time integration procedure as de-
scribed in Section 3.3.1. While iterating over the surface level
set function ΦK using a stencil of iterators enabling the calcu-
lation of the derivatives of ΦK , K − 1 additional single iterators
are simultaneously moved over the level set representations of
Φ1,Φ2, . . . ,ΦK−1, stopping at each active grid point in L(K)

0 . These
iterators allow the access to the level set values as needed in (23).

5. Examples

For all examples presented in the following we use the sec-
ond order upwind differencing Engquist–Osher scheme for time
integration [15,20]. Therefore, the level set data structure for the
surface level set function is always dilated up to all grid points
with level set values less or equal 5

2 . For the CFL condition we
chose �ΦCFL = 0.1. All simulations were performed on an AMD
Opteron 2222 processor (3 GHz).

5.1. Isotropic deposition

To demonstrate the capabilities of the sparse field level set
method in combination with the HRLE data structure we simulated
a conformal deposition process. The surface velocity was set to a
constant value. The process was applied to a test structure resolved
on various grids with lateral extensions 500 × 500, 1000 × 1000
(Fig. 8), 1500 × 1500, 2000 × 2000, 2500 × 2500, and 3000 × 3000

Fig. 8. A conformal deposition process on a test structure (black) resolved on a grid
1000 × 1000. The deposited layer (gray) has a thickness of 45 grid spacings.

O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250 1249
Table 1
Performance characteristics of the sparse field level set method using the HRLE data structure. Perfect linear scaling of calculation time and memory consumption with
surface size can be observed.

Lateral grid resolution 500 × 500 1000 × 1000 1500 × 1500 2000 × 2000 2500 × 2500 3000 × 3000

Calculation time per time step 4.03 s 15.7 s 36.3 s 64.5 s 101 s 147 s
Used memory 35.3 MB 142 MB 320 MB 569 MB 890 MB 1.25 GB
Number of defined points 3.88M 15.6M 35.2M 62.6M 97.9M 141M
Number of active points 783k 3.14M 7.06M 12.5M 19.6M 28.2M
Fig. 9. The initial geometry on which a unidirectional etching process is applied. The
geometry is resolved on a grid with lateral dimensions 1500 × 1500.

to proof the linear scaling. Hereby we used reflective boundary
conditions for the lateral grid directions and infinite boundaries for
the vertical direction. In Table 1 the calculation times for one time
step are given. Additionally the memory consumption for the HRLE
data structure, together with its number of defined and active grid
points are listed. Since we use a second order space differencing
scheme for time integration, which requires 2 additional layers of
defined grid points at the positive and the negative side, respec-
tively, the number of defined grid points is roughly 5 times the
number of defined grid points. For storing the defined level set
values we use 8 byte floating point numbers.

It should be noted that the HRLE data structure allocates more
memory than listed, since our implementation bases on the STL
vector [14], which uses more memory to obtain a constant com-
plexity for back insertions. Furthermore, twice the memory is
needed during the rebuilding procedure, where the old and the
new data structures have to be kept in parallel. Nevertheless, the
savings in memory requirements are significant. For example, the
memory requirements for storing the level set values for all points
of a grid with dimensions 2000×3000×3000 are 134 GB, whereas
using HRLE only 1.25 GB are necessary.

5.2. Unidirectional etching

The visibility check is demonstrated on a perfect unidirectional
etching process. The geometry is shown in Fig. 9 and resolved on
a grid with lateral dimensions 1500 × 1500. The etching rate is set
proportional to the incoming flux (13). Fig. 10 shows the final pro-
file after etching away a layer of 300 grid spacings. The calculation
time per time step varies from 33 s down to 24 s due to the de-
creasing surface size.

5.3. Isotropic etching

To test the multi-level set method for the description of differ-
ent materials we simulate an isotropic etching process. The model
Fig. 10. The profile after exposure to an unidirectional etching process. A layer of
300 grid spacings was removed. The screening of flux is incorporated correctly.

Fig. 11. The test structure with different material regions used for the isotropic etch-
ing simulation. Three layers are on top of the substrate (black), with thicknesses 0.5
(dark gray), 50 (light gray), and 50 grid spacings (white). Since the first layer is very
thin, it cannot be seen clearly.

shown in Fig. 11 consists of a stack of 4 different material regions.
3 layers with thicknesses 0.5, 50, and 50 grid spacings (mask) are
on top of the substrate. The structure is represented by 4 level
set function discretized on a regular grid with lateral extensions
500 × 125. For the simulation we use material specific constant
etch rates. Their values are, from top to bottom, 0.2/1/0.05/1 (grid
spacings per time unit). The profile after 90 time units is shown in
Fig. 12. The calculation time per time step is in the range of 0.9
and 1.2 s.

Our multi-level-set technique is able to describe the surface
evolution accurately, despite large etch rate ratios and the exis-
tence of a layer with thickness of less than one grid spacing.

1250 O. Ertl, S. Selberherr / Computer Physics Communications 180 (2009) 1242–1250
Fig. 12. The final profile after an isotropic etching process with material dependent
etch rates. The geometry is represented by 4 level set functions. Due to the thin
layer two level set functions (black) almost coincide.

6. Conclusion

We introduced the HRLE data structure to topography simula-
tions, and showed how it can be applied to obtain very efficient
algorithms, in terms of run time and memory consumption, in
combination with the sparse field level set method. The data struc-
ture is also convenient to determine the visibilities with optimal
complexity for unidirectional fluxes.

We also presented a multi-level-set method based on the HRLE
data structure and the sparse field level set method, which is able
to describe the surface evolution in the presence of different mate-
rial regions. Hereby, very thin layers and large variations in surface
velocities can be incorporated.

Since all presented methods have linear scaling laws in terms
of the surface size, they are very convenient for topography simu-
lations of large three-dimensional geometries.

References

[1] U.-H. Kwon, W.-J. Lee, Thin Solid Films 445 (2003) 80.
[2] R.E. Jewett, P.I. Hagouel, A.R. Neureuther, T. van Duzer, Polym. Eng. Sci. 17

(1977) 381.
[3] E. Strasser, S. Selberherr, IEEE T. Comput. Aid. D. 14 (1995) 1104.
[4] T. Smy, S.K. Dew, R.V. Joshi, J. Vac. Sci. Technol. A 19 (2001) 251.
[5] M. Fujinaga, N. Kotani, IEEE T. Electron. Dev. 44 (1997) 226.
[6] Z.F. Zhou, Q.A. Huang, W.H. Li, W. Lu, IEEE T. Comput. Aid. D. 26 (2007)

100.
[7] S. Osher, J.A. Sethian, J. Comput. Phys. 79 (1988) 12.
[8] D. Adalsteinsson, J.A. Sethian, J. Comput. Phys. 148 (1999) 2.
[9] D. Adalsteinsson, J.A. Sethian, J. Comput. Phys. 118 (1995) 269.

[10] R.T. Whitaker, Int. J. Comput. Vision 29 (1998) 203.
[11] B. Radjenović, S.J. Kim, J.K. Lee, in: Proc. 12th Int. Congress on Plasma Physics,

Nice, France, 2004.
[12] J. Strain, J. Comput. Phys. 151 (1999) 616.
[13] B. Houston, M.B. Nielsen, C. Batty, O. Nilsson, K. Museth, ACM Trans. Graph. 25

(2006) 151.
[14] B. Stroustrup, The C++ Programming Language, 3rd edition, Addison-Wesley,

2000.
[15] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Univ.

Press, 1999.
[16] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, The Visual Computer 11 (1995)

429.
[17] W.E. Lorensen, H.E. Cline, SIGGRAPH Comput. Graph. 21 (1987) 163.
[18] Z.-K. Hsiau, E. Kan, J. McVittie, R. Dutton, IEEE T. Electron. Dev. 44 (1997) 1375.
[19] T.S. Cale, G.B. Raupp, J. Vac. Sci. Technol. B 8 (1990) 1242.
[20] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer,

2003.

	A fast level set framework for large three-dimensional topography simulations
	Introduction
	Sparse field level set method
	Sets of active grid points
	Initialization

	Hierarchical run-length encoding
	Setup of data structure
	Data access
	Sparse field implementation
	Time integration
	Pruning and consistency check
	Dilation

	Boolean operations
	Unidirectional visibility test
	Surface extraction

	Multiple level sets
	Level set representation
	Time evolution

	Examples
	Isotropic deposition
	Unidirectional etching
	Isotropic etching

	Conclusion
	References

