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 The breathtaking increase of the performance of 
integrated circuits was made possible by the continuing 
size miniaturization of semiconductor devices’ feature 
size. The 32nm MOSFET process technology [1] 
presently in manufacturing involves a sophisticated 
heavily strained silicon channel and a high-k 
dielectric/metal gate stack. Although alternative channel 
materials with a mobility higher than that in silicon were 
already investigated [2,3], silicon will still be the main 
channel material for MOSFETs at the 22nm technology 
node and very likely also beyond, thanks to new device 
architectures based on multi-gate structures with better 
electrostatic channel control and reduced short channel 
effects.  
   However, with scaling apparently approaching its 
fundamental limits, the semiconductor industry is facing 
critical challenges. New engineering solutions and 
innovative techniques are required to improve MOSFET 
performance for upcoming device generations.  
   Spin as a degree of freedom is promising for future 
nanoelectronic devices for both memory [4] and logic [5] 
applications. Silicon, the main element of 
microelectronics, possesses several properties attractive 
for spintronics: it is composed of nuclei with 
predominantly zero spin and is characterized by small 
spin-orbit coupling. In experiment coherent spin transport 
through an undoped silicon wafer of 350 mμ  length was 
already demonstrated [6]. Spin coherent propagation at 
such long distances makes the fabrication of spin-based 
switching devices in the near future quite likely.  
  We investigate the properties of ballistic fin-structured 
silicon spin field-effect transistors. The original 
suggestion for the spin transistor by Datta and Das [7] 
employs the spin-orbit coupling to introduce the current 
modulation. The electric-field dependent spin-orbit 
coupling was assumed to be due to the geometry-induced 
inversion symmetry breaking, or of the Rashba type. 
However, as it was demonstrated recently [8], the major 
contribution to the spin-orbit interaction in thin silicon 
films is due to the interface-induced inversion asymmetry 
which is of the Dresselhaus type. The coefficient of the 
spin-orbit interaction is a linear function of the effective 
electric field which opens the way to modulate the current 
by applying the gate voltage. 
   The non-zero spin-orbit interaction leads to an increased 
spin relaxation. The D’yakonov-Perel’ mechanism is the 
main spin relaxation mechanism in the systems with the 
degeneracy between the electron dispersion curves for the 
two spin projections lifted. In quasi-one-dimensional 
electron structures, however, the complete suppression of 
the spin relaxation was predicted [9].   
   In our studies the fins have a square cross-section with 
the (001) horizontal faces. The parabolic band 
approximation becomes insufficient in thin and narrow 
silicon fins, where an accurate description of the 
conduction band based on the k·p model [10] is 
necessary. This leads to the subband effective mass 
depending on the fin height and thickness (Fig.1). 
  To form the spin transistor we sandwich the silicon fin 

between two ferromagnetic metallic contacts. The degree 
of the spin polarization in each contact is 0<P<1. The 
contacts can be in either parallel or anti-parallel 
configuration. The carriers in the contacts are 
characterized by the effective mass and the Fermi-energy. 
Following [12], delta-function barriers at the interfaces 
between the contacts and the channel are introduced. 
Contrary to [12], the spin-orbit interaction is taken in the 
Dresselhaus form [8]. We study the conductance through 
the system for the contacts being in parallel and anti-
parallel configurations. Differences between the [100] and 
[110] orientated structures are investigated in detail for a 
large range of parameters. 
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Fig.1: Effective masses vs. thickness for a square fin. Dotted 
lines are from [11]. 
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