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Charge trapping at oxide defects fundamentally affects the reliability of MOS transistors. In particular,
charge trapping has long been made responsible for random telegraph and 1/f noise. Recently, it has been
identified as a significant contributor to bias temperature instabilities. Conventional defect models
assume that the defect has two states, one of them neutral and the other charged. The transition rates
between the two states are calculated using some extended Shockley–Read–Hall theory, which neglects
the configurational changes occurring at the defect site following a charge trapping or emission event. In
order to capture these changes, multiphonon models have been in use for many decades but have not
found their way into the mainstream of reliability modeling yet. Furthermore, recent experimental
results demonstrate that defects have more states than the two assumed in the conventional model.
These additional states together with multiphonon charge transfer mechanisms are essential for the
understanding of the complex defect dynamics. The present review summarizes the basic principles of
how to model stochastic defect transitions with a particular focus on multi-state defects. After discussing
the limitations of Shockley–Read–Hall theory, the relatively simple semiclassical approximation of mul-
tiphonon theory is introduced which already provides a much better description. Finally, the transition
rates for multi-state defects are estimated using multiphonon theory, which gives a very accurate
description of the latest experimental data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The non-ideal behavior of metal–oxide–semiconductor field
effect transistors (MOSFETs) is essentially determined by defects
at the semiconductor–insulator interface as well as inside the insu-
lating oxide. Since their detailed microscopic nature is still contro-
versial, a phenomenological classification into interface states (fast
states), border states (slow states), and oxide states (fixed oxide
charge, anomalous positive charge, etc.) is often employed [1,2].
While the fast interface states are commonly attributed to Pb0

and Pb1 centers, which are trivalent silicon dangling bonds at the
SiO2/Si interface, opinion is divided on border states. Similarly to
interface states, these border states also communicate with the
underlying silicon channel by exchanging charge carriers, albeit
on larger time scales. In the simplest theory, the transition rates
decrease exponentially with the distance of the defect from the
interface. However, given the ultrathin dielectrics employed in
modern silicon technology, this decrease is not significant enough
to prevent defects from capturing a charge at any position inside
the oxide, quite in contrast to technologies with thick oxides. As
such, in modern CMOS transistors every defect inside the oxide
ll rights reserved.
must be considered a potential border state, particularly if also
the interaction with the gate is considered.

Border states are often associated with E0 centers (trivalent sil-
icon dangling bonds in the oxide) [5,6], but have also been related
to hydrogenic defects [7,8]. Border states are commonly considered
the cause of random telegraph and 1/f noise [9]. In addition, due to
their wide distribution of time constants, they have been suspected
to cause slow drifts in crucial transistor parameters such as the
threshold voltage in a phenomenon that has become known as
the bias temperature instability (BTI) [10–14]. While in pMOSFETs
the most relevant form is the negative bias temperature instability
(NBTI), which is observed under larger negative gate voltages, in
nMOSFETs employing high-k oxides the positive bias temperature
instability (PBTI) is of high technological interest [15–17].

The most popularized explanation for BTI invokes an interfacial
Si–H breakage process which for longer stress time is controlled by
the diffusion of the released hydrogen inside the oxide [10,18–20].
This reaction–diffusion model has received a lot of criticism
recently as it is unable to explain a variety of experimentally
observed features [21–26,13,27–30]. In contrast, application of
theoretical RTN models to BTI analysis already leads to a significant
improvement in the model quality [31,13]. The idea behind this
concept is schematically shown in Fig. 1: under stationary
conditions, defects randomly exchange charge with the substrate,

http://dx.doi.org/10.1016/j.microrel.2011.09.002
mailto:grasser@iue.tuwien.ac.at
http://dx.doi.org/10.1016/j.microrel.2011.09.002
http://www.sciencedirect.com/science/journal/00262714
http://www.elsevier.com/locate/microrel


0 200 400 600 800 1000
Time  [s]

Sum

#11

#10

  #8

  #4

  #3

+

0

Equilibrium: RTN

VG = -0.5V

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Charging Time  [s]

Non-Equilibrium: Charging

VG = -1.8V

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

Discharging Time  [s]

Equilibrium
RTN

Non-Equilibrium: Discharging

VG = -0.5V

Fig. 1. Comparison of charge capture and emission events under stationary RTN conditions (left) with the synchronized capture and emission events during the BTI (middle
and right). For clarity, only five of the thirteen defects of the example pMOS studied in Refs. [3,4] are used. Their stochastic behavior was simulated using real parameters
extracted by the time-dependent defect spectroscopy (TDDS) at 175 �C. Left: Close to the threshold voltage (VG = �0.5 V), the RTN is dominated by defect #3 with the
occasional contribution from defect #4 and #8. Defects #10 and #11 have larger time constants (400 ks and 1.5 Ms) and remain neutral within the experimental window.
Middle: Application of the charging voltage (VG = �1.8 V) results in a non-equilibrium response of the defects which are assumed to be initially discharged. Due to the strong
field dependence of �sc, the defects become predominantly positively charged. For larger charging times (ts J �sc), the RTN produced by each defect is visible on the logarithmic
scale. Right: Following the perturbing charging step, defects with �sc K ts are likely to be synchronized in their charged states. A switch back to a lower voltage again results in
a non-equilibrium response until equilibrium is reached after the longest decorrelation time due to defect #11. Each discrete step in the transient is due to the emission of a
single hole, following its emission time constant. At the end of the recovery trace, equilibrium RTN is observed again.
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Fig. 2. Typical experimental RTN signal, recorded on a 2.2 nm pMOSFET biased
around the threshold voltage.
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leading to RTN and 1/f noise. During stress, the bias is switched to a
larger value and the capture time constants of the defects become
much smaller due to their strong bias-dependence. As a conse-
quence, defects with smaller capture than emission times will be
preferentially in their charged states. Given the wide distribution
of the time constants, these transitions to the charged states will
occur at different times for each defect. Summing up the individual
transitions results in what is conventionally observed as BTI degra-
dation. When the gate bias is switched back to the pre-stress value,
the defects return to their pre-stress occupancy, visible as the ubiq-
uitous BTI relaxation transients [32]. In that context it is interest-
ing to remark that a considerable number of publications exist
which show that during bias temperature stress defects with long-
er recovery time constants are activated [21,33,34]. As such, these
defects do not return to their pre-stress occupancy within a rea-
sonable measurement time when the stress is removed and appear
as a permanent component [35,21,22,33,36–39,34]. Unfortunately,
the microscopic nature of this permanent component is still
unclear [40,41,28,29,42,34]. Still, in typical experimental windows,
starting from the microsecond regime up to weeks, both degrada-
tion as well as recovery seem to be dominated by border states
[34].

From a theoretical point of view, the transition rates between the
two defect states are conventionally modeled using a standard
Shockley–Read–Hall model (SRH) [43,44]. While the fast interface
states appear to be compatible with SRH theory, it is difficult to
make more precise statements, since their response to external
stimulus occurs faster than can be directly measured. For example,
these states impact the subthreshold slope of MOS transistors, as
their occupancy can quickly follow changes in the gate bias. Indirect
evidence for the correctness of SRH theory is available in the agree-
ment of experiment and theoretical prediction seen in charge-
pumping measurements [45]. In contrast, the behavior of border
states is more complicated. Initial modeling attempts tried to de-
scribe the wide distribution of capture and emission time constants
of these border states in the spirit of the SRH model. The assumption
was that SRH theory is essentially valid when the spatial separation
of the defect and the channel is considered by an additional tunnel-
ing term [46]. However, it has long been understood that charge
exchange between border states and the channel occurs via a
multiphonon rather than an elastic tunneling process and that the
large time constants are not primarily due to the spatial depth of
the defect but rather due to its thermal barrier upon charge capture
[47–50]. One reflection of this fact is that the field-dependence of
both the capture as well as the emission time constant cannot be
properly explained by a tunneling process through a barrier which
is only a few electron-volts high and about a nanometer thick [48].
Similar considerations hold for the temperature activation of the
time constants as well as the fact that experimental time constants
are much larger than can be otherwise explained in ultrathin mod-
ern gate stacks [51].

Conventional defect models assume that the defect can exist in
two states, one of them charged and the other neutral. For instance,
in an RTN experiment the drain current would switch between two
discrete current levels, with the transition times being exponen-
tially distributed, consistent with a two-state Markov process
[50], see for example Fig. 2. However, deviations from this simple
first-order model have been observed occasionally: a particularly
intriguing example was described by Uren et al. [52] who noticed
that a conventional random telegraph signal appeared to be mod-
ulated by another, much slower signal. This modulation resulted in
a complete disappearance of the RTN for statistically distributed
times. Uren et al. concluded that this anomalous RTN could be best
described by a defect having an additional metastable state.
They estimated as a lower bound that about 4% of the defects
would fall into this category. Naturally, this estimated percentage
is likely to be too low [52], as for a defect to be observable as
anomalous RTN, both the time-constants leading to RTN as well
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Fig. 3. State transition rate diagram for a simple two-state defect.
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as the time-constants leading to the disappearance and re-appear-
ance of the defects must fall into the experimental window. Conse-
quently, even if a defect falls produces anomalous RTN, it will likely
appear as either a normal defect or even go completely unnoticed
in a standard RTN experiment.

Recent experimental and theoretical results strongly suggest
that such metastable defect states are the norm rather than the
exception [3,4]. The impact of these states can be observed in var-
ious ways: First, inclusion of metastable transition states appears
essential for an accurate description of the bias-dependence of
the capture and emission time constants [4]. Second, they can cre-
ate anomalous RTN as observed by Uren et al. [52] previously.
Third, a stimulated variant of anomalous RTN has been recently
observed following NBTI stress, called temporary RTN. And finally,
defects can disappear and re-appear for stochastic amounts of
time, also on very large timescales (months). All these results im-
ply that transitions to or via metastable states occur on a wide
range of timescale, fast for the bias-dependence, in the seconds
regime for anomalous RTN, and in the very slow regime for disap-
pearing defects. As such, the width of the distribution of time con-
stants is comparable to the width of the distribution of the ‘normal’
capture and emission time constants and should therefore be an
essential aspect of any defect model.

The following is an attempt at reviewing the present under-
standing of two- and multi-state defect dynamics. Starting with
the conventional Markov theory for a two-state defect, the formal-
ism is applied to multi-state defects. Then, experimental evidence
is summarized, showing the bias- and temperature-dependence of
the defects and some examples of ‘anomalous’ (multi-state) defect
behavior. An essential part is the understanding of the capture and
emission time constants, which do not follow SRH theory. In order
to improve on the situation, multiphonon theory is summarized.
Since from an application point of view the classical limit of mul-
tiphonon theory appears sufficient, the discussion is restricted to
this limit, which results in rather compact and intuitive expres-
sions. Finally, multiphonon theory is used to calculate the transi-
tion rates of multi-state defects, which eventually leads to
excellent agreement with experimental data.
2. Stochastic defect modeling

Irrespective of the physical mechanism invoked to describe the
actual capture and emission processes, most models assume that
the defect can exist in two states, one neutral and the other
charged. One speaks of donor-like defects when they can become
positively charged and of acceptor-like defects when they can
become negatively charged. Interface states, on the other hand,
are typically amphotheric, meaning they have three states: posi-
tive, neutral, and negative. Furthermore, a defect may have meta-
stable states. Metastable states are states which are not occupied
under equilibrium conditions but impact the dynamic defect
behavior, for instance during charging or discharging. Transitions
to metastable states may occur without any change in the charge
state. For instance, a defect may have an alternative (metastable)
singly charged state which can be either reached from the neutral
or from the ‘normal’ charged state. Transitions to the metastable
state involve a different set of transition rates. As such, these meta-
stable states result in a more complicated defect behavior com-
pared to a simple two-state defect, which is sometimes referred
to as anomalous [52].

In most cases, the stochastic transitions between the states can
be described by a Markov process. Markov processes are widely
used in many fields of science and a correspondingly wide range
of literature is available [53,54]. The essence of a Markov process
is that it is memory-less. In our context this means that the next
transition depends solely on the current state, irrespective of
how the defect got into the current state.

2.1. Two-state defects

We start our discussion with a simple two-state defect model.
There, the defect has to be in one of its two states, which we shall
call 1 and 2, see Fig. 3. For the sake of clarity lets assume that the
defect is electrically neutral in state 1 and charged in state 2. Note
that the actual charge state becomes relevant only when physical
models for the transition rates are derived, see Section 5. The occu-
pancies of each state are given by Xi(t), with Xi(t) = 1 when the
defect is in state i, and Xi(t) = 0 otherwise. In contrast to the occu-
pation probability introduced below, only integer values 0 and 1
are allowed for defect occupancies, meaning that the defect has
to be in a well-defined state at any time. Since the defect can only
be in one of its two states, we have X1(t) + X2(t) = 1 at all times.

In order to derive the transition probabilities for a Markov pro-
cess, we assume that the defect is in state i at time t. The probabil-
ity for a transition to state j within the next infinitesimally small
time interval h is given by the transition rate kij, which is a proba-
bility per unit time. For instance, the conditional probability that
during the time interval h a transition from state 1 to state 2
occurs, given that the defect is already in state 1 at time t, is writ-
ten as

PfX2ðt þ hÞ ¼ 1jX1ðtÞ ¼ 1g ¼ k12hþ OðhÞ; ð1Þ

with limh?0O(h)/h = 0. Conversely, the probability that within h no
transition from state 2 to state 1 occurs is given by

PfX2ðt þ hÞ ¼ 1jX2ðtÞ ¼ 1g ¼ 1� k21hþ OðhÞ: ð2Þ

In the following we assume h to be so small that all higher-order
terms represented by O(h) are negligible. Introducing the shorthand
pi(t) = P{Xi(t) = 1}, the probability that X2(t + h) equals 1 can thus be
written as

p2ðt þ hÞ ¼ PfX2ðt þ hÞ ¼ 1jX1ðtÞ ¼ 1gp1ðtÞ; ð3Þ
PfX2ðt þ hÞ ¼ 1jX2ðtÞ ¼ 1gp2ðtÞ; ð4Þ

since at time t the defect has to be in either of its two states. We can
now replace the conditional probabilities in (4) by the rates (1) and
(2) to obtain

p2ðt þ hÞ ¼ k12hp1ðtÞ þ ð1� k21hÞp2ðtÞ

which can be rearranged as

p2ðt þ hÞ � p2ðtÞ
h

¼ k12p1ðtÞ � k21p2ðtÞ:

Expressing p1(t) by 1 � p2(t) we obtain

dp2ðtÞ
dt

¼ k12ð1� p2ðtÞÞ � k21p2ðtÞ; ð5Þ

in the limit of infinitesimally small h. This is an ordinary differential
equation for p2(t) and has the solution

p2ðtÞ ¼ p2ð1Þ þ ðp2ð0Þ � p2ð1ÞÞe�t=s; ð6Þ

with

p2ð1Þ ¼
k12

k12 þ k21
and s ¼ 1

k12 þ k21
: ð7Þ
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Fig. 5. State transition rate diagram for the calculation of the first passage time
from state 1 to state 2, s12.
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Eq. (6) describes the probability of the defect being in state 2 as an
exponential transition from its initial value p2(0) to its final station-
ary value p2(1). Note that under stationary conditions dp2(t)/dt = 0,
meaning that the probability does no longer change with time. For
instance, with k12 = k21 the defect will have a 50% probability of
being in either of its states. As such, the defect keeps hopping back
and forth between its two states. Stationary conditions are reached
for times much larger than the time constant s, which is known as
the asymptotic decorrelation time [53]. The meaning of this is as
follows: at time t = 0 the defect is known to be in a state 2 with
probability p2(0). A short time Dt later, with Dt� s, the probability
p2(Dt) will still be close to p2(0). Only when Dt > s will p2(Dt) be
uncorrelated to the initial condition p2(0).

From (6) we can trivially calculate p1(t) = 1 � p2(t).

p1ðtÞ ¼ p1ð1Þ þ ðp1ð0Þ � p1ð1ÞÞe�t=s; ð8Þ

with

p1ð1Þ ¼ 1� p2ð1Þ ¼
k21

k12 þ k21
:

Together Eqs. (6) and (8) form what is known as a Master equation,
which fully describes our simple two-state defect. The solution of
the Master equation is shown Fig. 4 for a particular set of initial
conditions.

2.2. Capture and emission time constants

Lets assume that the defect is in state 1 at t = 0. It is interesting
to ask how long it will take for a transition to state 2 to occur. The
time we have to wait for such a transition is known as the first pas-
sage time from state 1 to state 2, s12. Since we start off in state 1
and wait for the first transition to state 2 to occur, s12 will be inde-
pendent of the backward rate k21. As a consequence, the defect
model of Fig. 3 can be simplified to the one given in Fig. 5. With
p1(0) = 1 and k21 = 0, the Master equation is even simpler, yielding
the result

p1ðtÞ ¼ expð�k12tÞ: ð9Þ

The above can be used to calculate s12, which is the time point
when the transition actually takes place. Obviously, s12 is a stochas-
tic variable, and we can calculate its probability density function
(p.d.f.) by considering the following: the probability that the defect
is already in state 2 at a certain time t is given by p2(t) = 1 � p1(t). In
0.80.40
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Fig. 4. The evolution of p1(t) and p2(t) starting from the (arbitrary) initial condition
p1(0) = 0.9 and p2(0) = 0.1. For t� s one obtains the stationary solution p1(1) = 0.1
and p2(1) = 0.9, which is reached regardless of the initial condition.
such a case we know that s12 must be smaller than t. As such we
obtain the probability function of the random variable s12 as

Pfs12 6 tg ¼ p2ðs12Þ ¼ 1� expð�k12s12Þ: ð10Þ

Thus, the p.d.f. is

gðs12Þ ¼
dp2ðs12Þ

ds12
¼ k12 expð�k12s12Þ; ð11Þ

meaning that s12 is exponentially distributed with parameter 1/k12.
Since in our example the defect has captured a hole in state 2, s12

corresponds to the capture time sc from a physical point of view.
We obtain the average capture time �sc as the expectation value of
the exponential distribution, which is obviously given by

�sc , Efscg ¼
Z 1

0
scgðscÞdsc ¼

1
k12

: ð12Þ

Similar arguments hold for the emission time, which describes the
first transition from state 2 to state 1 provided the defect was in
state 2 at t = 0, and one obtains �se ¼ 1=k21.

During the analysis of RTN, the times the defect spends in either
of its states is usually collected into histograms. By normalizing
these two histograms, exponential p.d.f.s are obtained which allow
for the extraction of �sc and �se [51]. Quite to the contrary, in the
recently suggested time-dependent defect spectroscopy (TDDS)
[3], BTI recovery traces are recorded on a logarithmic time scale,
see Fig. 1. As a much larger number of defects with widely different
emission times contribute to BTI, the use of a logarithmic scale is
required. When an exponentially distributed quantity is binned
into equidistant bins on a logarithmic axis, the shape of the p.d.f.
changes, as this corresponds to a transformation of the random
variable. So rather than considering the p.d.f. of s, we have to con-
sider the p.d.f. of h = log(s/s0), with s0 being a normalizing con-
stant. Starting from the definition of the expectation value for an
arbitrary function h(s), we obtain via a conventional variable trans-
formation from s to h

EfhðsÞg ¼
Z 1

0
hðsÞgðsÞds ¼

Z 1

�1
hðsðhÞÞgðsðhÞÞsðhÞdh

¼
Z 1

�1
hðsðhÞÞ~gðsðhÞÞdh; ð13Þ

where

~gðsÞ ¼ sgðsÞ ð14Þ

is the p.d.f. on a logarithmic scale. The corresponding logarithmic
p.d.f. of the exponential distribution (11) is thus

~gðsÞ ¼ s
�s

exp � s
�s

� �
; ð15Þ

and is shown Fig. 6. We will meet this distribution again during the
analysis of the spectral maps obtained by the TDDS, see Section 3.2.

2.3. Moments of the probability distribution

Stochastic processes are often characterized by their moments,
for instance the expectation value and variance. These moments
are straight-forward to calculate once the solution of the Master
equation is available. For instance, consider the occupancy of state
2, X2. We have seen previously that the probability of being in state
2 is p2, where we have X2 = 1. Analogously, the probability of not
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being in state 2 is given by 1 � p2 = p1, where we have X2 = 0. Con-
sequently, the expectation value of X2 is given by

EfX2ðtÞg ¼ 0� p1ðtÞ þ 1� p2ðtÞ ¼ p2ðtÞ: ð16Þ

The same result is obtained for all higher-order moments since we
only consider occupancies of 0 and 1. So in general we have for all
moments

EfXk
i ðtÞg ¼

X1

x¼0

xkPfXiðtÞ ¼ xg ¼ piðtÞ: ð17Þ

In particular, we are interested in the mean behavior, which we
shall call fi and which is given by

fiðtÞ ¼ EfXiðtÞg ¼ piðtÞ: ð18Þ

So in this simple example, the mean value equals the probability of
being in this particular state. Next, we calculate the variance of the
process which is simply

r2
i ðtÞ ¼ EfðXiðtÞ � fiðtÞÞ2g ¼ piðtÞ � p2

i ðtÞ: ð19Þ

Under stationary conditions, which are commonly assumed in RTN
analysis, the mean and variance are

f2ð1Þ ¼
k12

k12 þ k21
; r2

2ð1Þ ¼
k12k21

ðk12 þ k21Þ2
: ð20Þ

By introducing the ratio of the transition rates r = k21/k12, the mean
and variance can be written as

f1 ¼
r

1þ r
; f 2 ¼

1
1þ r

; r2 ¼ r2
1 ¼ r2

2 ¼
r

ð1þ rÞ2
;

which is shown in Fig. 7. Note that r = r1 = r2 holds for all values of
r. As can be seen, the standard deviation has a maximum of r = 0.5
when r = 1, that is, k12 = k21. Intuitively, provided �sc ¼ 1=k12 falls
within the experimental window, the case r � 1 provides the opti-
mal condition for the analysis of RTN, since there the number of
transitions between the states is maximized. Unfortunately, such
defects are the most annoying in applications as they produce a
maximum of noise. Conversely, consider the cases r ? 0 and
r ?1, for both of which we have r ? 0. While defects of this kind
seem to be favorable from an application point of view because they
presumably do not cause any dynamic interference with the circuit,
they are more difficult to analyze and understand. However, these
defects will go undetected in conventional RTN analysis but cause
device reliability issues as will be shown below.
An important issue to be discussed at length in Section 3 is that
the rates depend strongly on the applied bias. For example, the for-
ward rate k12 depends about exponentially on the oxide field. Thus,
under most bias conditions p2(1) will be either zero or one and the
variance thus zero. As a consequence, the defect can only be effi-
ciently analyzed in the rather narrow voltage and temperature
window where k12 � k21. Since the rates are distributed over a
wide range, most defects will go unnoticed in a stationary analysis,
as transitions are unlikely to occur.

As an example assume now the simple two-state defect of Fig. 3
with k12 = 1/9 s�1 and k21 = 1/1 s�1. Since the backward rate k21 is
larger than the forward rate k12, the defect can be expected to be
more likely in state 1. Since from (7) the asymptotic decorrelation
time is calculated as s = 0.9 s, we can expect the occupation prob-
ability to be f2(1) = 1/10 after a few seconds, irrespective of the
state the defect was in initially. Furthermore, the standard devia-
tion will be r2(1) = 3/10. A few simulated example realizations
of the Markov process together with the estimated mean and
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standard deviation are shown in Fig. 8. At this point it is worth-
while to remark that such Markov processes are extremely simple
to simulate, requiring a computer program of only a few lines of
code, see Ref. [55] for an excellent introduction. Next, lets assume
that at a different bias the forward rate decreases from k12 = 1/9 s�1

to k12 = 1/999 s�1. Under stationary conditions, the defect will then
practically always be in state 1, with occasional visits to state 2, see
Fig. 9, making it much more difficult to characterize.

2.4. Bias switches

We have seen so far that a defect can be most efficiently char-
acterized when both the capture and emission times fall well into
the experimental window and r is close to unity. In reality, this will
only be the case for a small number of defects when the transistor
is operated at a certain bias and temperature. By scanning a wider
bias and/or temperature range, a different set of defects will be ac-
tive owing to the strong bias-dependence of the time constants.
Thus, rather than passively waiting for the defects to spontane-
ously capture and emit a charge, a state change can be enforced
via an external bias switch.

Consider switches of the gate voltage from a low-level VL
G to a

high-level VH
G, where we assume VL

G

��� ��� < VH
G

��� ���. As the capture time

depends about exponentially on VG, there will be a certain number

of defects with r VL
G

� �
� 1 and r VH

G

� �
� 1. These defects are effec-

tively uncharged at VL
G and become charged at VH

G. At both VL
G and

VH
G one has r� 1/2, that is, these defects will not produce detect-

able RTN. However, this class of defects is responsible for BTI. In
particular, following the switch to the high-level, the defects be-
come charged and at one point during the charging process r will
take on its maximum value, r = 1/2. Conversely, following the
switch to the low-level, the defects become discharged and r will
again take on its maximum value during this transient.

As an example, assume that at time t = 0 s a defect with
k12 = 1/9 s�1 and k21 = 1/1 s�1 has been unperturbed for a time
much longer than s, meaning that the Markov process is stationary.
Under stationary conditions the expectation value will be indepen-
dent of time and, as shown before in Fig. 8, f2(0) = 1/10, while the
standard deviation will be r2(0) = 3/10. Then, at t = 0 s, the bias
conditions are changed, which is by way of example assumed to
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Fig. 9. Same as Fig. 8, but now with k12 = 1/999 s�1 and k21 = 1/1 s�1. Except for
occasional ‘bursts’, the defect is nearly always in state 1. Such a defect is much
harder to characterize than the one shown in Fig. 8.
make the forward rate 81 times larger, that is, k12 = 9/1 s�1.
According to (6), we expect an exponential transition from
f2(0) = 1/10 to f2(1) = 9/10, with a time constant of s = 0.1 s. Fol-
lowing the transition, the standard deviation will settle back to
r2(1) = 3/10 at the end of the transitionary phase. This is shown
in Fig. 10. Still, while f2(t) moves from 1/10 to 9/10, the standard
deviation will reach its maximum of 1/2 when f2(t) = 1/2.

The above result is generally valid: even for defects with
f2(0) � 0 and f2(1) � 1 and thus zero variance before and after
the bias change, the standard deviation will be maximal at some
point during the transition as shown in Fig. 11. These enforced
transitions thus provide a convenient opportunity for the charac-
terization of a much larger class of defects, see Fig. 12. It also forms
the backbone of the time-dependent defect spectroscopy (TDDS)
discussed in Section 3.2.

The switching experiment can be generalized to arbitrary
switching sequences, see Fig. 13. For example, the TDDS employs
a switch from VL

G to VH
G at t = t0 and back to VL

G at t = t1. Prior to
the switch we assume the Markov process to be stationary with
a certain probability of being in state 2, given by p2ðtÞ ¼ pL

2. Then,
during the stress or charging period (t0 < t < t1) we have from (6)

p2ðtÞ ¼ pH
2 þ pL

2 � pH
2

� �
e�ts=sc ; ð21Þ
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Fig. 10. At time t = 0 s, the transition rates of the defect are assumed to change
rapidly from 1/9 s�1 to 9/1 s�1. A zoomed-in version is shown at the bottom.
Following the switch, r briefly goes to 1/2 before returning to its stationary value of
3/10.
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where we introduced the stationary value of p2 at VH
G, pH

2 ¼ pH
2 ð1Þ,

which will be approached as time progresses. The relative time
scale is given by the stress time ts = t � t0.
When VG is switched back to VL
G at t = t1, we enter the relaxation

or discharging period and find

p2ðtÞ ¼ pL
2 þ Pc � pL

2

� �
e�tr=se ð22Þ

with Pc = p2(t1), the probability of the defect being in state 2 at t = t1,
and the discharge or relaxation time tr = t � t1. Note that the time
constant s is different at the low and high bias. For instance, at
high-bias we have with (7)

sc ¼ 1= kH
12 þ kH

21

� �
� 1=kH

12 ¼ �sc V H
G

� �
ð23Þ

which is usually dominated by the average capture time when
emission is negligible. Conversely, at low-bias we have

se ¼ 1= kL
12 þ kL

21

� �
� 1=kL

21 ¼ �se V L
G

� �
; ð24Þ

when capture is negligible. In general, however, particularly when
the capture and emission times are scanned over a wide bias range,
the full expression (23) and (24) have to be used [56].

2.5. Impact on the threshold voltage

So far we have summarized methods which can be used to
model the random transitions occurring between the various
defect states. The next question to answer is how the charge state
of the defect impacts the device behavior. It is normally assumed
that neutral defects do not interact with the remainder of the
device, while charged defects cause a shift in the threshold voltage
and degrade the mobility. In general, the impact on threshold volt-
age and mobility is detrimental, that is, reduces the drain current
delivered by the transistor. Only occasionally an improvement is
observed [57]. In the following we will restrict our discussion to
the impact of charged defects on the threshold voltage.

Usually, one differentiates between fast interface states and
slower border traps, both of which contribute to an effective area
density of charge located at the Si–SiO2 interface. Since the defects
randomly change their occupancy with time, the time-dependent
effective threshold voltage can be written as

V thðVG; tÞ ¼ V th0 �
Q itðV G; tÞ þ QoxðVG; tÞ

Cox
; ð25Þ

with Cox = �0�r/tox, the capacitance per area and tox the oxide thick-
ness. Since interface states have time constants in the sub-micro-
second regime, the transitions between their states cannot be
experimentally resolved. Rather, experiments record their average
occupancy, that is the expectation value of being in the charged
state given by f2. When the bias is changed, they respond rapidly
to changes in the Fermi-level, without detectable transients, so that
Qit(VG, t) can be written as Qit(VG). For instance, it is the change of
Qit(VG) with VG which causes a change of the subthreshold slope
compared to the ideal MOS transistor with Qit = 0.

Most border traps, on the other hand, are too slow to quickly
follow the bias change and will produce notable transients accord-
ing to (6). As such, for a single donor-like trap we can write

QoxðVG; tÞ ¼ q
1� x=tox

WL
gr f 2ðtÞ; ð26Þ

where f2(t) = p2(t) according to (21) and (22). The depth of the de-
fect into the oxide is x, the oxide thickness is tox, while W and L
are the channel width and length of the transistor. The above equa-
tion is derived from Gauss’ law under the simplifying assumption
that the charge of the defect is homogeneously spread across the
oxide, thereby forming a charge sheet [58]. This assumption is not
correct, since the real three-dimensional distortion of the potential
caused by the defect charge can lead to a considerably larger impact
on Vth [59]. In order to consider the deviation from the charge sheet
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approximation, we introduce the empirical parameter gr, which can
have values up to 10 [59–62]. Thus, the impact of a single defect on
Vth is given by

Q oxðVG; tÞ
Cox

¼ gf2ðtÞ; ð27Þ

with g = g0gr and the step height of the charge sheet approximation

g0 ¼ q
1� x=tox

WLCox
: ð28Þ

Prior to a bias switch, say at VL
G, the defect occupancy is station-

ary and will produce RTN. This RTN can sometimes be analyzed,
but most of the time it will be outside the experimental window.
Particularly when monitoring a large number of defects, the anal-
ysis of the complicated RTN is not possible. As such, we cannot eas-
ily record f L

2 , since it is already implicitly contained in the
‘unshifted/reference’ Vth. The shift in Vth is thus given as

�DV thðtÞ ¼ g f2ðtÞ � f L
2

� �
¼ gDf2ðtÞ:

Consequently, as the above is our reference value, we have
Df2(t) = 0 for t < t0. During stress (t > t0) we have with (21)

�DV thðtsÞ ¼ gað1� e�ts=sc Þ; ð29Þ

with a ¼ f H
2 � f L

2 . During recovery (t > t1) the defect will discharge
like (22) as

�DV thðts; trÞ ¼ gað1� e�ts=scÞe�tr=se : ð30Þ

Note that DVth is a stochastic quantity with the above giving its
expectation value. When recorded experimentally, DVth can be any-
thing between ga and zero, but when averaged over a large number
of experiments, (30) will be obtained, see Fig. 13.

2.6. Substitute circuit

In order to analyze the temporal behavior of the defect occupa-
tion probabilities, substitute circuits which formally result in the
same differential equation can be used [32]. For illustration pur-
poses we restrict ourselves to uncharged defects at t = 0 s which
fully charge as time progresses. Then, the temporal evolution of
the expectation value and variance are

f2ðtÞ ¼ 1� e�t=s and r2ðtÞ ¼ e�t=s � e�2t=s:

The maximum of the standard deviation is observed at about s, at
tmax = sln(2), where

f1ðtmaxÞ ¼ f2ðtmaxÞ ¼ rðtmaxÞ ¼ 1=2:

In other words, at that particular point during the transition where
f1 equals f2, the standard deviation always peaks at 1/2, see Fig. 14.

2.7. Multi-state defects

Experiments show that defects can have more than two states.
An example is given in Fig. 15, where a defect produces RTN fol-
lowing NBTI stress. This RTN is only temporary and stops after a
while, which is why it has been termed temporary RTN [3,4]. Such
temporary RTN can also occur spontaneously, without prior appli-
cation of a stress voltage, a phenomenon known as anomalous RTN
[52]. The logical explanation for both phenomena is the existence
of metastable states, which will be discussed now.

The previous discussion on two-state defects can be easily
generalized to a defect having N states. Let Xi(t) be the occupancies
of each state, with Xi(t) = 1 when the defect is in state i and Xi(t) = 0
otherwise. Since the defect can only be in one of its states, it
follows from

P
iXiðtÞ ¼ 1 that Xj(t) = 0 "j – i when Xi(t) = 1.
The conditional probabilities describing a transition within the
next infinitesimally time interval h are given by

PfXjðt þ hÞ ¼ 1jXiðtÞ ¼ 1g ¼ kijhþ OðhÞ;
PfXiðt þ hÞ ¼ 1jXiðtÞ ¼ 1g ¼ 1�

X
j–i

kijhþ OðhÞ:

Just as in the simple case of two defect states, the Master equation
describing the transitions is obtained by considering the limit h ? 0
as [63,53]

@piðtÞ
@t

¼ �piðtÞ
X
j–i

kij þ
X
j–i

kjipjðtÞ: ð31Þ

Note that due to
P

ipiðtÞ ¼ 1, only N � 1 equations are linearly
independent.

Although the analytic solution of the Master equation is in prin-
ciple straight-forward to obtain, it is somewhat lengthy and unin-
tuitive. The primary reason for that is that contrary to the simple
solution of the two-state defect, the mere addition of one single
state dramatically increases the complexity of the system behavior.
Also, the behavior of the system changes considerably depending
on the initial conditions and the choice of the transition rates.
However, since the relevant parameter range does not require us
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to explore the most general solution, we will restrict our discussion
to the most important cases observed experimentally.

We start with the multi-state defect as observed by Uren et al.
[52]: while studying RTN in nMOSFETs, they observed a defect
which produced regular RTN only for stochastic amounts of time.
These RTN periods were followed by periods where the defect re-
mained negatively charged. This behavior was termed anomalous
RTN and explained by the defect having one additional metastable
state. In order to model such a behavior, we consider a defect with
one additional metastable state attached to state 2, which we shall
denote by 20. In state 1 the defect is neutral, while both 2 and 20 are
negative. Since observable RTN requires a change in the charge
state of the defect, the rates between state 1 and 2 must be larger
than the rates between the state 2 and 20, see Fig. 17.

Similarly to the anomalous RTN defect in nMOS transistors, a
phenomenon termed temporary RTN has been recently observed
in pMOS transistors [3,4]: following a charging pulse, a defect
was activated which produced RTN for a limited amount of time
before the signal vanished. Such a phenomenon can be described
by a similar defect model, but this time state 2 is positively charged
while 10 and 1 are neutral. An example case is shown in Fig. 18,
where the defect is assumed to be in state 2 at t = 0 s. For the first
few seconds the defect switches back and forth between states and
2 and 10. Once the transition to state 1 is made, the defect remains
inactive for about 1=k110 � 106 s with the parameters given in
Fig. 15. Note that application of a stress bias increases k110 by many
orders of magnitude, thereby allowing for a transition to state 2
again.

2.8. First passage time for a three-state defect

While already a defect with three states can show rather compli-
cated behavior, a particular case is of fundamental importance:
most defects appear to be neutral at low bias conditions and
become charged at higher bias. This implies that at low bias the
neutral state is the equilibrium state while at high bias the rates
change in such a way that the charged state becomes the new equi-
librium state, see Fig. 19. In such a case the description of the tran-
sitions is considerably simplified and can often be approximated by
an ‘effective’ two-state defect, as will be outlined in the following.
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Fig. 19. Transition from the initial state 1 to the equilibrium state 2 via the
metastable transition state 20 . The dashed lines give three example traces while the
solid line is an average over 200 such traces.
We start by calculating the first passage time for a general
three-state defect such as shown in Fig. 16. The states have been
labeled A, B, and C and we determine the probability distribution
of the first passage from state A to state C. Since the backward rate
from state C to state B does not influence the first passage time, it
can be omitted in the analysis, see Fig. 20. The Master equation for
the problem is

dpA

dt
¼ �bpA þ apB;

dpB

dt
¼ bpA � apB � cpB;

dpC

dt
¼ cpB:
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In general, the Master equation of such multi-state defects is a first-
order linear ordinary differential equation system, which can be
solved using standard methods to find

pCðtÞ ¼ 1� 1
s2 � s1

ðs2e�s=s2 � s1e�s=s1 Þ; ð32Þ

with

s�1
1 ¼

1
2

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4bc
p� �

; ð33Þ

s�1
2 ¼

1
2

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4bc
p� �

: ð34Þ

and s = a + b + c. Retracing the derivation used to calculate the first
passage time for the two-state defect, we see that the probability
that the defect is not yet in state C is given by P{s < t} = pC(s). Thus,
the probability density function of the first passage time from state
A to state C of the three-state defect is

gðsÞ ¼ dpCðsÞ
ds

¼ e�s=s2 � e�s=s1

s2 � s1
: ð35Þ

This is the normalized difference between two exponential distribu-
tions, where the faster distribution with mean s1 ‘truncates’ the
slower distribution with mean s2 below s < s1. The expectation
value of s is simply

�s ¼ Efsg ¼
Z 1

0
sgðsÞds ¼ s1 þ s2 ¼

aþ bþ c
bc

: ð36Þ

For a = 0 (no back transition for B to A), the two auxiliary time con-
stants reduce to s1 = 1/b and s2 = 1/c. In such a case the first passage
time is simply given by the two sequential steps from A to B and
from B to C. Also, one can easily convince oneself that for large b
(rapid transition from A to B) and a = 0, (35) reduces to a simple
exponential distribution.

In general, however, we have s1 P 1/b and s2 P 1/c, that is, both
effective transition times are made larger by the back transition
from B to A.

Following (14), the p.d.f. transformed onto a logarithmic scale is
~gðsÞ ¼ sgðsÞ, which is shown in Fig. 21. As can be seen, for smaller
values of s1, the p.d.f. of the first passage time of the three-state
defect is very close to an exponential distribution with parameter
�s ¼ s1 þ s2. While the expectation value of the exponential distri-
bution is per construction exactly the same as that of the three-
state p.d.f., this is only approximately true for the higher-order
moments. This is because the first transition from A to B, although
assumed to be fast, imposes a lower limit on the fastest overall
transitions by reducing the density in the left tail of the probability
density. Still, for sufficiently small s1, it appears than an effective
two-state model can be constructed which represents this particu-
lar transition of the three-state defect reasonably well.

We now proceed to construct an effective two-state model of
the three-state defect for the important special case of a switch
from VL

G to VH
G and back, see Fig. 22. At VH

G, we are primarily con-
cerned with the transition from state 1 to state 2, where the latter
is assumed to be the equilibrium state at this bias. Under these
conditions, the first passage time is the average capture time which
is obtained from (36) as

�sc ¼
k201 þ k120 þ k202

k120 k202
: ð37Þ
Analogously, at VL
G, the transition of interest is from state 2 to state

1. Again, from (36) we now obtain the corresponding average emis-
sion time as

�se ¼
k202 þ k220 þ k201

k220 k201
: ð38Þ

Eqs. (37) and (38) will be used in Section 7 to understand the bias-
and temperature-dependence of the experimentally observed data.
3. Experimental

The theoretical concepts elaborated in the previous sections
will now be compared against experimental data. Discrete charg-
ing and discharging events can be observed in small-area transis-
tors, as there only a few defects are active. By carefully selecting
the bias conditions and stress time, a single defect can be charged
and discharged in a controlled manner. Starting from the experi-
mental observation of the stochastic charging/discharging tran-
sients of a single trap, we later proceed to the study of recovery
traces showing a handful of defects obtained from subjecting the
device to harsher stress conditions.
3.1. Single trap

A simple experimental validation of the stochastic nature of
charge capture and emission can been obtained by monitoring dis-
charging transients of a single defect in a pMOS [64–66,61]. Exper-
imentally, it is much easier to monitor the discharging rather than
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the charging transients with sufficient accuracy, because at lower
jVGj the impact of a single charge on ID is much larger [66].

The experiment proceeds as shown previously in Fig. 13: After a
charging period of duration ts at a higher gate voltage, VH

G, the gate
voltage is switched to a lower discharging voltage VL

G during which
the subsequent charge emission transient is recorded. The charg-
ing/discharging sequence is repeated N times until accurate statis-
tics have been gathered. A few selected recovery traces which
clearly show a single discharging event are shown in Fig. 23. From
the 100 discharging transients recorded, about 70 did not contain a
discrete step, meaning that no charge had been trapped in the
charging step. The remaining 30 traces showed an initial threshold
voltage shift of g � 1.5 mV which disappeared after a few seconds.
Since no RTN is observed at VL

G, we conclude that the initial defect
occupancy prior to the switch is fL � 0. Also, at VH

G no RTN is
observed, thus fH � 1. From this, according to (30), the maximum
observable change in the average occupancy is a = 1. Furthermore,
for a defect which approximately follows first-order kinetics, the
averaged discharge transient must be exponential, where for
tr = 0 we have

Pc ¼ �
DV thðts;0Þ

g
¼ 1� e�ts=sc ; ð39Þ

where Pc is the probability that the defect is charged after ts at VH
G.

From the experimental observation Pc = 0.3 we obtain the average
capture time by inverting (42) as sc � 3 ms. The average emission
time, on the other hand, is obtained by matching the averaged
relaxation traces to

Pe ¼ �
DV thðtrÞ

gPc
¼ e�tr=se ; ð40Þ

which gives se � 4 s. It is worth recalling that the discrete step
height g is not directly visible in the averaged curve of Fig. 23,
which shows gPc.

It has to be kept in mind that the extracted values of sc and se do
not necessarily correspond to sH

c and sL
e, but contain in general also

contributions from sH
e and sL

c, see (23) and (24). However, since
fL � 0 and fH � 1, we conclude from Eqs. (23) and (24) that in this
case sH

c � sc and sL
e � se holds. For experimental data on the more

general case, see [67].
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cm for 1 ms is about 30%, implying that 70% of the traces show no signal in this
window (only 2 examples shown). Averaging results in the expected exp(�t/s)
behavior. Note that a 1 ms stress introduces a positive charge which recovers only
after 4 s.
As will become apparent when discussing the theoretical prop-
erties of charge capture and emission, it is interesting to note here
that this particular defect has an average capture time of 1 ms
while the emission time is 4 s, a factor 4000 larger.

3.2. Multiple traps

The procedure outlined above can be applied to the same defect
at various stress and recovery voltages as well as temperatures in
order to extract the bias and temperature dependence of the cap-
ture and emission times. While such an approach is feasible and
already provides a wealth of information [68,66], it requires careful
selection of devices with only a single active defect in the whole
bias and temperature range. This is a considerable restriction rem-
iniscent of RTN analysis, although not nearly that restrictive as the
bias switches considerably increase the number of visible defects.
Still, at larger stress times or stress voltages, inevitably multiple de-
fects become charged, hampering the manual analysis. In order to
efficiently analyze a larger number of defects, the time-dependent
defect spectroscopy (TDDS) has been suggested [3,4].

The basic TDDS setup is the same as discussed above for the
study of individual defects. The primary difference lies in the anal-
ysis of the recovery traces which are no longer averaged but ana-
lyzed individually. In the initial analysis step, the measured
recovery traces are approximated by discrete steps according to

�DV thðts; trÞ ¼
X

k

gkHðts � sc;kÞHðse;k � trÞ; ð41Þ

using a straight-forward curve tracing algorithm, with H(x) being
the unit step function. Emission events are characterized by their
emission time and step height, (se,k, gk), which are then binned into
a 2D histogram, see Fig. 24. The entries in the 2D histogram are then
normalized by N to obtain the spectral map after the stress time ts.
In (41) the re-capture of charge during one transient is ignored,

which is normally the case when �sc V L
G

� �
� �seðVL

GÞ. The latter can

be experimentally assured by selecting devices which do not show
appreciable RTN at VG ¼ VL

G.
The spectral maps do not only allow for the extraction of �se and

the step-height g, but also give detailed information on the capture
time constant �sc. Naturally, determination of �sc is only possible for
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Fig. 25. Two TDDS spectral maps at two stress times, ts = 100 ls (left) and
ts = 10 ms (right). With increasing stress time, the number of defects in the map
increases. The width of each cluster is given by the exponential distribution of se

(considered on a log-scale) and the extracted defects/clusters are marked by ‘+’.
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defects visible on the spectral map. However, defects with �sc much
smaller than the stress time can be expected to appear with a 100%
probability on the spectral map. In such a case no information on �sc

is obtained. On the other hand, defects with capture times much
larger than the stress time will not appear at all. In the intermedi-
ate regime, however, where the capture time is on the order of the
stress time, the number of hits per cluster will increase exponen-
tially, allowing for an accurate determination of �sc. Provided
�sc;kðV stressÞ � �se;kðV stressÞ we have

Pc;k ¼ 1� e�ts=�sc;k : ð42Þ

Thus, M spectral maps with increasing stress time are recorded to
also extract the capture time constants of the defects appearing
on the maps. One map per decade in time proved sufficiently accu-
rate and we used stress times ts 2 {1 ls, 10 ls, . . . , 10 s}. The overall
effect of using M maps is that the defects are not only deconvoluted
according to their emission times and step-heights as on a single
map, but also according to their capture times. Thus, provided that
a defect has either a different emission time, a different step-height,
or a different capture time compared to any other defect, it can be
clearly identified. This is the reason for the unique accuracy of the
TDDS.

For demonstration purposes, the result of a supposedly simpler
analysis based on 1D histograms is shown in Fig. 26. This particular
1D histogram is an integrated version of the 2D spectral map over
the step height in the window 4 mV < g < 6 mV. The probability of
having an emission event with se 2 [sj, sj+1] is given by PcPe, which
nicely agrees with the experimental data as demonstrated in
Fig. 26, see also Fig. 6.

In Fig. 27 the extraction of �sc for defects #3 and #8 is shown
based on the Pc extracted from the spectral maps. Defect #3 has
about the same step height as #1 (�0.4 mV) while their emission
time constants are separated by a factor of about 500 at 100 �C,
which decreases to 10 at 175 �C. At 100 �C, this separation is rea-
sonably large due to the different activation energies (see Fig. 25)
and Pc,3(ts) approaches unity, as expected from Pcðts � �scÞ. Since
the activation energy of �se of #3 is about twice as large as that of
#1, the emission events related to #1 and #3 increasingly overlap
with increasing temperature, making the extraction of both Pc,1(ts)
and Pc,3(ts) more difficult. This is visible as a marked deviation of
Pc,3(ts) from unity in Fig. 27. Another interesting case given in
Fig. 27 is #8, which has a capture time constant larger than the
largest stress time used in our experiments.

As an example, the extracted capture and emission time con-
stants are shown in Figs. 28 and 29, which are clearly temperature
activated with an activation energy of about 0.6 eV and depend in a
non-exponential manner on the stress bias.

As was already identified decades ago in the context of RTN
[49], both charge capture and emission are thermally activated,
ruling out an elastic tunneling process but being compatible with
nonradiative multiphonon theory [69,47,70]. The temperature
dependencies of �se and �sc are shown in Fig. 30, demonstrating a
wide spread in the activation energies. We will get back to this
later in Section 4.
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Finally, the discrete capture/emission time (CET) map con-
structed from the extracted data is shown in Fig. 31. With increas-
ing temperature, both the capture and emission times become
shorter. With increasing stress bias VH

G, the capture times become
shorter. The emission times, which are always recorded at the
same VL

G remain unaffected. While the discrete CET map extracted
via the TDDS provides a wealth of information, it is very time
consuming to extract. As such, it does not contain enough data to
provide statistically relevant information, for instance on the cor-
relation between the capture time constants and their activation
energies. It therefore appears more promising to extract that infor-
mation using CET maps measured on large-area devices [66].
4. Large numbers of defects

So far we have dominantly considered the response of individ-
ual or a handful of defects to switches between two bias levels. In
the following, the response of a large number of defects is dis-
cussed under the assumption that the defects do not interact.
Although this is generally a good approximation, because the
defects are on average too widely separated for their wavefunc-
tions to overlap, it has been observed that the occupancy of one de-
fect impacts the step height of another [3] via electrostatic changes
in the channel. Furthermore, it is conceivable that these electro-
static changes modify the capture and emission times of surround-
ing defects [4]. Nonetheless, these interactions will be neglected in
the following, as they are neither well documented nor properly
understood at the present. Furthermore, while the discussion is
limited to donor-like defects as relevant for NBTI, the generaliza-
tion of the model to acceptor-like defects required for PBTI should
be obvious.

Given the previous results, the total shift in the threshold volt-
age, DVth(ts, tr), is due to the collection of N independent forward
and backward transitions between a neutral and a charged state.
We again consider the simple scenario where the gate voltage is
switched between two levels, high and low, with high correspond-
ing to stress and low to recovery. The behavior of each defect is
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characterized by its capture and emission time constants, sc and se,
both of which strongly depend on bias and temperature. Since we
only consider switches between two bias levels, we also just need
to worry about their values at these two levels which will be de-
noted as sH

c ; sL
c; sH

e , and sL
e. For a switch from the low to the high

level, the time constant determining the transition follows from
(7) as

sc ¼
1

1=sH
c þ 1=sH

e
: ð43Þ

Conversely, when the voltage is switched from the high to the low
level, the time constant determining the emission process is given
analogously by

se ¼
1

1=sL
c þ 1=sL

e
: ð44Þ

Prior to the application of the stress bias we assume that the de-
fects are in the stationary regime. In that case their occupancies are
calculated from (7) as

f L ¼ sL
e

sL
e þ sL

c
: ð45Þ

After the gate voltage has been at the high level for an infinitely
long time, the defect occupancy is given analogously by
f H ¼ sH
e

sH
e þ sH

c
: ð46Þ

After (21), the transition from fL to fH follows

f ðtsÞ ¼ f H þ ðf L � f HÞ e�ts=sc :

If after a certain stress time ts the bias is switched back to the low
level, the occupancy will go from the value given by f(ts) 6 fH back
to fL following (22) as

f ðts; trÞ ¼ f L þ ðf ðtsÞ � f LÞ e�tr=se :

A stress/relaxation experiment based on the above switching
scheme is the simplest case but already allows us to fully deter-
mine sc and se. Experimentally, however, we only see differences
with respect to the equilibrium occupancy fL. Thus, we have to
consider

Df ðtsÞ ¼ f ðtsÞ � f L ¼ að1� e�ts=sc Þ;
Df ðts; trÞ ¼ f ðts; trÞ � f L ¼ að1� e�ts=sc Þe�tr=se ;

with the maximum occupancy change given by a = (f H � f L) 6 1.
In the following we will use the normalized version h(ts, tr; sc, se) =
Df(ts, tr; sc, se)/a.

Provided that each defect k induces a shift in DVth of �gk, we
obtain the overall degradation of N defects as

�DV thðts; trÞ ¼
XN

k

gkakhkðts; tr; sc;k; se;kÞ:

Note that just like the time constants, gk is a stochastic quantity,
and thus different for every defect. Most RTN experiments and sim-
ulation models claim that gk is exponentially distributed [59,71,72],
while a log-normal distribution has been suggested as well [73].
Recently, an exponential distribution was also observed in NBTI
and PBTI experiments on small-area devices [74,56].

The maximum possible degradation DVmax
th ¼ DV thð1;0Þ is

obtained when all defects have been eventually charged. In that
case hk = 1 and we get

DVmax
th ¼

XN

k

gkak:

In general, for a defect with a single energy level E1, we know that
the equilibrium values f L and f H must be given by the Fermi–Dirac
distribution,

fFDðE1Þ ¼
1

1þ ebE1F
;

where E1F = E1 � EF is the distance of the defect level from the Fermi
level and b�1 = kBTL. Since we are considering holes, we have to use
1 � fFD(E1). For simplicity we assume that no interaction with the
gate occurs, which is roughly correct for defects located closer to
the channel than to the gate, that is, x [ tox/2. In this right half of
the oxide, the equilibrium concentrations are determined by the
Fermi-level of the channel and we have

f ðE1Þ ¼
se

se þ sc
¼ 1

1þ sc=se
¼ 1� fFDðE1Þ:

Since the maximum possible amount of change in the occupancies
is given by a = fH � fL, which depends on the bias conditions, the
maximum possible degradation is bias dependent as well

DVmax
th ¼

XN

k

gk
1

1þ e�bEH
1F

� 1

1þ e�bEL
1F

� 	
:

This bias dependence comes simply from the fact that not all
defects can contribute to DVth. To first order, only defects in the ac-
tive trapezoidal region where fH � fL � 1 can change their charge



Fig. 32. Region of defects actively contributing to the degradation in a BTI setting. Filled circles are uncharged defects while the open circles symbolize the positively charged
defects. Left: Prior to stress, it is assumed that all defects are in equilibrium with the Fermi-levels of the channel and the gate. Furthermore, the defect energy band is chosen
in such a way that the contribution of defects located in right half of the oxide dominate the degradation. Middle: Following the switch to the stress voltage, a certain fraction
of the defects is moved above the Fermi-level. As time progresses, only defects in the active region can contribute, which determines the maximum possible degradation.
Right: Back at the recovery voltage, the defects are moved back below the Fermi-level.
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Fig. 33. Illustration of the impact of the electric field on the energy levels of an
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Fig. 34. The active region of BTI depends dominantly on the field during stress. Only
defects in the active region are neutral prior stress and can be potentially charged
during stress.
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state during stress, see Fig. 32. This corresponds to the region where
prior to stress the defects are not occupied by a hole, fL = 0, but
where the application of stress causes E1 to be shifted above EF.
With E1 above EF, the defects will eventually be emptied, causing
fH = 1. Defects with E1 in the region below this trapezoid have
fH = 0 as their trap-level will not be shifted above EF. Consequently,
we have there a = 0 and the defects do not contribute to the degra-
dation. On the other hand, defects above the trapezoidal region are
already occupied by a hole prior to stress, that is, fL = 1. As stress can
therefore not discharge the defect any further, these defects cannot
contribute either, signified by a = 0 as well.

4.1. Boundaries of the active region

The boundaries of the active region can be estimated by approx-
imating the Fermi–Dirac distribution by a step function, fFD �
H(EF � E1), where H is again the unit step function. Then we see
that in order for fL = 0 to hold, E1 of the defect must be below EF.
Also, the change in the bias conditions must move E1 above EF dur-
ing stress. We thus have for the lower boundary EH

1 > EF and
EL

1 < EF for the upper one.
The energy level E1 at a certain position in the oxide depends on

the bias via E1(x) = E10 � qu(x). Assuming to first-order that the
charged defects inside the oxide do not significantly impact the
electrostatic potential u(x), which is roughly valid only for low
defect concentrations, we have u(x) = us � x F, where us is the po-
tential at the interface and F the constant electric field across the
oxide. The sign convention for F is such that application of a nega-
tive bias on the gate results in a positive F. Furthermore, x is the
distance of the trap from the interface and positive. So in this sim-
ple approximation the trap level depends on the applied bias via
E1 = E10 � qus + qx F, see Fig. 33.

Thus, in terms of E10, the conditions EH
1 > EF and EL

1 < EF trans-
form to

EF þ quH
s � qxFH K E10ðxÞK EF þ qu L

s � qxFL:

The above defines the active region of defects which are neutral
prior stress but can be charged for times larger than the longest
time constant, see Fig. 34. Note that this consideration depends
solely on equilibrium thermodynamic properties and is therefore
valid for all physical models of single energy-level defects.

4.2. The capture/emission time map

A description employing individual defects is useful for small-
area devices where the total number of defects is small. Large-area
devices, however, have thousands of defects. In order to describe
the overall degradation, it is impossible to consider each defect
individually. Rather, similar defects can be grouped together using
a suitably defined density [66], see Fig. 35. This density will be
called continuous CET map, or simply CET map in the following. It
is important to remember that in all the switched experiments
discussed in the following, the capture time is recorded at the
high-level while the emission time is taken at the low-level.

We formally define the discrete CET map gi,j as

gi;j ¼ gðsc;i; se;jÞ ¼
XN

k

gkak

Ds2 rect
sc;k � sc;i

Ds

� �
rect

s e;k � se;j

Ds

� �
;
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Fig. 35. Rather than considering a large number of individual defects, similar
defects around (sc,i, se,j) are grouped together in the density gi,j. The size of the circle
symbolizes the magnitude of the macroscopic step height, gk ak.
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with the rectangle function

rectðs=DsÞ ¼
1 s� Ds=2 6 s < sþ Ds=2
0 otherwise

:




This definition simply collects all defects with sc,k and se,k in the
vicinity of sc,i and se,j into gi,j.

With gi,j at hand, we can now express the threshold voltage shift
as

DV thðts; trÞ �
X

i

X
j

gðsc;i; se;jÞhðts; tr; sc;i; se;jÞ:

In the limit Ds ? 0 we obtain the continuous CET map g(sc, se) as

gðsc; seÞ ¼
XN

k

gkakdðs c;k � scÞdðse;k � seÞ;

and eventually

DV thðts; trÞ �
Z 1

0
dsc

Z 1

0
dsegðsc; seÞhðts; tr; sc; s eÞ:

The main feature of h is that it selects all defects with sc < ts and
se > tr, so to good approximation we can replace h by

hðts; tr; sc; seÞ � Hðts � scÞHðse � trÞ:

Although this approximation is somewhat crude, as the two transi-
tions contained in h cover a decade in time, it gives us a very simple
and intuitive connection between DVth and g,

DV thðts; trÞ �
Z ts

0
dsc

Z 1

tr

dsegðsc; seÞ: ð47Þ

In words this means that DVth is given by the sum of all defects
charged until ts but not yet discharged after tr. Eq. (47) can now
be used to give a simple method for the extraction of g by simply
taking the negative mixed partial derivative of a given DVth

stress/recovery data set,

gðsc; seÞ � �
@2DV thðsc; seÞ

@sc@se
: ð48Þ

If the CET map is represented on logarithmic axes, one has to use

~gðsc; seÞ ¼ scsegðsc; seÞ; ð49Þ

in analogy to (14). While g gives the density of defects per unit time,
for example information on how much DVth is gained/lost in a sec-
ond, ~g gives the density on a logarithmic scale, for example on how
much DVth is gained/lost per decade.

A typical experimental CET map obtained in that manner is
shown in Fig. 36. Analysis of the CET map shows that for a fixed
sc, the distribution of se is roughly Gaussian. Furthermore, se and
sc appear correlated, with both distributions being rather wide
[66,75].

Finally, it is intuitive to consider the fraction of the CET map vis-
ible in experimental data. In delay-free experiments, which have
become known as on-the-fly (OTF) measurements, it is attempted
to record the NBTI degradation directly under stress conditions
[76]. As such, the recorded degradation of ID(t) has to be converted
to a threshold voltage shift. Since the degradation is monitored at
VH

G without switching to VL
G, the measurement delay is zero and the

CET map covers the whole se axis. In practice, however, a delay-
free experiment requires determination of a reference value of
IDðVH

GÞ for the calculation of DVth [77,78]. This reference value is
determined with a certain delay tM. As a result, even OTF measure-
ments do not capture all defects as the lower part of the sc axis
with sc < tM is missed.

The dual problem is observed for conventional measure–stress–
measure (MSM) setups [32,79]. In an MSM measurement, the ref-

erence value of ID VL
G

� �
is determined first. Then, the device is

stressed for a duration of ts. After termination of the stress,

ID VL
G

� �
is continuously measured as quickly as possible with a

minimum delay of tM. Thereby, the MSM sequence covers the com-
plete sc axis up to sc < ts but only a part of the se axis where se > tM.
The difference between the two setups is visualized in Fig. 37. As
such, neither method is able to ‘‘see’’ all defects present in the
CET map [79].

4.3. Theoretical CET maps

A number of theoretical or empirical models for DVth(ts, tr) have
been published either in the context of NBTI or charge trapping.
Using (48), we will derive the resulting CET map for a few impor-
tant cases: first, the classic reaction–diffusion model for NBTI, then
a standard hole trapping model, and finally the empirically found
universal recovery relationship.
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4.3.1. The reaction–diffusion model
The most popularized NBTI model is based on the reaction–

diffusion (RD) formalism originally suggested by Jeppson and
Svensson [10]. Although the RD model contains a reaction step,
the breaking of Si–H bonds at the interface, this reaction is as-
sumed to be in quasi-equilibrium. The overall degradation is as-
sumed to be dominated by the diffusion profile of hydrogen
inside the oxide. The model has seen a number of refinements dur-
ing the last couple of years [18,80,81], with the current version
relying on the diffusion of neutral H2. The most recent extension
postulates the existence of an elastic hole trapping component,
which obscures both the stress and recovery data for the first sec-
ond [82,83]. In this version of RD theory, hole trapping is consid-
ered a mere experimental nuisance which has to be removed
from the data in order to unveil the true, diffusion-limited, NBTI
degradation [30].

As hole trapping and hydrogen diffusion are considered to be
independent, the CET maps can be constructed independently for
both mechanisms. The total CET map is then obtained by adding
the two maps. We thus defer the discussion of hole trapping for
the time being to Section 4.3.2 and begin with the diffusion-limited
regime of the RD model. The following simple analytical expression
gives excellent agreement with the numerical solution of the RD
model [23]

DV thðts; trÞ ¼
tn

s

1þ
ffiffiffiffiffiffiffiffiffiffi
tr=ts

p ; ð50Þ

where n = 1/6. Saturation at large ts is neglected for simplicity as it
does not change the basic picture. The normalized recovery pre-
dicted by the RD model is universal in the sense that it depends only
on the ratio of tr/ts [23]. Using (49), we directly calculate the loga-
rithmic CET map ~g from (50) as

~gðsc; seÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
s esc
p ð2n� 1Þ þ seð2nþ 1Þ

4 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
se=sc

p� �3

1
s1�n

c
: ð51Þ

The logarithmic CET map of the RD model is shown in Fig. 38. It
bears only minimal resemblance to the experimentally obtained
Fig. 38. Logarithmic CET map predicted by the RD model. Note that the entries in
the map above the line se = sc/4 are negative.
CET shown in Fig. 36. Remarkably, ~g becomes negative for se < sc/
4. Physically, this means that ‘‘time constants’’ available at the cer-
tain stress time are no longer available after longer stress times. The
reason for this is that due to the diffusive nature of the model,
recovery takes longer with increasing stress times, as the H2 mole-
cules have diffused away into the oxide. Recovery requires them to
come back, which takes increasingly longer with increasing ts, see
Fig. 39. Such a behavior is in contrast to the experimental data,
which show emission times independent of stress times [65,66,3].

4.3.2. Simple hole trapping
In its simplest form, hole trapping into the oxide is considered

to be a purely elastic process describable in an extended version
of the SRH model [84,21,82,83], see Section 5. An analytical solu-
tion for this scenario has been developed by Tewksbury [85]

DV thðts; trÞ ¼ A logð1þ Bt r=tsÞ for ts < tmax
s ; ð52Þ

with the factor B accounting for a possible difference in �sc and �se di-
rectly at the interface. In this elastic model, the capture and emis-
sion times are solely determined by the depth of the defect into
the oxide, which leads to saturation of DVth once the deepest defect
has been charged at ts ¼ tmax

s . Since modern oxides are very thin, for
instance 2nm, this saturation occurs relatively early, for instance at
about tmax

s ¼ 1 s.
The logarithmic CET map is obtained from the above as

~gðsc; seÞ ¼
AB

ðBþ se=scÞ2
se

sc
for sc < tmax: ð53Þ

The logarithmic CET map of this simple hole trapping model is a
logistic distribution of the ratio se/sc. In its pseudo two-dimensional
form it is shown in Fig. 40 for two values of B. With increasing sc,
the one-dimensional logistic distribution is shifted towards larger
emission times until sc = tmax.

4.3.3. Universal recovery
It has been observed that recovery following NBTI/PBTI stress in

both nMOS and pMOS transistors can be empirically described by
[33]
10-6 10-4 10-2 100 102 104 106 108 1010 1012

Relaxation Time  [s]

0

0.2

0.4

0.6

ΔV
th

(t s

Increasing
Stress Time

10s 1ks 100ks

Fig. 39. Schematics showing why the RD model generates negative entries on the
CET map. The plot shows the normalized recovery predicted by the RD model for
three stress times. As can be seen, the shape of the curve does not change with time
but is only shifted to larger times, with 50% recovery corresponding to tr = ts. Thus,
with increasing stress time, recovery sets in later. As a consequence, recovery at
tr < ts/4 is weaker than at the previous stress time. In order to reflect this delay of
recovery in the CET map, negative entries are required for tr < ts/4.



Fig. 40. The CET which generates the simple hole trapping model of (52). Left: B = 1
and Right: B = 10, which simply corresponds to a shift to larger emission times by a
factor of 10.

Fig. 42. The CET of the universal relationship has negative entries when b > a. a = 1/
6, b = 0.3, B = 2.
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DV thðts; trÞ ¼
Ata

s

1þ Bðtr=tsÞb
þ Ptn

s : ð54Þ

In this empirical model, the first term describes the recoverable
component while the second term forms a permanent contribution,
which, as such, does not contribute to the CET map. Note that the
universal relationship (54) reduces to the RD model with the
Fig. 41. The CET map of the universal relationship. Top: A typical parameter
combination consistent with experimental data, a = 1/6, b = 0.15, B = 2. Bottom:
Same parameters as above but with b = a and plotted over a wider range.
parameters B = 1, a = 1/6, b = 1/2, and P = 0. We again use (49) to di-
rectly calculate ~g from DVth as

~gðsc; seÞ ¼ bAB
ða� bÞðsescÞb þ ðaþ bÞBs2b

e

ð1þ Bðse=scÞbÞ3
1

s2b�a
c

:

As with the RD model, the CET map will have negative entries when
a < b and

se < sc B
bþ a
b� a

� 	1=b

:

Experimentally, b was observed to be in the range [0.1 . . . 0.2]
[23,86,33], which is close to the typical NBTI power-law slope of
a � 0.15, so the special case b � a is of interest. There we get

~gðsc; seÞ ¼ aAB
2aBs2a

e

ð1þ Bðse=scÞaÞ3
1
sa

c
:

The CET map of the universal relationship is shown in Figs. 41 and
42 for a few parameter combinations.

5. SRH-like models for the transition rates

In the following we will discuss physical models for the rates
describing the transition of carriers between defects and a reser-
voir. Typical reservoirs are the channel and the gate of an MOS
transistor. A rather general framework for the calculation of such
transition rates was given by Shockley and Read in their famous
paper [43] for what has become known as the Shockley–Read–Hall
(SRH) recombination process. Although the SRH model was origi-
nally derived for recombination centers located in the bulk of a
semiconductor where the defect and the carrier reservoirs are
located at the same position, the model has been generalized to ac-
count for trapping into oxides. We shall start with the same for-
malism and proceed by discussing two important models for the
actual transition rates. The first model is a generalized version of
the SRH process which only considers electronic energies. Irrespec-
tive of the fact that this is the most commonly used approach, it
must be clearly stated that this model is only valid for a certain
class of bulk defects but cannot describe oxide defects. The failure
of the SRH model to describe oxide defects has been known for a
long time [48,49], but it will quite obviously require continued
efforts [51] until the majority of researchers will refrain from using
it.

In the following we calculate the rates for a single donor-like
defect, assuming only interactions with the valence band. The
defect will be assumed to be in one of its two states, 1 for neutral
and 2 for positive. The expectation values of the defect to be in
either state are f1 and f2, with f1 + f2 = 1. We consider a system con-
sisting of a defect plus an electron, which can be moved back and
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forth between the defect and the reservoir. When the electron is at
the defect site, its energy is E1, when it is moved to the reservoir
the energy changes to E2. The differential transition rates of the
two partial processes are then

dk12ðEÞ ¼ cpðEÞfpðEÞgpðEÞdE; ðf1Þ; ð55Þ
dk21ðEÞ ¼ epðEÞfnðEÞgpðEÞdE; ðf2Þ; ð56Þ

where the term in parenthesis gives the state the defect has to be in
for the rate to apply. The electron energy distribution function in
the reservoir is fn, the hole distribution function fp = 1 � fn, while
gp is the density-of-states in the valence band. The physics of the
capture and emission process go into the energy-dependent capture
and emission coefficients cp, and ep, which will receive our full
attention later.

To obtain the transition rates, we have to integrate Eqs. (55) and
(56) over all possible states in the valence band. Unfortunately, the
resulting equations cannot be further processed analytically with-
out making assumptions on the form of fn and the two capture/
emission coefficients. With regard to the distribution function,
we will assume that fn is given by the Fermi–Dirac distribution
fFD(E). This is exact in thermal equilibrium and a very good approx-
imation for bias temperature stress and recovery experiments, be-
cause there the current flow in the channel is usually negligible
[87,88]. The Fermi–Dirac distribution has the useful property

fFDðEÞ
1� fFDðEÞ

¼ e�bðE�EFÞ: ð57Þ

We furthermore introduce energy averages of a quantity h(E) over
the valence band

hhhðEÞii ¼ 1
p

Z Ev

�1
hðEÞfpðEÞgpðEÞdE: ð58Þ

The energy average is defined in such a way that for energy-
independent quantities h one obtains hhhii = h.

Substituting the Fermi–Dirac distribution and integrating over
the valence band, one obtains

k12 ¼
Z Ev

�1
cpðEÞfpðEÞgpðEÞdE ¼ phhcpðEÞii; ð59Þ

k21 ¼
Z Ev

�1
epðEÞe�bðE�EFÞfpðEÞgpðEÞdE ¼ phhepðEÞe�bðE�EFÞii: ð60Þ

Overall, with the above given rates, the temporal change of f1 is then
given as in (5) by

@f1

@t
¼ f2k21 � f1k12:

The rates derived so far are of limited practical use since they still
require physical models for the capture and emission coefficients,
cp and ep, which have to be temperature- and bias-dependent in
order to correctly reflect the experimental behavior.

5.1. The SRH model

In the literature, the transition between the states of a defect
are predominantly described using only their electronic energy
levels, as is done for instance in conventional SRH theory. Despite
the fact that the application of the SRH model to oxide defects has
raised many doubts as to its theoretical justification [49,85], it is
almost exclusively used by reliability engineers for the analysis
of charge trapping events. As a number of more or less elaborate
derivations are available in literature, see for instance Refs.
[46,84,85], we will restrict ourselves to a qualitative derivation
which captures the essential features of the model.

For instance, consider a defect which can either contain an elec-
tron or not. Such a defect can be either an electron trap (negatively
charged after capture of the electron) or a hole trap (positively
charged after emission of the electron). In the electronic-energy-
only picture, the energy of the defect is then solely determined
by the potential energy of that electron. For instance, a donor-like
defect is electrically neutral when the electron is located at the
defect site at the energy E1. Conversely, the defect can emit this
electron which is then moved to the reservoir, which could be
the valence band in the channel. This emitted electron is then
located in the reservoir, which in a simplest approximation is con-
sidered to only have a single energy level, E2 = EV. The two energy
levels E1 and E2 give the energy of the defect when in state f1 or f2,
respectively.

With regard to the standard SRH model, actually no explicit
physical model was invoked for the capture and emission coeffi-
cients in the original paper. The implicit assumption was that hole
capture from the valence band occurs without a barrier and is sim-
ply proportional to a capture cross section times the thermal veloc-
ity of the carriers,

cpðEÞ ¼ v thr; ð61Þ

with the thermal velocity v th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTL=ðpmÞ

p
[50].

While the traditional SRH model was derived for bulk defects, it
has been used extensively to also describe charge exchange with
oxide defects [46,84,44]. In order to consider the different spatial
location of the reservoir and the defect, it is assumed that the
carriers tunnel elastically between the defect and the reservoir.
Tunneling is considered in a more-or-less empirical manner by
multiplying the capture cross-section with the tunneling coeffi-
cient # calculated in the WKB approximation as

# ¼ exp �4
ffiffiffiffiffiffiffi
2m
p

3�hqF
ððq/� EÞ3=2 � ðq/0 � EÞ3=2Þ

" #
; ð62Þ

with m as the tunneling mass, a somewhat ill-defined fit parameter
on the order of the free electron mass, / the barrier at the interface
and /0 the barrier at the defect site.

Since in many cases defects close to the interface are considered
where x < 1 nm, the barrier is very thin and very high. As such, the
modulation of the barrier by the local potential can be neglected
and we obtain via a Taylor expansion of the (�)3/2 terms

# � e�x=x0 ; ð63Þ

with x0 ¼ �h= 2
ffiffiffiffiffiffiffiffiffiffiffi
2m/

p� �
. A comparison of the full WKB model (62)

with the simplified version (63) is given in Fig. 43. This approxima-
tion is useful for analytical estimates of the field-dependence, since
only for traps deeper into the oxide the field-dependence of #

becomes relevant.
It is worth mentioning that simply multiplying the capture

cross section with the WKB coefficient is a rather crude approxima-
tion of the real physical problem. However, more accurate
attempts, where the transition matrix element is evaluated, re-
quire knowledge of the defect potential, which is essentially un-
known. Usually employed assumptions like d function potentials
lead to very similar results as those obtained from the WKB
approximation [89,85]. Given the degree of uncertainty regarding
the defect potentials, we consider the WKB approximation suffi-
cient for our present purposes. The tunneling coefficient # is then
usually pulled into the capture cross section, which gives us

r ¼ r0#: ð64Þ

Also, for oxide defects, the thermal velocity should be replaced by a
quantity which only considers carriers with a velocity component
normal to the interface [85]. However, this is believed to be a sec-
ond-order effect and will not be considered in the following.

Due to the requirement of detailed balance, the following must
hold in thermal equilibrium for any energy E,
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f1 dk12ðEÞ ¼ f2 dk21ðEÞ: ð65Þ

From the above together with (59) and (60) we obtain the relation

cpðEÞ
epðEÞ

¼ f2

f1

fnðEÞ
fpðEÞ

¼ 1� f1

f1

fnðEÞ
1� fnðEÞ

; ð66Þ

and with f 0
1 ¼ f and f 0

n ¼ f finally

c0
pðEÞ

e0
pðEÞ

¼ e�bðE1�EFÞebðE�EFÞ ¼ e�bðE�E1Þ: ð67Þ

The above relates capture and emission coefficients by a Boltzmann
factor. The energy level of the defect in state 1 is given by E1, which
is conventionally denoted by ET in the literature. However, as we
shall be shortly dealing with defects having more than one trap
level, we use this slightly more general notation. The fundamental
assumption is now that relationship (67) is valid also under non-
equilibrium conditions.

In order to explicitly calculate the emission coefficients we as-
sume Boltzmann statistics to hold, that is, p = NVexp (b EVF). The
notation E12 is a shorthand for E1 � E2 and will be frequently used
in the following. Using (67), we obtain

k21 ¼ hhcpðEÞiiNVebEV1 :

Using the energy-independent capture coefficients of (61), the tran-
sition rates of the SRH model are

k12 ¼ pv thr; k21 ¼ NVv threbEV1 : ð68Þ

Frequently, the above rates are used irrespective of the energetic
position of the defect relative to the reservoir. This is incorrect, as
will be discussed now.

5.2. The SRH model for states outside the reservoir bandgap

In the standard SRH model for semiconductor bulk defects, the
defect energy level is reasonably assumed to be inside the bandgap
of the material, EV < E1 < EC. Then, the Boltzmann factor in k12 is
smaller than unity. Contrary to semiconductor bulk defects, oxide
defects can very well have their energy-level outside the bandgap
of the reservoir, making the Boltzmann factors larger than unity.
The reason for this is that in the case of defects outside the silicon
bandgap the assumption that electron capture from the conduction
band and hole capture from the valence band proceed without bar-
rier is certainly wrong, as the electron has to be raised to an energy
level higher than the reservoir while the hole would have to be
pushed to an energy level lower than the reservoir.

So in analogy to (61), it appears now more prudent to assume
the emission coefficients to be energy independent which gives

k12 ¼ pephhe�bðE�E1Þii; k21 ¼ pephhe�bðE�EFÞii: ð69Þ

Unfortunately, the above cannot be simplified with the same ele-
gance as if the defect level were inside the bandgap. One reason
for this is that during the integration over all bandstates, at one
point the energy E will become higher than the trap level E1. Then,
the capture coefficient should be energy-independent rather than
the emission coefficient. Overall, even for parabolic bands and a
Boltzmann distribution rather complicated expressions are ob-
tained. We will therefore make a very crude approximation by
assuming that E = EV for the calculation of k. Together with the
Boltzmann distribution and ep = vthr one then obtains

k12 ¼ pv thre�bEV1 ; k21 ¼ NVv thr: ð70Þ

The above looks very similar to (68), with the exception that the in-
verse of the Boltzmann factor now appears with the rate k12 rather
than with k21 [44]. This makes sense intuitively, since now hole cap-
ture into the defect level E1 < EV requires the thermal activation of
holes. Still, it must be repeated that this derivation is extremely
crude. However, considering the other shortcomings of the SRH
model with respect to oxide defects, we shall not be bothered un-
duly by this.

5.3. Heuristic interpretation of the SRH model

As simple but somewhat heuristic way to derive the rates of the
SRH model without resorting to the use of the detailed balance
relation (65) is by expressing the different occupation probabilities
of the various energy levels directly using Boltzmann factors. Nat-
urally, both methods will give similar results, as they follow di-
rectly from the same thermodynamic arguments.

In order to properly determine the energetic barrier for the
transition, the two cases shown in Fig. 44 have to be considered:
first, in the case the E1 < E2, the energy of the electron has to be in-
creased in order to allow for the transition. The energy required is
supplied by the reservoir which is assumed to be at temperature T.
The probability that an electron with energy E ¼ E1 is raised to E2 is
given by the Boltzmann factor

PfE ¼ E2jE ¼ E1g ¼
e�bE2

e�bE1
¼ e�bE21 ; ð71Þ

with E21 = E2 � E1. On the other hand, there is no energetic barrier
for the transition from state 2 to state 1 because E1 < E2.

In the second case shown in Fig. 44 we have E1 > E2. Then there
is now barrier for the transition from state 2 to state 1. Conversely,
the barrier E12 = �E21 has to be surmounted for the transition from
state 2 to state 1.

Both cases can be combined and we write the barrier for the
transitions 1 ? 2 and 2 ? 1 as

E12 ¼maxðE21;0Þ and E21 ¼maxðE12;0Þ: ð72Þ

With these barriers, the transition rates can be expressed in a more
general way as

k12 ¼ pv threbE12 ; k21 ¼ NVv threbE21 : ð73Þ
5.4. Field and temperature dependence of the SRH model

Three terms contribute to the field dependence of the SRH mod-
el shown in Fig. 45. First, the exponential contribution due to the
thermal emission barriers E12 and E21 which either contribute to
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Fig. 45. The field and temperature dependence of capture and emission times
obtained from the SRH model, evaluated for pMOS transistor with a 2 nm thick
oxide at two temperatures. The defect is located at x = 1 nm and 0.4 eV below EV. At
about jVGj = 1 V the defect moves into the silicon bandgap, visible by a kink in both
�se and �sc. The dashed line corresponds to the case when the defect is always
considered to be inside the bandgap. Compared to experimental data, the time
constants are too small (nanosecond to millisecond regime compared to experi-
mental values well above kiloseconds). Furthermore, at high jVGj, �sc becomes larger
with increasing temperature, which is in contrast to the strong decrease observed
experimentally.
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sc or se, depending on the energetic position of the trap level E1 rel-
ative to E2. Since both levels shift with the surface potential, the
barrier E21 is independent of us but to first-order decreases linearly
with increasing oxide field F as
Fig. 46. Time dependence of the charging/discharging transients according to the SRH m
levels of the channel and the gate, see Fig. 32. With increasing stress time (from left to rig
At 1 ms, all defects inside the active region are charged and the tunneling front stops.
tunneling front progressing from the right towards the center.
E21 ¼ E20 � E10 � qxF: ð74Þ

Second, the surface hole concentration gives a strong contribution
below the threshold voltage which becomes considerably weaker
at higher stress voltages. Finally, the WKB factor causes the weakest
bias dependence, notable mostly in se at low VG.

The dominant temperature dependence stems from the thermal
emission barriers. Since they are only relevant for sc when E1 < E2

and for se when E1 > E2, the temperature dependence predicted
by the SRH model is quite different from experimental observa-
tions, see Figs. 28 and 29. In particular, at large jVGj the tempera-
ture dependence of sc is only due to the temperature dependence
of p, resulting in an increase of sc with increasing T.

5.5. Time dependence during stress and recovery

The time dependence of the defect occupancies during a BTI
experiment as predicted by the SRH model is shown in Fig. 46.
We have seen before that only defects inside the active region
can contribute to DVth. This means that during stress only defects
above EF are relevant. Although EF will be a little bit below EV dur-
ing stress, resulting in a small thermal barrier E12 during capture,
most defects will be above EV, having no thermal capture barrier
at all. Analogously, during recovery, these defects will be moved
below EF. Since then usually EF J EV, most defects will be able to
emit their captured hole with only a small barrier. So, to first order,
the general formulas (73) simplify to

k12 � pv thr; k21 � NVv thr: ð75Þ

From this we see that both capture and emission are independent of
the trap level E1, which only determines whether the defect is inside
the active area or not. As a consequence, the time constants will be
odel. Prior to stress, it is assumed that all defects are in equilibrium with the Fermi-
ht), a tunneling front progresses from the interface towards the middle of the device.
The situation is analogous during recovery, where the defects are neutralized in a



Fig. 47. The CET map of the SRH model, which is essentially a narrow stripe around
sc = se.
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only weakly temperature and bias dependent. Furthermore, the
time constants are only determined by the depth of the trap into
the oxide, x, which enters both time constants in the same manner
via the WKB factor incorporated in the capture cross section r.

It is worthwhile to explicitly write down the SRH capture and
emission times in their full glory

sc �
ex=x0

pv thr0
; se �

ex=x0

NVv thr0
: ð76Þ

So even if we assume that an ensemble of defects with a wide dis-
tribution of E1 and x exists, only the x distribution will enter the
time constants. In particular, for a given x, the capture and emission
times will be correlated. As a consequence, the CET map predicted
by the SRH model, see Fig. 47, bears little resemblance with the
experimental map of Fig. 36. We therefore must conclude that the
SRH model is unable to describe oxide defects.
6. Nonradiative multiphonon transition rates

The reason for the failure of the SRH model is that it ignores the
deformation of the defect site when the charge state is changed.
Although the exact microscopic nature of the charge trapping sites
is still not unequivocally established, the oxygen vacancy/E0 center
is the most commonly studied defect in silica and has been linked
to BTI in a number of studies [91,13,92]. As an example, two
charge states of the oxygen vacancy/E0 center as calculated by den-
sity-functional-theory (DFT) are shown in Fig. 48. In the neutral
equilibrium configuration, we have an oxygen vacancy, which is
a silicon–silicon bond inside SiO2. The distance between the two
silicon atoms is larger than in crystalline silicon. Upon positively
charging the oxygen vacancy, the distance between the silicon
atoms increases even further, creating what has become known
as an E0 center. The naming convention is due to traditional
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Fig. 48. Two charge states of the E0 center calculated by density-functional-theory (DFT)
Sham-eigenstate is shown as blue ‘bubbles’. Note that the atomic equilibrium positions
states is given as a function of the reaction coordinate (dominant path).
electron spin resonance (ESR) analysis [6]. Eventually, one of the
silicon atoms may move through the plane spanned by the three
oxygen atoms into the so-called puckered configuration (an E0c
center), thereby forming a bond with the oxygen atom behind it
(not shown). Whether or not such a bond can be formed depends
in an amorphous oxide on the availability of a suitable oxygen
atom [93].

In the simplest picture, the equilibrium positions in either
charge state are determined by the equilibrium between quan-
tum–mechanical repulsive and attractive forces [94]. However,
with increasing temperature, the atoms vibrate more and more
vigorously around their equilibrium position in a chaotic fashion.
Every displacement from the equilibrium position increases the to-
tal energy of the system. Naturally, the real motion of the atoms is
highly complex and – particularly in the amorphous oxide we are
dealing with – impossible to model precisely. As such, one usually
limits oneself to the movement of the system along a dominant
reaction coordinate. In general, the total energy along the reaction
coordinate will have a complicated shape. Still, for reasonably
small displacements from the equilibrium position, any energy–
position relationship can be approximated by the lowest term of
its Taylor expansion, which is a quadratic function of the displace-
ment. The motion in this simplified parabolic potential is harmonic
and model systems employing such harmonic oscillators are ubiq-
uitous in solid-state physics. Since we are frequently dealing with
rather strong distortions of the atomic positions, the ‘‘small dis-
placement approximation’’ may appear unjustified. Nonetheless,
such a simple model seems to be able to capture the essence of
the phenomenon [95].

In the simplest case we again consider a two-state defect which
is neutral in state 1 and positively charged in state 2. In each state
the atomic equilibrium configuration is different, implying that the
equilibrium position will depend on the defect state and will be de-
noted by q1 and q2. Also, in each state the total energy consists of
contributions from the ionic system, the electronic system, and a
coupling term. The coupling term is at the heart of the model
and is responsible for the shift in the equilibrium positions as well
as a change of the vibrational frequencies and will be discussed be-
low. Overall, the total energy of each charge state i is usually writ-
ten as

Vi ¼
1
2

Mx2
i ðq� qiÞ

2 þ Ei; ð77Þ

where q is the reaction coordinate with the local equilibrium posi-
tion qi, M the effective mass of the ‘defect molecule’ [90], xi the
vibrational frequency in minimum i, and Ei the potential energy in
the minimum. Such a parabolic approximation to the total energies
estimated from DFT calculations of the two charge states are also
shown in Fig. 48 (middle) [90] and schematically in Fig. 49.
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[90], neutral (left) and positive (right). The electron density of the localized Kohn–
change when the charge state is changed. In the middle the total energy of the two



V1

V2

q

q1 q2

E1

E2
To

ta
lE

ne
rg

y

Fig. 49. The adiabatic potentials of the defect in its two states 1 and 2. The adiabatic
potentials depend solely on the reaction coordinate q where the electrons are
assumed to adjust immediately. The electronic configuration (neutral vs. charged)
determines which potential has to be considered. Electron–phonon coupling leads
to a shift of the minima of the parabolas qi and a change in the oscillation frequency
xi.

Fig. 50. A nonradiative (optical) transition between the states 1 and 2. Without
electron–phonon coupling q1 would equal q2 and the absorbed energy E12 would
equal the emitted energy E21. When electron–phonon coupling is not negligible,
E12–E21. In general, the relaxation energies ER12 and ER21 are different, unless
x1 = x2.
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As mentioned above, the most important aspect about the
model potentials (77) is that the two charge states have different
equilibrium positions qi. This is due to the aforementioned phe-
nomenon of electron–phonon coupling, the essence of which is that
the number and distribution of the electrons determines the vibra-
tional properties of the system. This is easy to understand by con-
sidering that the occupancy of a bond determines its ‘strength’. By
changing the occupancy/strength, the atoms will move to a differ-
ent equilibrium position. Similarly, the vibrations of the atoms
determines the electron distributions. As a consequence, elec-
tron–phonon coupling makes the description of the defect much
more complicated since in principle the wavefunctions of the elec-
tron and phonon system have to be determined in a coupled man-
ner. According to the conventionally employed Born–Oppenheimer
approximation, however, electronic and nuclear motion can be
treated separately [96], as it is assumed that the light electrons
can adjust quickly to changes in the positions of the sluggish
atoms. While this approximation appears reasonable around the
minimum, it is questionable particularly during a transition from
one state to another, because then the electronic wave functions
would have to change instantaneously for instance from a bound
to a free state, which is impossible [47]. Nonetheless, in the sim-
plest model, the contribution to the total energy due to electron–
phonon coupling is assumed to be a linear function of the displace-
ment. In such a model only the equilibrium positions are displaced
while the two parabolas are otherwise identical (x1 = x2). In a
more realistic model, electron–phonon coupling is assumed to be
quadratic, which results in displaced parabolas with different
vibrational frequencies xi. In the SRH model electron–phonon cou-
pling is ignored. However, as we shall see, it essentially determines
both the bias- as well as the temperature-dependence of the tran-
sition probabilities.

In order to quantum–mechanically describe the transition from
one charge state to the other, one has to consider the occupancies
of the eigenstates of the oscillator associated with the current state
of the defect and calculate the overlap of the wavefunctions with
the new state. The occupancies of the various states of this domi-
nant mode are given by statistical physics while the energy levels
have to be found from a solution of the Schrödinger equation
[69,47]. The quantum–mechanical solution starts with the calcula-
tion of the eigenenergies for each harmonic oscillator, which are gi-
ven by E i ¼ i�hx1 þ 1=2 and Ej ¼ j�hx2 þ 1=2. For each pair of (i, j)
the overlap of the corresponding wavefunctions is calculated to
determine the transition probability according to Fermi’s Golden
Rule. However, as typical values of �hx are around 20 meV and
since for practical purposes we are mostly interested in the behav-
ior of the defects above room temperature where �hx is on the
order of kBT, a full quantum–mechanical solution is often not re-
quired and the defect behavior can be considered in a semiclassical
approximation. The essence of the semiclassical approximation is
that nuclear tunneling between the two defect states, which is only
relevant at low temperatures anyway, is neglected.

Two kinds of transitions are important and have been discussed
at lengths in the literature: first, radiative transitions, where en-
ergy is supplied via radiation (photons), and second, non-radiative
transitions, where the energy is internally supplied via phonons.
6.1. Radiative transitions

Consider first radiative (or optical) transitions, which, according
to the (classical) Franck–Condon, principle occur around the min-
ima of the parabolas, see Fig. 50. The Franck–Condon principle
states that during a transition the lattice coordinate q does not
change. For example, lets assume that the defect is in state 1. Then,
in order to have a transition to state 2, a photon has to supply the
energy E�12 to raise the energy of the system from E1 to E1 þ E�12.
According to Fig. 50, this energy is larger than what one would
expect from the purely electronic (SRH) picture, where the barrier
is determined only by the difference in the energy levels, E21 = E2 �
E1. This excess energy

ER12 ¼ E�12 � E21 ¼ V2ðq1Þ � V2ðq2Þ ð78Þ

is known as the relaxation energy [95] and has to be dissipated via
the emission of (many) phonons, hence the name multiphonon
process.

The reverse process can occur as well: once the system is in its
new equilibrium q2, a transition to state 1 may occur, whereby the
excess energy E�21 is emitted via a photon. Quite remarkably, the
energy of the emitted photon is smaller than that of the absorbed
photon, a puzzling experimentally observable phenomenon which
originally led to the development of multiphonon theory a 80 years
ago, see e.g. Ref. [97]. Also, the relaxation energy ER12 only equals
ER21 when x1 = x2.

The energy required to induce a radiative transition E�12

� �
and

the radiative energy released during the backward transition
E�21

� �
can be obtained from the binding energy, EB(q) = V2(q) � V1(q)

for a given q. EB can be easily calculated from (77) as

EBðqÞ ¼ E21 þ ER12 � q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mx2

1ER12

q
R

þ q2 Mx2
1

2
1� R2

R2 ; ð79Þ

with R = x1/x2 and ER12 ¼ S�hx1 ¼ Mx2
1q2

2=2, where without loss of
generality q1 is set to zero. The parameter S is known as the
Huang–Rhys factor and determines the number of phonons
required to excite the harmonic oscillator in state 1 to reach the
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equilibrium position of state 2, q2. From the binding energy we ob-
tain the optical energies as

E�12 ¼ EBð0Þ ¼ E21 þ ER12; ð80Þ
E�21 ¼ EBðq2Þ ¼ E21 � ER21; ð81Þ

with ER21 ¼ R2ER12. For R = 1, the relaxation energies are the same in
both states, ER ¼ ER21 ¼ ER12 ¼ S�hx.

Classically, at zero absolute temperature, the system will either
be in state q1 with energy E1 or state q2 with energy E2. When the
temperature is increased, higher energies E are occupied with
probability

PðEÞ
PðEiÞ

¼ e�bE

e�bEi
¼ e�bðE�EiÞ: ð82Þ

The excess energy E � Ei is supplied by phonons. As a consequence,
absorption and emission will not just occur at the minima q1 and
q2, but in a region around them. The occurrence of these other
transitions has an exponentially decreasing probability due to the
Boltzmann factor (82). This leads to a thermal broadening of the
absorption and emission lines with a maximum at q1 and q2,
respectively.

6.2. Nonradiative transition barriers

Suppose now that no photons are available, as is usually the
case when defects are studied during the regular operation of
semiconductor devices. Without photons, direct transitions are
not possible. Hence, we have to completely rely on phonons to in-
crease the energy of the system sufficiently to allow a transition. As
energy has to be conserved, a classical transition is only possible at
the intersection point of the parabolas. There, the binding energy is
zero, see Fig. 51. For instance, a transition from state 1 to state 2
requires the system to surmount the barrier E12. The probability
that this state is occupied is given by the Boltzmann factor, (82),
and we have for the capture coefficient

cpðEÞ ¼ v thre�bE12 : ð83Þ

Using the equilibrium detailed balance relation (67) and Boltzmann
statistics, we can write the two rates as

k12 ¼ pv thrhhe�bE12 ii; ð84Þ
k21 ¼ NVv thrhhe�bE12 ebðEV�E1Þii: ð85Þ

For this example defect, an electron is bound at the defect site in the
neutral state 1. During the transition to state 2, this electron is
transferred to the reservoir, usually the channel of the transistor.
The potential energy of this electron in state 1 is given by E1, while
in state 2 it equals E2. For simplicity, we assume in the following
that E2 = EV, that is, the electron is moved back into the bottom of
Fig. 51. When no photons are available, only nonradiative multiphonon transitions
are possible. The necessary energy has to be supplied by phonons.
the silicon valence band. This assumption effectively removes the
averaging over the slightly different barriers found at different val-
ues of E2. Furthermore, since quite obviously E12 ¼ E21 þ E21 for any
shape of the parabolas, we have

k12 � pv thre�bE12 ; ð86Þ
k21 � NVv thre�bE21 : ð87Þ

As before in the radiative case, the barrier E12 can be calculated
from the adiabatic potentials (77), which is a more-or-less straight
forward exercise and will be done in the following.

6.2.1. Linear electron–phonon coupling
As the calculation of E12 for the general case with x1 – x2 and

q1 – q2 is a little awkward, we start with the simplest case where
the vibrational frequencies are assumed to be the same in both
states, that is, x1 = x2, or, equivalently, R = 1. Then, the quadratic
term in q of EB(q) vanishes and only the term linear in q remains.
This is known as linear electron–phonon coupling and is the most
commonly discussed case, because it is the only case that allows
for relatively compact solutions of the quantum–mechanical prob-
lem in the Born–Oppenheimer approximation [47]. Also, the classi-
cal solution is obtained in a nearly trivial manner. For R = 1 the two
parabolas intersect at

q21 ¼
ER þ E21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MERx2

p ; ð88Þ

which then gives the well-known result

E12 ¼
ðER þ E21Þ2

4ER
; ð89Þ

for the barrier separating state 2 from state 1. Analogously, the bar-
rier for the backward transition is obtained as

E21 ¼
ðER � E21Þ2

4ER
; ð90Þ

where E21 ¼ E12 � E21 holds.
We have seen previously that E21 depends linearly on the elec-

tric field F via (74), see Fig. 52. Thus, at a first glance, (89) suggests
that E12 depends quadratically on F. This, however, is not the case
because electron–phonon coupling is usually strong, that is, ER �
E21. In that case the squares Eqs. (89) and (90) can be expanded
[98] to yield

E12 �
1
4
ER þ

1
2

E21; ð91Þ

E21 �
1
4
ER �

1
2

E21: ð92Þ

This shows that the apparent activation energy is dominated by the
relaxation energy and EA � ER=4.

In contrast, if the electron–phonon coupling is weak (ER � E21),
expansion of (89) gives

E12 �
E2

21

4ER
þ 1

2
E21: ð93Þ

The first term is usually dominant and one obtains a quadratic
dependence on F. So the apparent quadratic F-dependence in (89)
is only visible in the weak electron–phonon coupling limit ER � E21.

Comparison of the forward and backward barriers in the strong
coupling case, (91) and (92), already highlights a significant differ-
ence between the SRH and the NMP model: in the SRH model, the
barrier E21 and thus the F-dependence enters either the capture or
the emission time constant. So, when then capture time constant
depends exponentially on F, the emission time constant will be
bias independent and vice versa. Quite differently, in the NMP
model, the bias dependence is equally shared with different signs



Fig. 52. The field-dependence of the NMP transition rates is a consequence of the electrostatic shift of the defect level.
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between the time constants. For instance, if the capture time con-
stant decreases exponentially as exp(�x F/2VT), the emission time
constant will increase exponentially as exp(x F/2VT).

The barriers for the general case together with the two limiting
cases are summarized in Table 1. The qualitative differences
between the strong and weak coupling regimes are shown in
Fig. 53.

6.2.2. Quadratic electron–phonon coupling
As long as we remain within the semiclassical approximation,

the situation is only slightly more complicated for the general case
where both the linear and quadratic term are considered. Contrary
to the case R = 1, where only one intersection of the parabolas ex-
ists, for xi – xj the two parabolas have now either two crossings
or none. The case non-intersecting parabolas has been discussed
previously to explain unexpectedly small capture cross sections
[47]. Naturally, in such a case the semiclassical approximation
can no longer be used for the calculation of the transition probabil-
ities and a quantum–mechanical solution has to be employed
[47,99,100]. On the other hand, for the case that two crossings
exists, we will assume that the smaller barrier dominates the tran-
sitions, which reads

E12 ¼
ER21

ðR2 � 1Þ2
1� R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR2 � 1ÞE21=ER21

q� 	2

: ð94Þ

Eq. (94) is somewhat awkward to use, particularly due to the
removable singularity at R = 1, which corresponds to a negligible
quadratic coupling term. For strong electron–phonon coupling,
E21 � ER21, we can expand (94) up to second-order in E21 to find

E12 �
ER21

ð1þ RÞ2
þ R

1þ R
E21 þ

R
4ER21

E2
21: ð95Þ

This expansion has the advantage that it contains the correct limit
(89) when R = 1 and thus lends itself nicely to analytic treatments.
From E21 ¼ E12 � E21 we obtain the barrier for the reverse reaction
as

E21 �
ER21

ð1þ RÞ2
� 1

1þ R
E21 þ

R
4ER21

E2
21: ð96Þ
Table 1
Forward and backward barriers of the NMP model for x1 = x2. Even for weak-coupling th

Model E

NMP (R = 1) ð

NMP (R = 1) weak coupling ðER � E21Þ E

NMP (R = 1) strong coupling ðER � E21Þ E

NMP (R – 1) strong coupling ðER21 � E21Þ
ð

SRH m
An important conclusion that can be drawn from (95) is that the
oscillation frequency mismatch R also enters the apparent activa-
tion energy, which is roughly ER21=ð1þ RÞ2. Also, the field depen-
dence is now no longer symmetric. For example, for R > 1, E12

now depends stronger on F than E21 and vice versa.

6.2.3. Problems of the model
While the NMP model captures the ‘essence’, like a strong

bias- and temperature-dependence, important details seen experi-
mentally are missing. First, the bias dependence of sc and se are
symmetric, at least in the linear electron–phonon coupling mode.
Furthermore, the predicted bias-dependence of sc is nearly linear.
As shown in Fig. 28, however, the bias-dependence of sc has some
curvature on a logarithmic scale. Also, as shown in Fig. 29, se is nor-
mally bias-independent above Vth but may drop abruptly below Vth.
So even if quadratic electron–phonon coupling is taken into ac-
count, which allows to introduce some asymmetry between sc

and se, this cannot be driven far enough to make se nearly bias-
independent within a meaning full range of oscillation frequencies.
Also, the rapid drop of se in some defects below Vth remains puz-
zling. Finally, although the situation is considerably improved com-
pared to the SRH model, no full decorrelation between sc and se is
possible: A typical CET map produced by the NMP model with a
Gaussian distribution of E1 and a uniform distribution of x is given
in Fig. 54. While sc and se are no longer correlated, for a given sc the
predicted se remains within a relatively narrow band, given by the
active area.

6.2.4. Kirton and Uren model
From a historical perspective, the model employed in the pio-

neering work by Kirton and Uren [50] requires to be mentioned,
as it appears to be still widely used. Already in those days it was rec-
ognized that the SRH model is unable to explain the experimental
data and that a nonradiative multiphonon process could be respon-
sible. In order to account for this, Kirton and Uren introduced a
Boltzmann factor into the SRH rates to account for structural relax-
ation. While this introduces the missing temperature-dependence
into the model, it is not rigorously correct, since the Boltzmann
factors of the NMP model summarized in Table 1 are also strongly
e NMP model behaves quite differently compared to the SRH model.

12 E21

ER þ E21Þ2
4ER

ðER � E21Þ2

4ER

21
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Fig. 53. Comparison of the weak (top), intermediate (middle), and strong (bottom) electron–phonon coupling regimes. The left panels show the adiabatic potentials for three
difference values of the Huang–Rhys factor S. The only impact of S is that with increasing S the potential of the positive state V2 is rigidly shifted to larger values of the reaction
coordinate. The middle panels show the forward and backward barriers as a function of the electric field. Also shown are the energies E12 and the barrier used in the
SRH model, which behaves quite differently. Finally, the rightmost panels show the resulting capture and emission time constants. Note that the strong sensitivity below
F = 2 MV/cm is due to the hole concentration (dotted lines) rather than the barriers.

Fig. 54. The CET map obtained from the NMP model with a Gaussian distribution of
E1 and a uniform distribution of x into the oxide. The width of the distribution is
determined by the active area and therefore narrower than observed
experimentally.
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bias-dependent. Furthermore, their approach implicitly assumed
that the energy levels of the defect are inside the silicon bandgap.
7. Multi-state defect model

In order to correct for the limitations of the simple NMP model
we recall the existence of metastable defect states, which show up
as either anomalous RTN, temporary RTN, and temporarily disap-
pearing defects. As it turns out, consideration of these metastable
states naturally solves many issues identified with the simple
NMP model.

We construct our multi-state defect model based on reported
properties of the E0 center. It has been suggested that a fraction
of the E0 centers created following irradiation tests can be repeat-
edly charged and discharged. The corresponding energy levels lie
within the silicon bandgap [101]. The idea behind this cyclability



Fig. 56. Definition of the symbols used in the model. Note that the reaction
coordinate describing the transition 1 M 20 is different from the one describing
2 M 10 , which is why the potential describing states 1 and 10 is plotted twice, once to
the left and once to the right of state 2. In this simple model only the expansions
around q1 and q20 determine 1 M 20 while the expansions around q2 and q10

determine 2 M 10 .
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is that once the hole is emitted (that is, an electron is captured),
the defect does not fully relax but remains in a metastable state
which can easily lose an electron again. The fact that it is the E0

center that can act as a switching trap has been suggested by Lel-
is et al. [102] based on electrical measurements. This was later
confirmed by ESR studies [5] and theoretical calculations [103].
In Ref. [93] it has been suggested that in order to create a stable
E0 configuration from an oxygen vacancy, the doubly positive con-
figuration could be important. Diverging opinions have been ex-
pressed in Refs. [7,8], where the switching behavior was put
down to hydrogen which can change its charge state in the amor-
phous network.

No matter what the microscopic defect configuration is, the
model can be formulated in an ‘agnostic’ fashion by considering
four states as schematically shown in Fig. 55. Starting from the
equilibrium state 1, hole capture transforms the defect into the
metastable state 20, where the distance between the silicon atoms
is only slightly larger than in the neutral state 1. Depending on the
defect configuration, state 20 may be only metastable, that is, can
relax into a more stable form by an increase of the distance be-
tween the silicon atoms. Thereby one silicon atom moves through
the plane spanned by its three oxygen neighbors and forms a bond
with an oxygen atom in its back. Strictly speaking, this is only a
likely scenario in crystalline SiO2, as in an amorphous network
no suitable oxygen atom may be available. As such, although E0

centers have been studied in great detail for many decades by
now, the suitability of the E0 center in the present model is any-
thing but certain. While first principles calculations show that E0

centers have the required metastable states with most barriers
having suitable values [104,90]. In amorphous SiO2 these barriers
show a wide distribution. Unfortunately, though, the energy level
of the E0 center in crystalline SiO2 is only about 1 eV above the
SiO2 valence band, which is too low to result in reasonable capture
rates. On the other hand, the thermodynamic energy level of the
hydrogen bridge was found to be in the middle of the Si bandgap,
meaning that most defects would already be positively charged
prior to stress. Finally, while the positively charged, puckered state
(state 2) was found to be stable, the barrier from the electrically
neutralized puckered state (state 10) to the equilibrium state (state
1) was found to be very small. This would be inconsistent with de-
fects that can be repeatably charged and discharged. Apart from
the reasons listed above, a number of other explanations for this
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Fig. 55. The four states of a switching oxide trap, using the E0 center as an example.
Initially, a neutral precursor exists (state 1). Upon hole capture, the Si–Si bond
breaks and a positively charged E0 center is created (state 20). Depending on the
defect configuration, state 20 may transform into the puckered configuration (2)
when the silicon atom moves through the plane spanned by its three neighboring
oxygen atoms. Hole emission (electron capture) neutralizes the E0 center (state 10).
Being in state 10 , two options exist: a hole can be captured again, causing a
transition back to state 2, or the structure can relax back to its equilibrium
configuration (state 1).
mismatch exist and a considerable amount of work remains to
be done in order to clarify these issues.

In order to setup the transition rates for the model shown in
Fig. 55, we use the adiabatic potentials shown in Fig. 56. Each
charge state is now represented by a double well, with the equilib-
rium configuration being the minimum (1 and 2) and the metasta-
ble states as the energetically higher value. Transitions including
charge transfer are modeled analogously to Eqs. (86) and (87)
using nonradiative multiphonon theory. Transitions without
change of the charge state (1 M 10 and 2 M 20) are assumed to fol-
low a simple thermal excitation over a barrier. Thus, the charge
transfer rates are

k120 ¼ prv the�bE120 ; k201 ¼ NVrv the�bE201 ; ð97Þ
k102 ¼ prv the�bE102 ; k210 ¼ NVrv the�bE210 : ð98Þ

For simplicity we assume all capture cross sections to be equal. The
transition between states 1 and 10 as well as 20 and 2 are assumed to
be bias-independent but to occur along different reaction coordi-
nates. Consequently, we do not calculate the barriers via intersec-
tions of the parabolas but consider them as explicit parameters.
Obviously, E220 ¼ E202 þ E20 � E2 and E110 ¼ E101 þ E01 � E1 and we
use kmn ¼ mm expð�bEmnÞ where mm 	 1013 s�1.
7.1. Approximate solutions

As discussed in Section 2.7, the solution of the master Eq.
(31) is in principle straight forward to obtain for this four-state
defect. However, it does not provide significant insight into the
behavior of the defect due to its complexity. In particular,
depending on the defect configuration, various complicated tran-
sition patterns are possible, most notably patterns which would
be recognized as RTN and anomalous RTN. However, during both
stress and recovery the rates become highly asymmetric,
strongly favoring a transition to 2 during stress and back to 1
during recovery, see Fig. 57. The most likely path during stress
is from 1 to 2, while during recovery the defect may either re-
cover via 20 or 10, the latter becoming particularly important at
low jVGj. Thus, we will make use of the ‘effective two-state’ de-
fect model developed in Section 2.7. We again only consider the
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dominant charge exchange with the valence band in the
substrate. Also, the second-order term in E12 in the expan-
sions Eqs. (95) and (96) will be neglected. Finally, Boltzmann
statistics will be assumed again which is valid for �se at low jVGj
but rather crude for �sc at high jVGj. Nonetheless, the qualitative
features of the model are not affected by either of these
approximations.

The capture time constant is calculated from the expectation
value of the first passage time from state 1 to state 2, see Fig. 57.
The transition may proceed either via state 20, which is the domi-
nant case at high bias, or via state 10 at lower biases (not shown
in Fig. 57). For the first case we obtain �s20

c , while the latter case is
described by �s10

c , which, in total, results in

1=�sc ¼ 1=�s20
c þ 1=�s10

c : ð99Þ

Conversely, the emission time constant is calculated from the
expectation value of the first passage time from state 2 to state 1
which may also proceed either via state 20 or via state 10. For the
first case we obtain �s20

e , while the latter case is described by �s10
e ,

which, again, gives

1=�se ¼ 1=�s20
e þ 1=�s10

e : ð100Þ

The individual contributions to the time constants are

�s20
c ¼ �s20

c; min 1þ N1

p
exp � xF

VT

� 	� 	
þ s0

N2

p
exp � xR

1þ R
F

VT

� 	
;

ð101Þ

�s10
c ¼ �s10

c; min þ s0
N3

p
exp � xR0

1þ R0
F

VT

� 	
; ð102Þ

�s20
e ¼ �s20

e; min þ s20 exp
x

1þ R
F

VT

� 	
; ð103Þ

�s10
e ¼ �s10

e; min 1þ ebE10F
� �

þ s10 exp
x

1þ R0
F

VT

� 	
; ð104Þ

with s�1
0 ¼ NVv thr0e�x=x0 and the temperature-dependent but field-

independent auxiliary quantities
N1 ¼ NV exp b E202 � DE1ð Þð Þ;

N2 ¼ NV exp b
ER

ð1þ RÞ2
� R DE1 � E202ð Þ

1þ R

 ! !
;

N3 ¼ NV exp b
E0R

ð1þ R0Þ2
� R0DE10

1þ R0

 ! !
1þ exp b DE10 � DE1ð Þð Þð Þ;

s20 ¼ s0 exp b
ER

ð1þ RÞ2
þ DE1 � E202

1þ R

 ! !
1þ exp bE202ð Þð Þ;

s10 ¼ s0 exp b
E0R

ð1þ R0Þ2
� DE10

1þ R0

 ! !
;

with DE1 ¼ E10 � EV0; DE10 ¼ E100 � EV0; R ¼ x1=x20 , and R0 ¼
x10=x2. As each time constant contains a contribution from a purely
thermal transition, the minimum value is bounded by

�s20
c; min ¼ 1=k202; �s10

c; min ¼ 1=k110 ; �s20
e; min ¼ 1=k220 ; and �s10

e; min ¼ 1=k101:

Although the simple Eqs. (99) and (100) are not rigorously correct,
since they simply superposition two independent three-state de-
fects to approximate the behavior of the four-state defect, they give
a very good approximation. In order to demonstrate this, an evalu-
ation of the analytic capture and emission time models against a
Monte Carlo simulation of the full model is given in Fig. 58 for a
switching trap, where around VG = Vth the dominant pathway
changes from via 20 to 10.

As the analytic solution (101)–(104) for the effective capture
and emission time constants is still rather formidable, it is worth-
while to explore two limiting cases in the following. Which case
becomes relevant depends on the adiabatic defect potentials,
which are expected to be different for each defect.

7.1.1. Normal kinetics
Under ‘normal’ kinetics we understand the case where the im-

pact of the metastable states is not directly obvious, that is, no
switching behavior can be observed (no transition to 10). This is
the case when DE10 is too large to give a significant occupancy of
state 10. In this case, the time constants are
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�sc ¼ �s20
c; min 1þ N1

p
exp � xF

VT

� 	� 	
þ s0

N2

p
exp � xR

1þ R
F

VT

� 	
; ð105Þ

�se ¼ �s20
e; min þ s20 exp

x
1þ R

F
VT

� 	
: ð106Þ

Both time constants consist now of two terms, where the first one
denotes the impact of the relaxation barrier E202. For capture, the
field dependence of the two terms is different, resulting in a non-
linear overall exponential field dependence and eventual saturation
at �sc ¼ �s20

c; min for high fields. For example, for R = 1, the argument of
the exponential field term is initially �x F/VT and gradually reduces
to �x F/2VT with increasing field. In addition, a weaker bias depen-
dence is introduced by the same 1/p dependence of both factors.
Note that this 1/p dependence is the only field dependence of �sc

in the standard SRH-like model.
For emission, the term due to the relaxation barrier is bias-

independent and dominates for small fields. This is similar to the
SRH model where irrespective of the exponential F dependence
only a weak field dependence is obtained, as F depends weakly
on VG below Vth.
7.1.2. Switching trap kinetics
Under the condition that the metastable state 10 is moved close

to EV and the barrier separating 2 and 10 is low enough, the transi-
tion 2 ? 10 can occur and the defect may even switch back and
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behavior can only be observed in a very narrow window of VG where the minima of
states 2 and 10 are close to each other.
forth between states 10 and 2, see Fig. 57 (bottom). For normal
switching traps, however, these transitions are too fast to be
directly observable by the measurement equipment which only
records the average value.

In the switching trap configuration, the impact of the metasta-
ble state 10 becomes evident in �se, see Fig. 58. At low enough bias,
annealing of the defect back to state 1 will now occur via state 10.
Note that although even during stress the pathway 1 ? 10 ? 2 is
theoretically possible, we have so far not observed a defect com-
patible with such a configuration.

Introducing fn ¼ ð1þ k102=k201Þ�1 ¼ ð1þ expðbE10FÞÞ�1, which is
the probability that the trap level E01 is occupied by an electron,
that is, neutral, we can express the emission time constant for
�s10

e K �s20
e as

�se ¼
�s10

e; min

fn
þ s10 exp

x
1þ R0

F
VT

� 	
: ð107Þ

This is a remarkable result: when EF > E01, the defect is neutral
(fn = 1) and the emission time is given by the bias independent
value �s10

e; min. As soon as the defect level E01 moves above the Fermi
level, the probability fn will decrease, thereby strongly increasing
�se. This strong bias dependence explains the typical switching trap
characteristics around the threshold voltage observed experimen-
tally in Fig. 29. For large jVGj, on the other hand, �s10

e will become lar-
ger than �s20

e and the pathway 2 ? 20 ? 1 dominates the emission
time.

An interesting special configuration of the switching trap leads
to tRTN, namely when the transitions between states 10 and 2 are
slow enough to fall within the experimental window, as discussed
in Section 7.2.

7.2. Qualitative model behavior

A stochastic simulation of a defect configuration leading to tRTN
is shown in Fig. 59. During stress, state 2 becomes occupied
(p2 = 1), while during the initial recovery phase the defect switches
back and forth between states 2 and 10 (p2 + p10 = 1), visible as tRTN.
Eventually, the defect anneals by a transition from 10 to 1 (p1 = 1).
Such a behavior can only be observed in a very narrow window of
VG where the minima of the states 2 and 10 are close to each other.
Furthermore, the barrier between states 2 and 10 must be large
enough to cause capture and emission times within the
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experimental window. For transitions faster than experimentally
observable, the measurement equipment will record the averaged
signal E{P{X(t) = 2jX(t) = 2 _ 10}} = fp = 1 � fn and the defect will ap-
pear as a switching trap.

7.3. Quantitative model behavior

The simulated capture and emission time constants calibrated
to the experimental data available for defect #1 are shown in
Fig. 60. As can be seen from the CC diagram shown in the inset,
defect #1 is similar to the schematic tRTN case shown in Fig. 59
with the difference that the barrier between states 2 and 10 is
rather small. As a consequence, the fluctuations between states 2
and 10 are too fast and cannot be resolved by the measurement
equipment and the defect appears like a switching trap.

In contrast, Fig. 61 shows the model calibrated to the data of
defect #4. Here the metastable state 10 is energetically too high
and has thus no apparent effect on the measured capture and emis-
sion times.

As can be seen from these examples, the suggested model can
naturally explain all experimentally observed features. In particu-
lar the initially surprising occurrence of tRTN, switching traps, as
well as the non-linearities in logð�scÞ and logð�seÞ have been
explained consistently within a single model.
8. Conclusions

Particularly in the reliability community, oxide charge trapping
is still dominantly interpreted using extended Shockley–Read–
Hall-like models. A detailed analysis reveals, however, that these
models are often at odds with experimental data, which are better
described using nonradiative multiphonon models. Strictly speak-
ing, a quantum–mechanical solution of this problem is required,
which is rather involved for realistic defect potentials. Fortunately,
the classical approximation of nonradiative multiphonon processes
is accurate enough for practical purposes above room temperature.
As such, very intuitive and simple expressions for the capture and
emission rates can be obtained which are not significantly more
complicated than those of the popular SRH model.

This review tries to provide a summary of the fundamentals
required to go beyond the SRH picture in order to understand more
realistic models. In addition to multiphonon processes, one of the
fundamental ingredients of such a model appears to be the fact
that oxide defects can have more than two states. These additional
states cause all sorts of interesting defect behavior, including
anomalous and temporary RTN, disappearing defects, and a more
complicated bias-dependence of the capture and emission times.
Most intriguingly, these defect models provide a link between
RTN and the bias temperature instabilities.
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