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The problem about the existence and uniqueness of the Wigner equation solution is directly 

related to physical and computational aspects of actual quantum transport problems. In the case 

of evolution problems in presence of initial and boundary conditions, it can be shown that there 

is a unique solution. However, if we consider the long time limit, giving rise to a stationary 

Wigner picture, it appears that the equation becomes ill-defined: This is associated to the loss 

of the time derivative and thus the specific evolution role played by the equation in the set of 

notions needed to define a phase space quantum mechanics. The Weyl map defines an 

isomorphism from the algebra of the position and the momentum operators 𝑥̂, 𝑦̂ with a product 

and a commutator [.,.]c to the algebra of the phase space functions A(x,p) with a non-

commutative star (∗)-product and Moyal bracket [.,.]M. In particular the evolution of the density 

operator, the von Neumann equation involving the commutator with the Hamiltonian, gives rise 

via the Moyal bracket to the equation for the Wigner function. The latter carries the information 

about the evolution of the physical system, but is not sufficient to define independently phase 

space quantum mechanics: The ∗-product is needed to determine the eigenfunctions to provide 

a physically admissible initial condition. It has been shown that the Wigner equation in presence 

of the initial and boundary conditions is well posed, i.e. it has a solution which is unique [1]. 

The proof is based on the resolvent expansion of the integral form of the equation:   

𝑓(𝑥, 𝑘, 𝑡) = ∫ 𝑑𝑡′ ∫ 𝑑𝑘′ 𝑉𝑤(𝑥(𝑡′), 𝑘(𝑡′) − 𝑘′)𝑓(𝑥(𝑡′), 𝑘′, 𝑡)  + 𝑓0(𝑥, 𝑘)  

𝑡

0

 (1) 

with 𝑓0 = 𝑓𝑖(𝑥(0), 𝑘(0))𝜃Ω(𝑥(0))  + 𝑓𝑏(𝑥(𝑡𝑏), 𝑘(𝑡𝑏))𝜃Ω(𝑡𝑏)   and the field-less Newton 

trajectories 𝑥(𝑡′) = 𝑥 − 𝑣(𝑘)(𝑡 − 𝑡′), 𝑘(𝑡′) = 𝑘 initialized by x, k, t determine the time 

crossing the boundary, the time 𝑡𝐵 by moving backwards in time, 𝑡′ < 𝑡 and 𝑓𝑖 and 𝑓𝑏 provide 

two complementary contributions from the initial condition and the boundaries. The equation 

is of Volterra type with respect to the time variable (Markovian evolution) which allows one to 

prove convergence of the resolvent series under the very general assumption that the potential 

is absolutely integrable function. The stationary Wigner equation is obtained by the long time 

limit of (1), using the change −𝜏 = 𝑡 − 𝑡′:   𝑥(𝜏) = 𝑥 + 𝑣(𝑘)(𝜏);  𝑘(𝜏) = 𝑘. 

𝑓(𝑥, 𝑘) = ∫ 𝑑𝑡′ ∫ 𝑑𝑘′ 𝑉𝑤(𝑥(𝜏), 𝑘(𝑡′) − 𝑘′)𝑓(𝑥(𝜏), 𝑘′)  

0

−𝑡=−∞

+ 𝑓𝑏(𝑥(𝜏𝑏), 𝑘)   (2) 

−∞ <  𝜏𝑏  < 0 is now the time for a trajectory initialized by point x at time 0 to reach the 

boundary moving backwards.  
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The limit 𝑓(𝑥, 𝑘) = lim
𝑡′→∞

𝑓(𝑥, 𝑘, 𝑡′) =   lim
𝑡→∞

𝑓(𝑥, 𝑘, 𝑡 + 𝜏) defines the stationary solution. Without 

loss of generality we assumed that the initial condition vanishes in the long time limit. Now we 

analyze if the existence of the free term 𝑓𝑏 in (2) guarantees an unique solution. Or if we 

formally write the equation as: (𝐼 − 𝑉̂𝑤)𝑓 = 𝑓𝑏 , we need to show that the operator 𝐼 −  𝑉̂𝑤 has 

an inverse operator. This is equivalent to showing that the only solution of the homogeneous 

equation (2) is the function 𝑓 = 0. We consider the Fourier transform 𝑓 ̃(𝑞, 𝑘) =

1 2𝜋⁄ ∫ 𝑑𝑥 𝑒−𝑖𝑞𝑥 𝑓(𝑥, 𝑘) and use the change 𝑦 = 𝑥 + 𝑣(𝑘)𝜏 to obtain: 

𝑓 ̃(𝑞, 𝑘) =
1

2𝜋
∫ 𝑑𝜏 ∫ 𝑑𝑦 𝑒−𝑖𝑞𝑦𝑒−𝑖𝑞𝑣(𝑘)𝜏 ∫ 𝑑𝑘′ 𝑉𝑤(𝑦, 𝑘′)𝑓(𝑦, 𝑘 − 𝑘′)  

0

−∞

  (4) 

The time integral of the exponent can be evaluated in terms of generalized functions to finally give:  

ℏ𝑞𝑣(𝑘)𝑓 ̃(𝑞, 𝑘) = ∫ 𝑑𝑞′′ 𝑉̃(𝑞′′) (𝑓 ̃ (𝑞 − 𝑞′′, 𝑘 +
𝑞′′

2
) − 𝑓 ̃ (𝑞 − 𝑞′′, 𝑘 −

𝑞′′

2
))  (5) 

with 𝑉̃(𝑞) =  1 2𝜋⁄  ∫ 𝑑𝑦 𝑒−𝑖𝑞𝑦 𝑉(𝑦). This equation must be analyzed for existence of non-trivial 

solutions. Such solutions can be constructed from the stationary Schrödinger equation in 

momentum space,   

(𝐸 − 𝜖(𝑘))𝜓(𝑘) = ∫ 𝑑𝑞 𝑉̃(𝑞)𝜓(𝑘 − 𝑞) ;              𝜖(𝑘) =
ℏ2𝑘2

2𝑚
  (6) 

As observed by Carruthers et al. [2] in their study of quantum collisions, the function f(q,k) = 

ψ*(k-q/2) ψ(k+q/2) is a solution of (5). Hence the null space of the operator 𝐼 −  𝑉̂𝑤 contains 

any stationary solution obtained by (6) and we cannot expect a unique solution corresponding 

to given boundary conditions. This is in accordance with the results presented in [3].  

We associate this problem with the loss of the evolution character of the equation: For 

eigenstates of the Hamiltonian the stationary Wigner equation reduces to 𝑣(𝑘) 𝜕𝑓(𝑥, 𝑘) 𝜕𝑥⁄ = 0 

with a solution f(x, k) = ψ(k) given by an arbitrary function of k. On the contrary, the evolution 

problem determined by the time derivative  

𝑣(𝑘)
𝜕𝑓

𝜕𝑥
+  

𝜕𝑓

𝜕𝑡
=  

𝑑 𝑓(𝑥(𝑡), 𝑘, 𝑡)

𝑑𝑡
= 0 (7) 

has a solution 𝑓(𝑥. 𝑘, 𝑡) = 𝑓(𝑥(0), 𝑘, 0) so that a correct physical picture can be obtained by a 

relevant initial condition 𝑓(𝑥(0), 𝑘, 0) which obeys the uncertainty relations. In conclusion, both 

the Wigner equation and the ∗ eigenvalue problem are necessary notions of the phase space 

quantum mechanics. The stationary limit of the former of the former cannot replace the latter 

and actually lacks physical argumentation.  
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