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ABSTRACT
The fast marching method is used to compute a monotone
front propagation of anisotropic nature by solving the eikonal
equation. Due to the sequential nature of the original algo-
rithm, parallel approaches presented so far were unconvinc-
ing. In this work, we introduce a shared-memory paralleliza-
tion approach which is based on an overlapping domain de-
composition technique. We introduce our parallel algorithm
of the fast marching method tailored to shared-memory en-
vironments and discuss benchmark results based on a C++
implementation using OpenMP. We compare the sequential
execution performance as well as the accuracy with refer-
ence implementations of the fast marching method and the
fast iterative method; the latter is also used to evaluate the
parallel scalability. Our shared-memory parallel fast march-
ing method convinces both with regard to serial and parallel
execution performance as well as with respect to accuracy.
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1. INTRODUCTION
Simulating an expanding front is a fundamental step in many
computational science and engineering applications, such as
image segmentation [5], brain connectivity mapping [12],
medical tomography [11], seismic wave propagation [13], ge-
ological folds [7], semiconductor process simulation [18], or
computational geometry [16].

In general, an expanding front originating from a start posi-
tion Γ is described by its first time of arrival T to the points
of a domain Ω. This problem can be described by solving the
eikonal equation [15], which for n spatial dimensions reads:

‖∇T (x)‖2 = f (x) x ∈ Ω ⊂ Rn ,
T (x) = д(x) x ∈ Γ ⊂ Ω.
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T (x) is the unknown solution (i.e. first time of arrival), д(x)
are boundary conditions for Γ, and f (x) is an inverse veloc-
ity field, i.e., f (x) = 1/F (x): F (x) is a positive speed func-
tion, with which the interface information propagates in the
domain. Generally speaking, isosurfaces to the solution rep-
resent the position of the front at a given time, and can thus
be regarded as the geodesic distance relative to Γ. If the ve-
locity F = 1, then the solution T (x) represents the minimal
Euclidian distance from Γ to x.

The most widely used method for solving the eikonal equa-
tion is the fast marching method (FMM) [15]. The FMM
solves the eikonal equation in a single pass, allowing to track
the evolution of an expanding front (cf. Section 2). This
method is inherently sequential and attempts to parallelize it
have so far been unsatisfactory [1][11]. However, recent in-
vestigations regarding a domain decomposition technique in
a large-scale distributed-memory setting are promising [19],
which is the basis for this work.

Other prominent approaches for solving the eikonal equation
are available, the most prominent among them are the fast
sweeping method (FSM) [20] and the fast iterative method
(FIM) [10]. Both methods support parallel execution, where,
contrary to the FSM, the FIM supports fine-grained paral-
lelism: The FIM inherently offers greater potential for par-
allelism over the entire spectrum than the coarse-grained par-
allelism of FSM. Therefore, the FIM is used in this work as a
frame of reference regarding parallel scalability. FIM was
originally implemented for parallel execution on Cartesian
meshes and later extended to triangular surface meshes [6].
FIM relies on a modification of a label correction scheme
coupled with an iterative procedure for the mesh point update.
The inherent high degree of parallelism is due to the ability
of processing all nodes of an active list (i.e. narrow band) in
parallel, thus efficiently supporting a single instruction, multi-
ple data parallel execution model. Therefore, FIM is suitable
for implementations on highly parallel accelerators, such as
graphics adapters [10][11]. Although FIM has been primar-
ily investigated regarding fine-grained parallelism on acceler-
ators, investigations on shared-memory approaches have also
been conducted [3][4][18]. Overall, based on those major
methods, i.e., FMM, FSM, and FIM, several derivative tech-
niques have been developed [8][9][17].



Although methods are available which inherently favor paral-
lelism, such as the FSM and the FIM, the fact that the FMM is
a one-pass algorithm (i.e. non-iterative in nature) offers sig-
nificant advantages with respect to accuracy. This fact makes
the original serial FMM still one of the predominant methods
to compute expanding fronts; even in today’s parallel com-
puting age. In particular, there are two major advantages of
the FMM over other techniques [19] which represent the pri-
mary motivation for parallelizing the FMM: (1) the narrow
band formulation and (2) the monotonic increasing order of
the solution.

In this work, we focus on three-dimensional Cartesian grids
and use an overlapping domain decomposition technique for
parallelizing the FMM which fits the performance critical
data locality aspects paramount to modern shared-memory
environments. In Section 2 we give a short overview of
the sequential FMM. In Section 3, we introduce our parallel,
shared-memory FMM. In Section 4 we investigate the execu-
tion performance and accuracy of an OpenMP implementa-
tion of our parallel FMM by comparing it with two reference
implementations: a pure serial version of the FMM and an
OpenMP-parallelized implementation of the FIM.

2. SEQUENTIAL FAST MARCHING METHOD
In this section, we provide a short overview of the original, se-
quential FMM. A detailed description of the inner workings
of the FMM is provided in [15] and [19]. To approximate the
differential operator of the eikonal equation, we consider the
widely applied Godunov-type finite difference scheme [14]
in combination with first-order discretizations for the spatial
derivatives. This approach offers a special upwind structure,
i.e., a new solution only depends on the neighboring cells hav-
ing a smaller solution value. The FMM makes use of this fact
by solving the eikonal equation using only the upwind cells.
For identifying the upwind directions three flags are used to
indicate the status of a certain cell: (1) KNOWN indicates that
a cell contains a final solution thus give the upwind direction,
(2) BAND denote cells which contain solutions updated by its
neighboring KNOWN cells but may be further updated by any
new KNOWN neighbors, and (3) FAR identifies cells which are
on the downwind side and do not have any KNOWN neigh-
bors yet. The general algorithm is such that the cell with the
smallest value in the BAND set is identified and re-tagged as
KNOWN. It’s neighboring BAND and FAR cells can be updated.

The identification of the cell with the smallest value is usu-
ally being implemented via a minimum heap data structure,
which in a serial computing setting provides excellent perfor-
mance. However, in this lies the reason why the FMM does
not favor straightforward parallel approaches: The minimum
heap data structure is hardly parallelizable as it would require
a synchronized data access among the threads.

In a pre-processing step, all flags of the grid cells (i.e. the
discretization of the domain) are set to FAR and the initial
solution values for all cells are set to ∞, which ensures that
the upwind scheme forces the front (i.e. the set of BAND cells)
to reach all yet unprocessed cells of the grid. By initializing
the values of the interface cells, i.e., cells relative to which the
distances have to be computed by the FMM, and re-tagging

Figure 1: Schematic representation of the FMM. Full, black
circles (KNOWN) denote computed travel times that are set.
Blue, empty circles (BAND) refer to the front of the FMM.
Grid points with no circles indicate yet unprocessed cells
(FAR). The travel time (i.e. the solution value) is schemat-
ically depicted by the size of the circles; the larger the radius
the greater the travel time. The FMM processes the cells start-
ing with smallest travel time.

those to KNOWN the FMM’s front starts to propagate until all
cells of the grid have been processed and thus the distances
are computed. Figure 1 shows the fundamental principle of
the FMM.

3. SHARED-MEMORY PARALLELIZATION
In this section we introduce our shared-memory approach for
parallelizing the FMM using an overlapping domain decom-
position technique. We partition the computational domain
in, if possible, equal parts (i.e. subgrids) where each thread is
responsible for a specific subgrid. A single ghost layer is used
in all interior spatial decomposition directions to ensure that
the parallel algorithm properly computes the entire domain;
the updates at the inner boundary cells (i.e. boundary cells
introduced by the partitioning scheme) are forwarded to the
neighboring threads allowing the local solutions to influence
the global solution process. By using a domain decomposi-
tion technique, which is due to the use of ghost zones to be
considered an overlapping domain decomposition approach,
each thread (and thus partition) has its own minimum heap
data structure. Thereby the primary reason for the FMM to
not favor parallelization is eliminated, as no synchronized ac-
cess - avoiding race conditions - has to be implemented. The
eikonal equation is solved by the threads on their individual
subgrid, including the ghost cells, which gives rise to par-
allelism. The general idea for decomposing the domain is
shown in Figure 2 for a two-dimensional case.

The key ingredient to our shared-memory domain decompo-
sition approach is the parallel grid data structure. Each sub-
grid is represented by a dedicated grid data structure which is
specialized regarding the corresponding thread identification
and the total number of threads: Each subgrid derives from
this thread information its neighbor communication config-
uration via index computations which is automatically gen-
erated upon initialization. We are using a straightforward
uniform three-dimensional block decomposition method, i.e.,
each spatial dimension is split according to the number of
threads.



Figure 2: Two-dimensional schematic depicting the domain
decomposition scheme for four threads used for our paral-
lel FMM. The initial computational domain is split at the
red lines which also indicate the overlap interfaces. A sin-
gle ghost layer (grey cells) is used to ensure a proper solution
coupling of the parallel algorithm.

For instance, when four threads are used, the x and y dimen-
sion is partitioned into two parts, whereas the z dimension is
left untouched, thus decomposing the computational domain
into four parts. In turn, for sixteen threads we are partitioning
the x dimension into four parts, whereas the y and z dimen-
sion are partitioned in two parts and so forth.

To support non-uniform memory access (NUMA) environ-
ments, each thread instantiates and initializes its own subgrid
data structure. The master thread holds an array of pointers to
the individual subgrids, allowing shared access to neighbor-
ing subgrids for the thread team. This approach ensures that
the threads’ compute-intensive loops are executed on their re-
spective locality domains, avoiding NUMA traffic and thus
ultimately increasing parallel scalability. However, NUMA
traffic cannot be entirely avoided as the ghost layer commu-
nication requires access to neighboring subgrids, triggering
memory access to remote locality domains via the indicated
shared global grid data structure. But as communication is -
relative to the compute-intensive loops - much less required
in the overall scheme, the performance hit of communication-
related NUMA traffic is limited. Algorithm 1 shows a pseu-
docode depicting the NUMA-aware grid setup.

The overall algorithm for the parallel FMM is shown in Al-
gorithm 2, which to a large degree follows the work in a
distributed-memory setting [19]. However, the communica-
tion mechanisms used in our approach utilize the available
shared-memory features. In particular, a reduction method

Algorithm 1 NUMA-aware setup of the parallel grid data
structure suitable for domain decomposition

1: #Shared-array holds pointers to subgrids
2: grid← subgrid[threads]
3: #omp parallel
4: {
5: #Create and setup subgrid in proper locality domain
6: grid[this thread]← new subgrid(cells)
7: #Each thread executes the parallel FMM algorithm
8: fmm parallel(grid)
9: }

Algorithm 2 The shared-memory, parallel FMM algorithm
(fmm parallel(grid)) executed by all threads: T solution ar-
ray, G flag array, NB the narrow band (i.e. heap), LCglobal
loop condition.

1: subgrid← grid[this thread]
2: T← ∞
3: G← FAR
4: NB← ∅
5: initialize interface (subgrid, T, G)
6: initialize heap (subgrid, T, G, NB)
7: while 1 do
8: #Barrier: Ensure reduction obtains latest global data
9: for subgrid ∈ grid do

10: LCglobal ← LClocal
11: end for
12: if not LCglobal then
13: Break loop
14: end if
15: march narrow band(subgrid, T, G, NB)
16: exchange overlapping data(grid, T, G)
17: #Barrier: Ensure remote write operations finished
18: integrate overlapping data(subgrid, T, G, NB)
19: march narrow band(subgrid, T, G, NB)
20: end while

(Lines 9-11) uses the available shared access to the global
grid data structure to compute the loop condition variables,
e.g., the global number of heap elements - used to termi-
nate the overall algorithm - is calculated by accessing the
remote heap sizes of each individual subgrid. A synchroniza-
tion point is required prior to the shared-access to make sure
that all threads can provide their latest information on their
progress.

The march narrow band method performs a regular FMM
step, i.e., the entire local heap is processed until it is empty.
To ensure a proper coupling of the FMM’s algorithm be-
tween the subgrids, a ghost layer exchange mechanism is
utilized, which is schematically depicted in Figure 3: The
exchange overlapping data method processes all ghost cells
of the local partition and writes those to thread-exclusive re-
ceive buffers of the corresponding neighbor threads (i.e. par-
titions). Ghost cells are potentially transferred to more than
one neighbor partition (Figure 2). Due to the use of thread-
exclusive receive buffers, no write access guards are required.



Thread 0 Thread 1

Thread 1 Thread 0

1.

2.
if Tremote < Tlocal if Tremote < Tlocal

Figure 3: The ghost cell data exchange is implemented via
(1.) the exchange overlapping data method and (2.) the
integrate overlapping data method: (1.) The ghost cell in-
dices and its local solution values are transferred to a thread-
exclusive target buffer of the neighboring thread; (2.) If the
remote solutions are smaller than their local counterparts (to
uphold the upwind condition), the local solution values will
be updated accordingly.

The integrate overlapping data method processes all of the
local thread-exclusive receive buffers (one for each neigh-
boring thread) and merges it with the local data sets, if the
remote solutions are smaller than the local ones (to satisfy
the fundamental upwind principle of the FMM). Before this
step can be executed, all threads must have finished their
write operations - requiring a synchronization point - con-
ducted in exchange overlapping data as otherwise the merg-
ing step is corrupted due to potentially unfinished write oper-
ations. As the integration method potentially introduces new
cells into the local heap, an additional march narrow band
step is required to ensure that the remote information (via
the overlapping ghost cells provided by the neighbor threads)
is processed locally by the FMM’s algorithm. Our entire
shared-memory FMM algorithm requires two synchroniza-
tion points; no additional guards for avoiding race-conditions
are needed.

4. RESULTS
We investigate the performance and accuracy of our paral-
lel FMM implementation relative to a reference FMM and
FIM implementation. The FIM has been chosen as a paral-
lel comparison target due to its excellent support for paral-
lelism [10], which thus provides a proper frame of reference
to judge upon the parallel execution performance of our par-
allel FMM. The FIM implementation follows a fine-grained
shared-memory approach [3]. Our benchmarks use estab-
lished synthetic problem cases [2][3][7] and cover differ-
ent three-dimensional problems with varying problem sizes
(1003 and 2003 Cartesian cube grids using 0.0 and 1.0 for
lower and upper bounds, respectively), speed functions, and
single/multiple-source configurations, i.e., a single center
source node versus 100 source nodes randomly spread over
the entire simulation domain. The entire simulation domains
are computed.

Figure 4: Isosurfaces of the Fconst (top left), Fcheck (top right),
and Fosc (bottom) solution on a 1003 domain for a single cen-
ter source

Regarding speed functions, we investigate three different con-
figurations to evaluate the influence of different speed func-
tions on the performance: (1) constant speed (Fconst), where
for the entire domain F = 1 is used; (2) checkerboard speed
(Fcheck), where the computational domain is divided into
eleven equally sized cubes in each direction and the velocity
is alternated between F = 1 to F = 2 from cube to cube [2][7];
(3) oscillatory speed (Fosc), where the speed function is mod-
eled by a highly oscillatory continuous speed function, be-
ing F = 1 + 1

2sin(20πx )sin(20πy)sin(20πz) [2]. The bench-
mark setups have been chosen to investigate the correlation
between varying problem sizes (i.e. number of grid cells) and
different speed functions as well as with various thread num-
bers.

Figure 4 depicts the isosurfaces of the solutions of the center
test configurations for the 1003 simulation grids, to provide
a frame of reference for the benchmark setup and the solu-
tions. The results for the 2003 are similar, albeit offering an
increased resolution.

The benchmarks have been carried out on a single compute
node of the current installation (i.e. 3rd) of the Vienna Sci-
entific Cluster1. The compute node provides two eight-core
Intel Xeon E5-2650v2 (Ivy Bridge-EP) processors - offering
a total of 16 physical and 32 logical cores using Hyperthread-
ing - and 64 GB of DDR3 1866 ECC main memory. The In-
tel C++ compiler version 16.0.0 (-O3 flag) has been used as
well as 64-bit floating point precision (i.e. double) and - for
the FIM - an error threshold of ε = 10−12 has been utilized.
The fastest execution times out of five repetitions have been
recorded and used for the investigation.

1http://vsc.ac.at/



Figure 5-7 compare the strong scaling results of our parallel
FMM and the reference FIM for the 1003 grid setup. The
execution times are shown in logarithmic scale to increase
the identifiability of the presented data sets, as the timings
for the various setups would otherwise potentially be indis-
tinguishable from each other. As can be seen from the re-
sults, the FIM struggles in general with complicated speed
functions whereas the (parallel) FMM does not, which is to
be expected [10]. However, parallel scalability for the FIM
is better as compared to our parallel FMM approach. Never-
theless, for this problem size excellent speed up efficiency of
around 90% for up to eight threads are achieved. A slight ten-
dency for super-linear scaling can be identified which is due
to the decomposition scheme: For one thread, the required
additional decomposition logic results in a disproportionate
overhead which is alleviated for higher thread numbers. How-
ever, for more than eight threads, the book keeping required
for handling the larger thread numbers counters this effect
again.

Figure 8-10 compare the strong scaling results of our paral-
lel FMM and the reference FIM for a 2003 grid. These results
show that the parallel scalability improves for increased prob-
lem sizes. Our parallel FMM performs well (>70%) for up to
sixteen threads, especially for multiple source configurations.
For the constant speed function we can even beat the refer-
ence FIM implementation. Super-linear scaling effects can
be identified similar to the 1003 grid investigations. All in all,
the results bode well for future real-world applications which
offer large problem sizes (i.e. grids) as well as complicated
interfaces providing a plethora of source cells.

To investigate the accuracy of the FMM, FIM, and the par-
allel FMM, the computed results of the single source prob-
lem with constant speed for a 1003 grid have been compared
to an analytic solution given by the Euclidian distance func-
tion. Table 1 shows the L1, L2, and L∞ norms of the individ-
ual approaches, which remain constant for varying degrees of
parallelism (i.e. using more than one thread does not affect
the accuracy of the FIM and the parallel FMM). As can be
seen from the results, the parallel FMM offers the same error
norms as the reference FMM, meaning that both approaches
compute exactly the same results. However, the FIM offers a
larger error than the more accurate (parallel) FMM.

Table 2 and Table 3 compare the serial execution times (i.e.
with one thread) of the sequential FMM, our parallel FMM, as
well as the FIM for the single and multiple source problems.
The results show that the parallel FMM introduces negligible
overhead, which is in a single worst case around 5.5%.

Using a uniform domain decomposition approach has obvi-
ous limitations with respect to load balancing, if the sources
are not (close to) equally distributed among the individual
partitions. Future work will investigate dynamic partitioning
approaches in the context of real-world applications to tune
the partitioning to the input source configuration and thus ul-
timately reduce load balancing issues. Furthermore, the par-
allel FMM approach will be investigated with respect to mesh
adaptivity by using nested mesh data structures.

L1 L2 L∞
FMM 8 · 10−3 7.3 · 10−5 1 · 10−3

parallel FMM 8 · 10−3 7.3 · 10−5 1 · 10−3

FIM 17 · 10−3 31 · 10−5 15 · 10−3

Table 1: The L1, L2, and L∞ norms of the FMM, parallel
FMM, and FIM are compared for the single source, 1003 test
case using constant speed.

1003 Fconst Fcheck Fosc
FMM 0.673322 1.02008 1.26559

parallel FMM 0.673001 1.04368 1.3274
FIM 0.44696 4.25954 20.0117
2003 Fconst Fcheck Fosc

FMM 8.19452 11.9365 14.7707
parallel FMM 8.06106 12.6134 15.5846

FIM 3.90304 47.9877 245.749

Table 2: Comparison of serial execution times between the
FMM, parallel FMM, and FIM for the single source tests and
different speed functions.

1003 Fconst Fcheck Fosc
FMM 0.717773 1.25512 1.44339

parallel FMM 0.715878 1.28597 1.51159
FIM 0.931384 2.76385 9.53287
2003 Fconst Fcheck Fosc

FMM 10.6511 17.6005 19.5338
parallel FMM 10.4973 17.9843 20.0329

FIM 10.1596 29.4321 112.024

Table 3: Comparison of serial execution times between the
FMM, parallel FMM, and FIM for the multiple source tests
and different speed functions.

5. CONCLUSION
An approach for parallelizing the FMM in a shared-memory
setting has been introduced. Our method uses an overlapping
uniform domain decomposition method and provides excel-
lent accuracy as well as serial and parallel performance, es-
pecially when considering intricate speed setups and larger
problem sizes. The overhead for implementing the shared-
memory overlapping domain decomposition technique lim-
its excellent parallel scalability for smaller problems to about
eight threads. However, when increasing the problem size,
excellent scalability for up to sixteen threads is achieved. This
behavior bodes well for future real-world applications, offer-
ing large problem sizes and complicated source configura-
tions which will be - in addition to load balancing techniques
and mesh adaptivity - at the center of our upcoming research.
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Figure 5: Execution times (left) and relative speedups (right) of the Fconst problem on a 1003 domain
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Figure 6: Execution times (left) and relative speedups (right) of the Fcheck problem on a 1003 domain
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Figure 7: Execution times (left) and relative speedups (right) of the Fosc problem on a 1003 domain
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Figure 8: Execution times (left) and relative speedups (right) of the Fconst problem on a 2003 domain
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Figure 9: Execution times (left) and relative speedups (right) of the Fcheck problem on a 2003 domain
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